Prevalence of POC5 Coding Variants in French-Canadian and British AIS Cohort
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Targeted Exome Sequencing
2.3. Whole-Exome Sequencing
2.4. Validation with Sanger Sequencing
2.5. Statistics
3. Results
3.1. Patient Enrolment
3.2. POC5 Variants Prevalence Using Next-Generation Sequencing
3.3. Segragation Analysis of POC5 Coding Variants with AIS
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Edery, P.; Margaritte-Jeannin, P.; Biot, B.; Labalme, A.; Bernard, J.C.; Chastang, J.; Kassai, B.; Plais, M.H.; Moldovan, F.; Clerget-Darpoux, F. New disease gene location and high genetic heterogeneity in idiopathic scoliosis. Eur. J. Hum. Genet. 2011, 19, 865–869. [Google Scholar] [CrossRef] [PubMed]
- Fadzan, M.; Bettany-Saltikov, J. Etiological theories of adolescent idiopathic scoliosis: past and present. Open Orthop. J. 2017, 11, 1466–1489. [Google Scholar] [CrossRef] [Green Version]
- Konieczny, M.R.; Senyurt, H.; Krauspe, R. Epidemiology of adolescent idiopathic scoliosis. J. Child. Orthop. 2013, 7, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Grivas, T.B.; Vasiliadis, E.; Mouzakis, V.; Mihas, C.; Koufopoulos, G. Association between adolescent idiopathic scoliosis prevalence and age at menarche in different geographic latitudes. Scoliosis 2006, 1, 9. [Google Scholar] [CrossRef] [Green Version]
- Mongird-Nakonieczna, J.; Kozlowski, B. Functional and structural scoliosis in monozygotic twins. Chir. Narzadow Ruchu Ortop. Pol. 1976, 41, 34–36. [Google Scholar]
- Grauers, A.; Rahman, I.; Gerdhem, P. Heritability of scoliosis. Eur. Spine J. 2012, 21, 1069–1074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaydman, A.M.; Strokova, E.L.; Pahomova, N.Y.; Gusev, A.F.; Mikhaylovskiy, M.V.; Shevchenko, A.I.; Zaidman, M.N.; Shilo, A.R.; Subbotin, V.M. Etiopathogenesis of adolescent idiopathic scoliosis: Review of the literature and new epigenetic hypothesis on altered neural crest cells migration in early embryogenesis as the key event. Med. Hypotheses 2021, 151, 110585. [Google Scholar] [CrossRef]
- Mongird-Nakonieczna, J.; Kozlowski, B. Familial occurrence of idiopathic scoliosis. Chir. Narzadow Ruchu Ortop. Pol. 1976, 41, 161–165. [Google Scholar]
- Miller, N.H. Genetics of familial idiopathic scoliosis. Clin. Orthop. Relat. Res. 2007, 462, 6–10. [Google Scholar] [CrossRef] [PubMed]
- Axenovich, T.I.; Zaidman, A.M.; Zorkoltseva, I.V.; Tregubova, I.L.; Borodin, P.M. Segregation analysis of idiopathic scoliosis: demonstration of a major gene effect. Am. J. Med. Genet. 1999, 86, 389–394. [Google Scholar] [CrossRef]
- Justice, C.M.; Miller, N.H.; Marosy, B.; Zhang, J.; Wilson, A.F. Familial idiopathic scoliosis: evidence of an X-linked susceptibility locus. Spine 2003, 28, 589–594. [Google Scholar] [CrossRef] [Green Version]
- Mathieu, H.; Patten, S.A.; Aragon-Martin, J.A.; Ocaka, L.; Simpson, M.; Child, A.; Moldovan, F. Genetic variant of TTLL11 gene and subsequent ciliary defects are associated with idiopathic scoliosis in a 5-generation UK family. Sci. Rep. 2021, 11, 11026. [Google Scholar] [CrossRef]
- Patten, S.A.; Margaritte-Jeannin, P.; Bernard, J.C.; Alix, E.; Labalme, A.; Besson, A.; Girard, S.L.; Fendri, K.; Fraisse, N.; Biot, B.; et al. Functional variants of POC5 identified in patients with idiopathic scoliosis. J. Clin. Investig. 2015, 125, 1124–1128. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Sheng, F.; Xia, C.; Li, Y.; Feng, Z.; Qiu, Y.; Zhu, Z. Common variant of POC5 is associated with the susceptibility of adolescent idiopathic scoliosis. Spine 2018, 43, E683–E688. [Google Scholar] [CrossRef]
- Hassan, A.; Parent, S.; Mathieu, H.; Zaouter, C.; Molidperee, S.; Bagu, E.T.; Barchi, S.; Villemure, I.; Patten, S.A.; Moldovan, F. Adolescent idiopathic scoliosis associated POC5 mutation impairs cell cycle, cilia length and centrosome protein interactions. PLoS ONE 2019, 14, e0213269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliazadeh, N.; Gorman, K.F.; Eveleigh, R.; Bourque, G.; Moreau, A. Identification of elongated primary cilia with impaired mechanotransduction in idiopathic scoliosis patients. Sci. Rep. 2017, 7, 44260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grimes, D.T.; Boswell, C.W.; Morante, N.F.; Henkelman, R.M.; Burdine, R.D.; Ciruna, B. Zebrafish models of idiopathic scoliosis link cerebrospinal fluid flow defects to spine curvature. Science 2016, 352, 1341–1344. [Google Scholar] [CrossRef] [Green Version]
- Laura, M.-H.; Yasmine, C.-B.; Raphaël, P.; Lotfi, S.; Hugues, P.-M. The orthopedic characterization of cfap298tm304 mutants validate zebrafish to faithfully model human AIS. Sci. Rep. 2021, 11, 7392. [Google Scholar] [CrossRef]
- Bearce, E.A.; Grimes, D.T. On being the right shape: Roles for motile cilia and cerebrospinal fluid flow in body and spine morphology. Semin. Cell Dev. Biol. 2021, 110, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Li, M.; Hakonarson, H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010, 38, e164. [Google Scholar] [CrossRef]
- Desvignes, J.P.; Bartoli, M.; Delague, V.; Krahn, M.; Miltgen, M.; Beroud, C.; Salgado, D. VarAFT: A variant annotation and filtration system for human next generation sequencing data. Nucleic Acids Res. 2018, 46, W545–W553. [Google Scholar] [CrossRef]
- Exome Variant Server, NHLBI GO Exome Sequencing Project (ESP), Seattle, WA, USA. Available online: http://evs.gs.washington.edu/EVS/) (accessed on 21 March 2020).
- Karczewski, K.J.; Francioli, L.C.; Tiao, G.; Cummings, B.B.; Alföldi, J.; Wang, Q.; Collins, R.L.; Laricchia, K.M.; Ganna, A.; Birnbaum, D.P.; et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 2020, 581, 434–443. [Google Scholar] [CrossRef] [PubMed]
- Miller, N.H.; Justice, C.M.; Marosy, B.; Doheny, K.F.; Pugh, E.; Zhang, J.; Dietz, H.C., 3rd; Wilson, A.F. Identification of candidate regions for familial idiopathic scoliosis. Spine 2005, 30, 1181–1187. [Google Scholar] [CrossRef] [PubMed]
- Chan, V.; Fong, G.C.; Luk, K.D.; Yip, B.; Lee, M.K.; Wong, M.S.; Lu, D.D.; Chan, T.K. A genetic locus for adolescent idiopathic scoliosis linked to chromosome 19p13.3. Am. J. Hum. Genet. 2002, 71, 401–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azimzadeh, J.; Hergert, P.; Delouvee, A.; Euteneuer, U.; Formstecher, E.; Khodjakov, A.; Bornens, M. hPOC5 is a centrin-binding protein required for assembly of full-length centrioles. J. Cell Biol. 2009, 185, 101–114. [Google Scholar] [CrossRef] [Green Version]
- Le Guennec, M.; Klena, N.; Gambarotto, D.; Laporte, M.H.; Tassin, A.M.; van den Hoek, H.; Erdmann, P.S.; Schaffer, M.; Kovacik, L.; Borgers, S.; et al. A helical inner scaffold provides a structural basis for centriole cohesion. Sci. Adv. 2020, 6, eaaz4137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, W.; Zhang, Y.; Chen, K.; He, J.; Feng, X.; Wei, W.; Hua, J.; Wang, J. Primary cilia act as microgravity sensors by depolymerizing microtubules to inhibit osteoblastic differentiation and mineralization. Bone 2020, 136, 115346. [Google Scholar] [CrossRef] [PubMed]
- Beling, A.; Hresko, M.T.; DeWitt, L.; Miller, P.E.; Pitts, S.A.; Emans, J.B.; Hedequist, D.J.; Glotzbecker, M.P. Vitamin D levels and pain outcomes in adolescent idiopathic scoliosis patients undergoing spine fusion. Spine Deform. 2021. [Google Scholar] [CrossRef]
Data | Families (n = 53; 83 AIS Patients) | AIS Cases with Unknown Pedigree data (n = 94) | Controls Matched for Ethnicity with Families and Cases (n = 1268) | Comparison of Allelic Frequency of the Rare Variants in AIS Cases vs. Controls (Fisher’s Exact Test, One Tailed) |
---|---|---|---|---|
Sequencing Methods | WES + Targeted Exome | WES + Targeted Exome | WES + Sanger | |
p.(A446T) | 2/53 3.8% | 6/94 6.4% | 19/1268 1.5% | p = 0.0052 |
p.(A429V) | 6/53 11.3% | 5/94 5.3% | 9/1268 0.7% | p ˂ 0.0001 |
POC5 coding variants | 8/53 15.1% | 11/94 11.7% | 28/1268 2.2% | p ˂ 0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mathieu, H.; Spataru, A.; Aragon-Martin, J.A.; Child, A.; Barchi, S.; Fortin, C.; Parent, S.; Moldovan, F. Prevalence of POC5 Coding Variants in French-Canadian and British AIS Cohort. Genes 2021, 12, 1032. https://doi.org/10.3390/genes12071032
Mathieu H, Spataru A, Aragon-Martin JA, Child A, Barchi S, Fortin C, Parent S, Moldovan F. Prevalence of POC5 Coding Variants in French-Canadian and British AIS Cohort. Genes. 2021; 12(7):1032. https://doi.org/10.3390/genes12071032
Chicago/Turabian StyleMathieu, Hélène, Aurélia Spataru, José Antonio Aragon-Martin, Anne Child, Soraya Barchi, Carole Fortin, Stefan Parent, and Florina Moldovan. 2021. "Prevalence of POC5 Coding Variants in French-Canadian and British AIS Cohort" Genes 12, no. 7: 1032. https://doi.org/10.3390/genes12071032
APA StyleMathieu, H., Spataru, A., Aragon-Martin, J. A., Child, A., Barchi, S., Fortin, C., Parent, S., & Moldovan, F. (2021). Prevalence of POC5 Coding Variants in French-Canadian and British AIS Cohort. Genes, 12(7), 1032. https://doi.org/10.3390/genes12071032