The Use of Larval Sea Stars and Sea Urchins in the Discovery of Shared Mechanisms of Metazoan Whole-Body Regeneration
Abstract
:1. Introduction
2. Basic Biology of Larval Echinoderms
3. Advantages of Using Echinoderm Larvae Compared to Their Adult Counterparts
4. History of Using Echinoderm Larvae in Regeneration Studies
5. Genomics and Imaging: Echinoderm Tools for Understanding Regeneration
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sánchez Alvarado, A.; Tsonis, P.A. Bridging the Regeneration Gap: Genetic Insights from Diverse Animal Models. Nat. Rev. Genet. 2006, 7, 873–884. [Google Scholar] [CrossRef]
- Wenemoser, D.; Reddien, P.W. Planarian Regeneration Involves Distinct Stem Cell Responses to Wounds and Tissue Absence. Dev. Biol. 2010, 344, 979–991. [Google Scholar] [CrossRef] [Green Version]
- Yoo, S.K.; Freisinger, C.M.; LeBert, D.C.; Huttenlocher, A. Early Redox, Src Family Kinase, and Calcium Signaling Integrate Wound Responses and Tissue Regeneration in Zebrafish. J. Cell Biol. 2012, 199, 225–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DuBuc, T.Q.; Traylor-Knowles, N.; Martindale, M.Q. Initiating a Regenerative Response; Cellular and Molecular Features of Wound Healing in the Cnidarian Nematostella vectensis. BMC Biol. 2014, 12, 24. [Google Scholar] [CrossRef] [Green Version]
- Sandoval-Guzmán, T.; Wang, H.; Khattak, S.; Schuez, M.; Roensch, K.; Nacu, E.; Tazaki, A.; Joven, A.; Tanaka, E.M.; Simon, A. Fundamental Differences in Dedifferentiation and Stem Cell Recruitment during Skeletal Muscle Regeneration in Two Salamander Species. Cell Stem Cell 2014, 14, 174–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jopling, C.; Sleep, E.; Raya, M.; Martí, M.; Raya, A.; Izpisúa Belmonte, J.C. Zebrafish Heart Regeneration Occurs by Cardiomyocyte Dedifferentiation and Proliferation. Nature 2010, 464, 606–609. [Google Scholar] [CrossRef]
- Echeverri, K.; Clarke, J.D.; Tanaka, E.M. In Vivo Imaging Indicates Muscle Fiber Dedifferentiation Is a Major Contributor to the Regenerating Tail Blastema. Dev. Biol. 2001, 236, 151–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, H.D.; Ortmeyer, A.B.; Blankenbaker, D.P. Cell Division during Regeneration in Hydra. Nature 1970, 227, 617–619. [Google Scholar] [CrossRef]
- Nachtrab, G.; Kikuchi, K.; Tornini, V.A.; Poss, K.D. Transcriptional Components of Anteroposterior Positional Information during Zebrafish Fin Regeneration. Development 2013, 140, 3754–3764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwata, R.; Makanae, A.; Satoh, A. Stability and Plasticity of Positional Memory during Limb Regeneration in Ambystoma mexicanum. Dev. Dyn. 2020, 249, 342–353. [Google Scholar] [CrossRef]
- Lai, A.G.; Aboobaker, A.A. EvoRegen in Animals: Time to Uncover Deep Conservation or Convergence of Adult Stem Cell Evolution and Regenerative Processes. Dev. Biol. 2018, 433, 118–131. [Google Scholar] [CrossRef]
- Bely, A.E.; Nyberg, K.G. Evolution of Animal Regeneration: Re-Emergence of a Field. Trends Ecol. Evol. 2010, 25, 161–170. [Google Scholar] [CrossRef]
- Maden, M. The Evolution of Regeneration—Where Does That Leave Mammals? Int. J. Dev. Biol. 2018, 62, 369–372. [Google Scholar] [CrossRef] [Green Version]
- Goss, R.J. The Evolution of Regeneration: Adaptive or Inherent? J. Theor. Biol. 1992, 159, 241–260. [Google Scholar] [CrossRef]
- Darnet, S.; Dragalzew, A.C.; Amaral, D.B.; Sousa, J.F.; Thompson, A.W.; Cass, A.N.; Lorena, J.; Pires, E.S.; Costa, C.M.; Sousa, M.P.; et al. Deep Evolutionary Origin of Limb and Fin Regeneration. Proc. Natl. Acad. Sci. USA 2019, 116, 15106–15115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yankura, K.A.; Martik, M.L.; Jennings, C.K.; Hinman, V.F. Uncoupling of Complex Regulatory Patterning during Evolution of Larval Development in Echinoderms. BMC Biol. 2010, 8, 143. [Google Scholar] [CrossRef] [Green Version]
- Byrne, M.; Koop, D.; Morris, V.B.; Chui, J.; Wray, G.A.; Cisternas, P. Expression of Genes and Proteins of the Pax-Six-Eya-Dach Network in the Metamorphic Sea Urchin: Insights into Development of the Enigmatic Echinoderm Body Plan and Sensory Structures. Dev. Dyn. 2018, 247, 239–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrikou, C.; Pai, C.-Y.; Su, Y.-H.; Arnone, M.I. Logics and Properties of a Genetic Regulatory Program That Drives Embryonic Muscle Development in an Echinoderm. eLife 2015, 4, 07343. [Google Scholar] [CrossRef] [PubMed]
- Erkenbrack, E.M. Divergence of Ectodermal and Mesodermal Gene Regulatory Network Linkages in Early Development of Sea Urchins. Proc. Natl. Acad. Sci. USA 2016, 113, E7202–E7211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laubichler, M.D.; Davidson, E.H. Boveri’s Long Experiment: Sea Urchin Merogones and the Establishment of the Role of Nuclear Chromosomes in Development. Dev. Biol. 2008, 314, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peter, I.S.; Davidson, E.H. Genomic Control of Patterning. Int. J. Dev. Biol. 2009, 53, 707–716. [Google Scholar] [CrossRef]
- Sea Urchin Genome Sequencing Consortium; Sodergren, E.; Weinstock, G.M.; Davidson, E.H.; Cameron, R.A.; Gibbs, R.A.; Angerer, R.C.; Angerer, L.M.; Arnone, M.I.; Burgess, D.R.; et al. The Genome of the Sea Urchin Strongylocentrotus purpuratus. Science 2006, 314, 941–952. [Google Scholar] [CrossRef] [Green Version]
- Materna, S.C.; Berney, K.; Cameron, R.A. The S. Purpuratus Genome: A Comparative Perspective. Dev. Biol. 2006, 300, 485–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simakov, O.; Kawashima, T.; Marlétaz, F.; Jenkins, J.; Koyanagi, R.; Mitros, T.; Hisata, K.; Bredeson, J.; Shoguchi, E.; Gyoja, F.; et al. Hemichordate Genomes and Deuterostome Origins. Nature 2015, 527, 459–465. [Google Scholar] [CrossRef] [Green Version]
- Annunziata, R.; Martinez, P.; Arnone, M.I. Intact Cluster and Chordate-like Expression of ParaHox Genes in a Sea Star. BMC Biol. 2013, 11, 68. [Google Scholar] [CrossRef] [Green Version]
- Amir, Y.; Insler, M.; Giller, A.; Gutman, D.; Atzmon, G. Senescence and Longevity of Sea Urchins. Genes 2020, 11, 573. [Google Scholar] [CrossRef] [PubMed]
- Bodnar, A.G. Cellular and Molecular Mechanisms of Negligible Senescence: Insight from the Sea Urchin. Invertebr. Reprod. Dev. 2015, 59, 23–27. [Google Scholar] [CrossRef]
- Okada, A.; Kondo, M. Regeneration of the Digestive Tract of an Anterior-Eviscerating Sea Cucumber, Eupentacta quinquesemita, and the Involvement of Mesenchymal-Epithelial Transition in Digestive Tube Formation. Zool. Lett. 2019, 5, 21. [Google Scholar] [CrossRef] [Green Version]
- Mashanov, V.S.; Zueva, O.R.; García-Arrarás, J.E. Transcriptomic Changes during Regeneration of the Central Nervous System in an Echinoderm. BMC Genom. 2014, 15, 357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Czarkwiani, A.; Dylus, D.V.; Oliveri, P. Expression of Skeletogenic Genes during Arm Regeneration in the Brittle Star Amphiura filiformis. Gene Expr. Patterns 2013, 13, 464–472. [Google Scholar] [CrossRef] [Green Version]
- Gorzelak, P.; Stolarski, J.; Dubois, P.; Kopp, C.; Meibom, A. 26Mg Labeling of the Sea Urchin Regenerating Spine: Insights into Echinoderm Biomineralization Process. J. Struct. Biol. 2011, 176, 119–126. [Google Scholar] [CrossRef]
- Ben Khadra, Y.; Ferrario, C.; Di Benedetto, C.; Said, K.; Bonasoro, F.; Carnevali, M.D.C.; Sugni, M. Re-Growth, Morphogenesis, and Differentiation during Starfish Arm Regeneration. Wound Repair Regen. 2015, 23, 623–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Benedetto, C.; Parma, L.; Barbaglio, A.; Sugni, M.; Bonasoro, F.; Carnevali, M.D.C. Echinoderm Regeneration: An in Vitro Approach Using the Crinoid Antedon mediterranea. Cell Tissue Res. 2014, 358, 189–201. [Google Scholar] [CrossRef]
- Vickery, M.C.; Vickery, M.S.; Amsler, C.D.; McClintock, J.B. Regeneration in Echinoderm Larvae. Microsc. Res. Tech. 2001, 55, 464–473. [Google Scholar] [CrossRef] [PubMed]
- Angerer, L.M.; Angerer, R.C. Patterning the Sea Urchin Embryo: Gene Regulatory Networks, Signaling Pathways, and Cellular Interactions. Curr. Top. Dev. Biol. 2003, 53, 159–198. [Google Scholar] [CrossRef]
- Slota, L.A.; McClay, D.R. Identification of Neural Transcription Factors Required for the Differentiation of Three Neuronal Subtypes in the Sea Urchin Embryo. Dev. Biol. 2018, 435, 138–149. [Google Scholar] [CrossRef] [PubMed]
- Slota, L.A.; Miranda, E.; Peskin, B.; McClay, D.R. Developmental Origin of Peripheral Ciliary Band Neurons in the Sea Urchin Embryo. Dev. Biol. 2020, 459, 72–78. [Google Scholar] [CrossRef]
- Ch Ho, E.; Buckley, K.M.; Schrankel, C.S.; Schuh, N.W.; Hibino, T.; Solek, C.M.; Bae, K.; Wang, G.; Rast, J.P. Perturbation of Gut Bacteria Induces a Coordinated Cellular Immune Response in the Purple Sea Urchin Larva. Immunol. Cell Biol. 2016, 94, 861–874. [Google Scholar] [CrossRef] [PubMed]
- Furukawa, R.; Takahashi, Y.; Nakajima, Y.; Dan-Sohkawa, M.; Kaneko, H. Defense System by Mesenchyme Cells in Bipinnaria Larvae of the Starfish, Asterina pectinifera. Dev. Comp. Immunol. 2009, 33, 205–215. [Google Scholar] [CrossRef]
- Cary, G.A.; Hinman, V.F. Echinoderm Development and Evolution in the Post-Genomic Era. Dev. Biol. 2017, 427, 203–211. [Google Scholar] [CrossRef]
- Cary, G.A.; Wolff, A.; Zueva, O.; Pattinato, J.; Hinman, V.F. Analysis of Sea Star Larval Regeneration Reveals Conserved Processes of Whole-Body Regeneration across the Metazoa. BMC Biol. 2019, 17, 16. [Google Scholar] [CrossRef] [Green Version]
- Reinardy, H.C.; Emerson, C.E.; Manley, J.M.; Bodnar, A.G. Tissue Regeneration and Biomineralization in Sea Urchins: Role of Notch Signaling and Presence of Stem Cell Markers. PLoS ONE 2015, 10, e0133860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Range, R.C.; Angerer, R.C.; Angerer, L.M. Integration of Canonical and Noncanonical Wnt Signaling Pathways Patterns the Neuroectoderm along the Anterior-Posterior Axis of Sea Urchin Embryos. PLoS Biol. 2013, 11, e1001467. [Google Scholar] [CrossRef] [Green Version]
- Czarkwiani, A.; Ferrario, C.; Dylus, D.V.; Sugni, M.; Oliveri, P. Skeletal Regeneration in the Brittle Star Amphiura filiformis. Front. Zool. 2016, 13, 18. [Google Scholar] [CrossRef] [Green Version]
- Czarkwiani, A.; Dylus, D.V.; Carballo, L.; Oliveri, P. FGF Signalling Plays Similar Roles in Development and Regeneration of the Skeleton in the Brittle Star Amphiura filiformis. Development 2021, 148. [Google Scholar] [CrossRef] [PubMed]
- Eaves, A.A.; Palmer, A.R. Reproduction: Widespread Cloning in Echinoderm Larvae. Nature 2003, 425, 146. [Google Scholar] [CrossRef] [PubMed]
- Cheatle Jarvela, A.M.; Hinman, V. A Method for Microinjection of Patiria miniata Zygotes. J. Vis. Exp. 2014, e51913. [Google Scholar] [CrossRef] [Green Version]
- Sunderland, M.E. Regeneration: Thomas Hunt Morgan’s Window into Development. J. Hist. Biol. 2010, 43, 325–361. [Google Scholar] [CrossRef]
- Morgan, T.H. Regeneration; The Macmillan Company: London, UK, 1901. [Google Scholar]
- Vickery, M.C.; Vickery, M.S.; McClintock, J.B.; Amsler, C.D. Utilization of a Novel Deuterostome Model for the Study of Regeneration Genetics: Molecular Cloning of Genes That Are Differentially Expressed during Early Stages of Larval Sea Star Regeneration. Gene 2001, 262, 73–80. [Google Scholar] [CrossRef]
- Vickery, M.S.; Vickery, M.C.L.; McClintock, J.B. Morphogenesis and Organogenesis in the Regenerating Planktotrophic Larvae of Asteroids and Echinoids. Biol. Bull. 2002, 203, 121–133. [Google Scholar] [CrossRef] [PubMed]
- Medina-Feliciano, J.G.; Pirro, S.; García-Arrarás, J.E.; Mashanov, V.; Ryan, J.F. Draft Genome of the Sea Cucumber Holothuria glaberrima, a Model for the Study of Regeneration. Front. Mar. Sci. 2021, 8, 603410. [Google Scholar] [CrossRef]
- Hall, M.R.; Kocot, K.M.; Baughman, K.W.; Fernandez-Valverde, S.L.; Gauthier, M.E.A.; Hatleberg, W.L.; Krishnan, A.; McDougall, C.; Motti, C.A.; Shoguchi, E.; et al. The Crown-of-Thorns Starfish Genome as a Guide for Biocontrol of This Coral Reef Pest. Nature 2017, 544, 231–234. [Google Scholar] [CrossRef] [Green Version]
- Cheatle Jarvela, A.M.; Yankura, K.A.; Hinman, V.F. A Gene Regulatory Network for Apical Organ Neurogenesis and Its Spatial Control in Sea Star Embryos. Development 2016, 143, 4214–4223. [Google Scholar] [CrossRef] [Green Version]
- Mellott, D.O.; Thisdelle, J.; Burke, R.D. Notch Signaling Patterns Neurogenic Ectoderm and Regulates the Asymmetric Division of Neural Progenitors in Sea Urchin Embryos. Development 2017, 144, 3602–3611. [Google Scholar] [CrossRef] [Green Version]
- Fresques, T.; Zazueta-Novoa, V.; Reich, A.; Wessel, G.M. Selective Accumulation of Germ-Line Associated Gene Products in Early Development of the Sea Star and Distinct Differences from Germ-Line Development in the Sea Urchin. Dev. Dyn. 2014, 243, 568–587. [Google Scholar] [CrossRef] [Green Version]
- Oulhen, N.; Heyland, A.; Carrier, T.J.; Zazueta-Novoa, V.; Fresques, T.; Laird, J.; Onorato, T.M.; Janies, D.; Wessel, G. Regeneration in Bipinnaria Larvae of the Bat Star Patiria miniata Induces Rapid and Broad New Gene Expression. Mech. Dev. 2016, 142, 10–21. [Google Scholar] [CrossRef] [PubMed]
- Kawamura, K.; Sunanaga, T. Role of Vasa, Piwi, and Myc-Expressing Coelomic Cells in Gonad Regeneration of the Colonial Tunicate, Botryllus primigenus. Mech. Dev. 2011, 128, 457–470. [Google Scholar] [CrossRef] [PubMed]
- Yajima, M.; Wessel, G.M. Essential Elements for Translation: The Germline Factor Vasa Functions Broadly in Somatic Cells. Development 2015, 142, 1960–1970. [Google Scholar] [CrossRef] [Green Version]
- Cui, M.; Siriwon, N.; Li, E.; Davidson, E.H.; Peter, I.S. Specific Functions of the Wnt Signaling System in Gene Regulatory Networks throughout the Early Sea Urchin Embryo. Proc. Natl. Acad. Sci. USA 2014, 111, E5029–E5038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Röttinger, E.; Besnardeau, L.; Lepage, T. A Raf/MEK/ERK Signaling Pathway Is Required for Development of the Sea Urchin Embryo Micromere Lineage through Phosphorylation of the Transcription Factor Ets. Development 2004, 131, 1075–1087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erkenbrack, E.M. Notch-Mediated Lateral Inhibition Is an Evolutionarily Conserved Mechanism Patterning the Ectoderm in Echinoids. Dev. Genes Evol. 2018, 228, 1–11. [Google Scholar] [CrossRef] [PubMed]
- McCauley, B.S.; Akyar, E.; Saad, H.R.; Hinman, V.F. Dose-Dependent Nuclear β-Catenin Response Segregates Endomesoderm along the Sea Star Primary Axis. Development 2015, 142, 207–217. [Google Scholar] [CrossRef] [Green Version]
- Morcos, P.A.; Li, Y.; Jiang, S. Vivo-Morpholinos: A Non-Peptide Transporter Delivers Morpholinos into a Wide Array of Mouse Tissues. BioTechniques 2008, 45, 613–623. [Google Scholar] [CrossRef] [PubMed]
- Buckley, K.M.; Dong, P.; Cameron, R.A.; Rast, J.P. Bacterial Artificial Chromosomes as Recombinant Reporter Constructs to Investigate Gene Expression and Regulation in Echinoderms. Brief. Funct. Genom. 2018, 17, 362–371. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wolff, A.; Hinman, V. The Use of Larval Sea Stars and Sea Urchins in the Discovery of Shared Mechanisms of Metazoan Whole-Body Regeneration. Genes 2021, 12, 1063. https://doi.org/10.3390/genes12071063
Wolff A, Hinman V. The Use of Larval Sea Stars and Sea Urchins in the Discovery of Shared Mechanisms of Metazoan Whole-Body Regeneration. Genes. 2021; 12(7):1063. https://doi.org/10.3390/genes12071063
Chicago/Turabian StyleWolff, Andrew, and Veronica Hinman. 2021. "The Use of Larval Sea Stars and Sea Urchins in the Discovery of Shared Mechanisms of Metazoan Whole-Body Regeneration" Genes 12, no. 7: 1063. https://doi.org/10.3390/genes12071063
APA StyleWolff, A., & Hinman, V. (2021). The Use of Larval Sea Stars and Sea Urchins in the Discovery of Shared Mechanisms of Metazoan Whole-Body Regeneration. Genes, 12(7), 1063. https://doi.org/10.3390/genes12071063