The Interplay between Nevi and Melanoma Predisposition Unravels Nevi-Related and Nevi-Resistant Familial Melanoma
Abstract
:1. Introduction
2. Nevi
3. Familial Melanoma
3.1. High-Risk Genes
3.2. Moderate- to Low-Risk Genes
Genes | Variants’ Prevalence | Variants’ Penetrance | Risk of Melanoma (Relative RISK) | Reference |
---|---|---|---|---|
CDKN2A | Low | High | 35- to 70-fold | [12,37,43,45] |
CDK4 | Low | High | unknown | [12,14,37] |
BAP1 | Low | High | unknown | [12,14,37] |
POT1, ACD, TERF2IP, TERT | Low | High | unknown | [12,14,37,47,48,50] |
MITF | Low | Moderate to low | 3- to 5-fold | [12,14,37,39,52,53] |
MC1R | Moderate | Moderate to low | 3-fold | [39,54,55,56,58] |
DOCK8, KITLG, OCA2, MTAP, PLA2G6, SLC45A2, IRF4, OBFC1, FTO, PARP1, and others | High | Low | >3-fold * | [14,39,60,61] |
4. Nevi and Familial Melanoma
5. Conclusions and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Sinclair, C.; Foley, P. Skin cancer prevention in Australia. Br. J. Dermatol. 2009, 161 (Suppl. 3), 116–123. [Google Scholar] [CrossRef]
- Matthews, N.H.; Li, W.Q.; Qureshi, A.A.; Weinstock, M.A.; Cho, E. Epidemiology of melanoma. In Cutaneous Melanoma: Etiology and Therapy; Ward, W.H., Farma, J.M., Eds.; Codon Publications: Brisbane, Australia, 2017. [Google Scholar] [CrossRef]
- Holly, E.A.; Kelly, J.W.; Shpall, S.N.; Chiu, S.H. Number of melanocytic nevi as a major risk factor for malignant melanoma. J. Am. Acad. Dermatol. 1987, 17, 459–468. [Google Scholar] [CrossRef]
- Gandini, S.; Sera, F.; Cattaruzza, M.S.; Pasquini, P.; Abeni, D.; Boyle, P.; Melchi, C.F. Meta-analysis of risk factors for cutaneous melanoma: I. Common and atypical naevi. Eur. J. Cancer 2005, 41, 28–44. [Google Scholar] [CrossRef] [Green Version]
- Shain, A.H.; Bastian, B.C. From melanocytes to melanomas. Nat. Rev. Cancer 2016, 16, 345–358. [Google Scholar] [CrossRef]
- Shain, A.H.; Yeh, I.; Kovalyshyn, I.; Sriharan, A.; Talevich, E.; Gagnon, A.; Dummer, R.; North, J.; Pincus, L.; Ruben, B.; et al. The genetic evolution of melanoma from precursor lesions. N. Engl. J. Med. 2015, 373, 1926–1936. [Google Scholar] [CrossRef]
- Whiteman, D.C.; Watt, P.; Purdie, D.M.; Hughes, M.C.; Hayward, N.K.; Green, A.C. Melanocytic nevi, solar keratoses, and divergent pathways to cutaneous melanoma. J. Natl. Cancer Inst. 2003, 95, 806–812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsao, H.; Bevona, C.; Goggins, W.; Quinn, T. The transformation rate of moles (melanocytic nevi) into cutaneous melanoma: A population-based estimate. Arch. Dermatol. 2003, 139, 282–288. [Google Scholar] [CrossRef] [Green Version]
- Pampena, R.; Kyrgidis, A.; Lallas, A.; Moscarella, E.; Argenziano, G.; Longo, C. A meta-analysis of nevus-associated melanoma: Prevalence and practical implications. J. Am. Acad. Dermatol. 2017, 77, 938–945. [Google Scholar] [CrossRef]
- Soura, E.; Eliades, P.J.; Shannon, K.; Stratigos, A.J.; Tsao, H. Hereditary melanoma: Update on syndromes and management: Genetics of familial atypical multiple mole melanoma syndrome. J. Am. Acad. Dermatol. 2016, 74, 395–407. [Google Scholar] [CrossRef] [Green Version]
- Toussi, A.; Mans, N.; Welborn, J.; Kiuru, M. Germline mutations predisposing to melanoma. J. Cutan. Pathol. 2020, 47, 606–616. [Google Scholar] [CrossRef] [Green Version]
- Gandini, S.; Sera, F.; Cattaruzza, M.S.; Pasquini, P.; Zanetti, R.; Masini, C.; Boyle, P.; Melchi, C.F. Meta-analysis of risk factors for cutaneous melanoma: III. Family history, actinic damage and phenotypic factors. Eur. J. Cancer 2005, 41, 2040–2059. [Google Scholar] [CrossRef]
- Read, J.; Wadt, K.A.; Hayward, N.K. Melanoma genetics. J. Med. Genet. 2016, 53, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Colebatch, A.J.; Ferguson, P.; Newell, F.; Kazakoff, S.H.; Witkowski, T.; Dobrovic, A.; Johansson, P.A.; Saw, R.P.M.; Stretch, J.R.; McArthur, G.A.; et al. Molecular genomic profiling of melanocytic nevi. J. Investig. Dermatol. 2019, 139, 1762–1768. [Google Scholar] [CrossRef]
- Stark, M.S.; Tan, J.M.; Tom, L.; Jagirdar, K.; Lambie, D.; Schaider, H.; Soyer, H.P.; Sturm, R.A. Whole-exome sequencing of acquired nevi identifies mechanisms for development and maintenance of benign neoplasms. J. Investig. Dermatol. 2018, 138, 1636–1644. [Google Scholar] [CrossRef] [Green Version]
- Bauer, J.; Curtin, J.A.; Pinkel, D.; Bastian, B.C. Congenital melanocytic nevi frequently harbor NRAS mutations but no BRAF mutations. J. Investig. Dermatol. 2007, 127, 179–182. [Google Scholar] [CrossRef]
- Lin, Y.T.; Teng, R.J.; Chiu, H.C.; Yau, K.I.; Chang, M.H.; Shan, Y.Z. An unusual presentation of multiple congenital melanocytic nevi with a limb distribution. Dermatology 1997, 194, 362–363. [Google Scholar] [CrossRef]
- Bataille, V.; Snieder, H.; MacGregor, A.J.; Sasieni, P.; Spector, T.D. Genetics of risk factors for melanoma: An adult twin study of nevi and freckles. J. Natl. Cancer Inst. 2000, 92, 457–463. [Google Scholar] [CrossRef] [Green Version]
- Harrison, S.L.; MacKie, R.M.; MacLennan, R. Development of Melanocytic Nevi in the First Three Years of Life. J. Natl. Cancer Inst. 2000, 92, 1436–1438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harth, Y.; Friedman-Birnbaum, R.; Linn, S. Influence of cumulative sun exposure on the prevalence of common acquired nevi. J. Am. Acad. Dermatol. 1992, 27, 21–24. [Google Scholar] [CrossRef]
- Wachsmuth, R.C.; Turner, F.; Barrett, J.H.; Gaut, R.; Randerson-Moor, J.A.; Bishop, D.T.; Bishop, J.A. The effect of sun exposure in determining nevus density in UK adolescent twins. J. Investig. Dermatol. 2005, 124, 56–62. [Google Scholar] [CrossRef] [Green Version]
- Duffy, D.L.; Zhu, G.; Li, X.; Sanna, M.; Iles, M.M.; Jacobs, L.C.; Evans, D.M.; Yazar, S.; Beesley, J.; Law, M.H.; et al. Novel pleiotropic risk loci for melanoma and nevus density implicate multiple biological pathways. Nat. Commun. 2018, 9, 4774. [Google Scholar] [CrossRef] [Green Version]
- Newton-Bishop, J.A.; Chang, Y.M.; Iles, M.M.; Taylor, J.C.; Bakker, B.; Chan, M.; Leake, S.; Karpavicius, B.; Haynes, S.; Fitzgibbon, E.; et al. Melanocytic nevi, nevus genes, and melanoma risk in a large case-control study in the United Kingdom. Cancer Epidemiol. Biomark. Prev. 2010, 19, 2043–2054. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Kraft, P.; Nan, H.; Guo, Q.; Chen, C.; Qureshi, A.; Hankinson, S.E.; Hu, F.B.; Duffy, D.L.; Zhao, Z.Z.; et al. A Genome-wide association study identifies novel alleles associated with hair color and skin pigmentation. PLoS Genet. 2008, 4. [Google Scholar] [CrossRef]
- Zhang, T.; Bauer, C.; Newman, A.C.; Uribe, A.H.; Athineos, D.; Blyth, K.; Maddocks, O.D.K. Polyamine pathway activity promotes cysteine essentiality in cancer cells. Nat. Metab. 2020, 2, 1062–1076. [Google Scholar] [CrossRef]
- Kearney, C.J.; Randall, K.L.; Oliaro, J. DOCK8 regulates signal transduction events to control immunity. Cell. Mol. Immunol. 2017, 14, 406–411. [Google Scholar] [CrossRef] [Green Version]
- Chitsazan, A.; Mukhopadhyay, P.; Ferguson, B.; Handoko, H.Y.; Walker, G.J. Keratinocyte cytokine networks associated with human melanocytic nevus development. J. Investig. Dermatol. 2019, 139, 177–185. [Google Scholar] [CrossRef]
- Lin, G.; Lee, P.T.; Chen, K.; Mao, D.; Tan, K.L.; Zuo, Z.; Lin, W.W.; Wang, L.; Bellen, H.J. Phospholipase PLA2G6, a parkinsonism-associated gene, affects Vps26 and Vps35, retromer function, and ceramide levels, similar to alpha-synuclein gain. Cell Metab. 2018, 28, 605–618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.; Duffy, D.L.; McClenahan, P.; Lee, K.J.; McEniery, E.; Burke, B.; Jagirdar, K.; Martin, N.G.; Sturm, R.A.; Soyer, H.P.; et al. Heritability of naevus patterns in an adult twin cohort from the Brisbane Twin Registry: A cross-sectional study. Br. J. Dermatol. 2016, 174, 356–363. [Google Scholar] [CrossRef]
- Goldgar, D.E.; Cannon-Albright, L.A.; Meyer, L.J.; Piepkorn, M.W.; Zone, J.J.; Skolnick, M.H. Inheritance of nevus number and size in melanoma and dysplastic nevus syndrome kindreds. J. Natl. Cancer Inst. 1991, 83, 1726–1733. [Google Scholar] [CrossRef]
- Cust, A.E.; Drummond, M.; Bishop, D.T.; Azizi, L.; Schmid, H.; Jenkins, M.A.; Hopper, J.L.; Armstrong, B.K.; Aitken, J.F.; Kefford, R.F.; et al. Associations of pigmentary and naevus phenotype with melanoma risk in two populations with comparable ancestry but contrasting levels of ambient sun exposure. J. Eur. Acad. Dermatol. Venereol. 2019, 33, 1874–1885. [Google Scholar] [CrossRef] [PubMed]
- Lynch, H.T.; Frichot, B.C., 3rd; Lynch, J.F. Familial atypical multiple mole-melanoma syndrome. J. Med. Genet. 1978, 15, 352–356. [Google Scholar] [CrossRef] [PubMed]
- Lynch, H.T.; Shaw, T.G. Familial atypical multiple mole melanoma (FAMMM) syndrome: History, genetics, and heterogeneity. Fam. Cancer. 2016, 15, 487–491. [Google Scholar] [CrossRef]
- Law, M.H.; Bishop, D.T.; Lee, J.E.; Brossard, M.; Martin, N.G.; Moses, E.K.; Song, F.; Barrett, J.H.; Kumar, R.; Easton, D.F.; et al. Genome-wide meta-analysis identifies five new susceptibility loci for cutaneous malignant melanoma. Nat. Genet. 2015, 47, 987–995. [Google Scholar] [CrossRef] [Green Version]
- Law, M.H.; Aoude, L.G.; Duffy, D.L.; Long, G.V.; Johansson, P.A.; Pritchard, A.L.; Khosrotehrani, K.; Mann, G.J.; Montgomery, G.W.; Iles, M.M.; et al. Multiplex melanoma families are enriched for polygenic risk. Hum. Mol. Genet. 2020, 29, 2976–2985. [Google Scholar] [CrossRef]
- Aoude, L.G.; Wadt, K.A.; Pritchard, A.L.; Hayward, N.K. Genetics of familial melanoma: 20 years after CDKN2A. Pigment Cell Melanoma Res. 2015, 28, 148–160. [Google Scholar] [CrossRef]
- Goldstein, A.M.; Chan, M.; Harland, M.; Hayward, N.K.; Demenais, F.; Bishop, D.T.; Azizi, E.; Bergman, W.; Bianchi-Scarra, G.; Bruno, W.; et al. Features associated with germline CDKN2A mutations: A GenoMEL study of melanoma-prone families from three continents. J. Med. Genet. 2007, 44, 99–106. [Google Scholar] [CrossRef]
- Potrony, M.; Badenas, C.; Aguilera, P.; Puig-Butille, J.A.; Carrera, C.; Malvehy, J.; Puig, S. Update in genetic susceptibility in melanoma. Ann. Transl. Med. 2015, 3, 210. [Google Scholar] [CrossRef]
- Taylor, N.J.; Mitra, N.; Goldstein, A.M.; Tucker, M.A.; Avril, M.F.; Azizi, E.; Bergman, W.; Bishop, D.T.; Bressac-de Paillerets, B.; Bruno, W.; et al. Germline variation at CDKN2A and associations with nevus phenotypes among members of melanoma families. J. Investig. Dermatol. 2017, 137, 2606–2612. [Google Scholar] [CrossRef] [Green Version]
- Bishop, J.A.; Wachsmuth, R.C.; Harland, M.; Bataille, V.; Pinney, E.; MacK, P.; Baglietto, L.; Cuzick, J.; Bishop, D.T. Genotype/phenotype and penetrance studies in melanoma families with germline CDKN2A mutations. J. Investig. Dermatol. 2000, 114, 28–33. [Google Scholar] [CrossRef]
- Pedace, L.; De Simone, P.; Castori, M.; Sperduti, I.; Silipo, V.; Eibenschutz, L.; De Bernardo, C.; Buccini, P.; Moscarella, E.; Panetta, C.; et al. Clinical features predicting identification of CDKN2A mutations in Italian patients with familial cutaneous melanoma. Cancer Epidemiol. 2011, 35. [Google Scholar] [CrossRef]
- Berwick, M.; Orlow, I.; Hummer, A.J.; Armstrong, B.K.; Kricker, A.; Marrett, L.D.; Millikan, R.C.; Gruber, S.B.; Anton-Culver, H.; Zanetti, R.; et al. The prevalence of CDKN2A germ-line mutations and relative risk for cutaneous malignant melanoma: An international population-based study. Cancer Epidemiol. Biomark. Prev. 2006, 15, 1520–1525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bishop, D.T.; Demenais, F.; Goldstein, A.M.; Bergman, W.; Bishop, J.N.; Bressac-de Paillerets, B.; Chompret, A.; Ghiorzo, P.; Gruis, N.; Hansson, J.; et al. Geographical variation in the penetrance of CDKN2A mutations for melanoma. J. Natl. Cancer Inst. 2002, 94, 894–903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaudru, V.; Chompret, A.; Bressac-de Paillerets, B.; Spatz, A.; Avril, M.F.; Demenais, F. Influence of genes, nevi, and sun sensitivity on melanoma risk in a family sample unselected by family history and in melanoma-prone families. J. Natl. Cancer Inst. 2004, 96, 785–795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pilarski, R.; Carlo, M.; Cebulla, C.; Abdel-Rahman, M. BAP1 tumor predisposition syndrome. In GeneReviews®; Adam, M.P., Ardinger, H.H., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Mirzaa, G., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Calvete, O.; Garcia-Pavia, P.; Dominguez, F.; Bougeard, G.; Kunze, K.; Braeuninger, A.; Teule, A.; Lasa, A.; Ramon, Y.; Cajal, T.; et al. The wide spectrum of POT1 gene variants correlates with multiple cancer types. Eur. J. Hum. Genet. 2017, 25, 1278–1281. [Google Scholar] [CrossRef] [Green Version]
- Henry, M.L.; Osborne, J.; Else, T. POT1 tumor predisposition. In GeneReviews®; Adam, M.P., Ardinger, H.H., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Mirzaa, G., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Harland, M.; Petljak, M.; Robles-Espinoza, C.D.; Ding, Z.; Gruis, N.A.; van Doorn, R.; Pooley, K.A.; Dunning, A.M.; Aoude, L.G.; Wadt, K.A.; et al. Germline TERT promoter mutations are rare in familial melanoma. Fam. Cancer 2016, 15, 139–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horn, S.; Figl, A.; Rachakonda, P.S.; Fischer, C.; Sucker, A.; Gast, A.; Kadel, S.; Moll, I.; Nagore, E.; Hemminki, K.; et al. TERT promoter mutations in familial and sporadic melanoma. Science 2013, 339, 959–961. [Google Scholar] [CrossRef] [Green Version]
- Fang, S.; Han, J.; Zhang, M.; Wang, L.E.; Wei, Q.; Amos, C.I.; Lee, J.E. Joint effect of multiple common SNPs predicts melanoma susceptibility. PLoS ONE 2013, 8, e85642. [Google Scholar] [CrossRef]
- Pastorino, L.; Andreotti, V.; Dalmasso, B.; Vanni, I.; Ciccarese, G.; Mandala, M.; Spadola, G.; Pizzichetta, M.A.; Ponti, G.; Tibiletti, M.G.; et al. Insights into genetic susceptibility to melanoma by gene panel testing: Potential pathogenic variants in ACD, ATM, BAP1, and POT1. Cancers 2020, 12, 1007. [Google Scholar] [CrossRef] [Green Version]
- Sturm, R.A.; Fox, C.; McClenahan, P.; Jagirdar, K.; Ibarrola-Villava, M.; Banan, P.; Abbott, N.C.; Ribas, G.; Gabrielli, B.; Duffy, D.L.; et al. Phenotypic characterization of nevus and tumor patterns in MITF E318K mutation carrier melanoma patients. J. Investig. Dermatol. 2014, 134, 141–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tagliabue, E.; Gandini, S.; Bellocco, R.; Maisonneuve, P.; Newton-Bishop, J.; Polsky, D.; Lazovich, D.; Kanetsky, P.A.; Ghiorzo, P.; Gruis, N.A.; et al. MC1R variants as melanoma risk factors independent of at-risk phenotypic characteristics: A pooled analysis from the M-SKIP project. Cancer. Manag. Res. 2018, 10, 1143–1154. [Google Scholar] [CrossRef] [Green Version]
- Duffy, D.L.; Lee, K.J.; Jagirdar, K.; Pflugfelder, A.; Stark, M.S.; McMeniman, E.K.; Soyer, H.P.; Sturm, R.A. High naevus count and MC1R red hair alleles contribute synergistically to increased melanoma risk. Br. J. Dermatol. 2019, 181, 1009–1016. [Google Scholar] [CrossRef] [Green Version]
- Demenais, F.; Mohamdi, H.; Chaudru, V.; Goldstein, A.M.; Newton Bishop, J.A.; Bishop, D.T.; Kanetsky, P.A.; Hayward, N.K.; Gillanders, E.; Elder, D.E.; et al. Association of MC1R variants and host phenotypes with melanoma risk in CDKN2A mutation carriers: A GenoMEL study. J. Natl. Cancer Inst. 2010, 102, 1568–1583. [Google Scholar] [CrossRef]
- Cust, A.E.; Goumas, C.; Holland, E.A.; Agha-Hamilton, C.; Aitken, J.F.; Armstrong, B.K.; Giles, G.G.; Kefford, R.F.; Schmid, H.; Hopper, J.L.; et al. MC1R genotypes and risk of melanoma before age 40 years: A population-based case-control-family study. Int. J. Cancer 2012, 131. [Google Scholar] [CrossRef] [PubMed]
- Stefanaki, I.; Stratigos, A.J.; Kypreou, K.P.; Evangelou, E.; Gandini, S.; Maisonneuve, P.; Polsky, D.; Lazovich, D.; Newton-Bishop, J.; Kanetsky, P.A.; et al. MC1R variants in relation to naevi in melanoma cases and controls: A pooled analysis from the M-SKIP project. J. Eur. Acad. Dermatol. Venereol. 2021, 35, 135–138. [Google Scholar] [CrossRef] [PubMed]
- Landi, M.T.; Bishop, D.T.; MacGregor, S.; Machiela, M.J.; Stratigos, A.J.; Ghiorzo, P.; Brossard, M.; Calista, D.; Choi, J.; Fargnoli, M.C.; et al. Genome-wide association meta-analyses combining multiple risk phenotypes provide insights into the genetic architecture of cutaneous melanoma susceptibility. Nat. Genet. 2020, 52, 494–504. [Google Scholar] [CrossRef] [PubMed]
- Gu, F.; Chen, T.H.; Pfeiffer, R.M.; Fargnoli, M.C.; Calista, D.; Ghiorzo, P.; Peris, K.; Puig, S.; Menin, C.; De Nicolo, A.; et al. Combining common genetic variants and non-genetic risk factors to predict risk of cutaneous melanoma. Hum. Mol. Genet. 2018, 27, 4145–4156. [Google Scholar] [CrossRef]
- Australian Melanoma Family Study Investigators; Leeds Case-Control Study Investigators; Cust, A.E.; Drummond, M.; Kanetsky, P.A.; Goldstein, A.M.; Barrett, J.H.; MacGregor, S.; Law, M.H.; Iles, M.M.; et al. Assessing the incremental contribution of common genomic variants to melanoma risk prediction in two population-based studies. J. Investig. Dermatol. 2018, 138, 2617–2624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Begg, C.B.; Orlow, I.; Hummer, A.J.; Armstrong, B.K.; Kricker, A.; Marrett, L.D.; Millikan, R.C.; Gruber, S.B.; Anton-Culver, H.; Zanetti, R.; et al. Lifetime risk of melanoma in CDKN2A mutation carriers in a population-based sample. J. Natl. Cancer Inst. 2005, 97, 1507–1515. [Google Scholar] [CrossRef] [Green Version]
- Ipenburg, N.A.; Gruis, N.A.; Bergman, W.; van Kester, M.S. The absence of multiple atypical nevi in germline CDKN2A mutations: Comment on “Hereditary melanoma: Update on syndromes and management: Genetics of familial atypical multiple mole melanoma syndrome”. J. Am. Acad. Dermatol. 2016, 75. [Google Scholar] [CrossRef] [Green Version]
- Halpern, A.C.; Guerry, D.; Elder, D.E.; Trock, B.; Synnestvedt, M.; Humphreys, T. Natural history of dysplastic nevi. J. Am. Acad. Dermatol. 1993, 29, 51–57. [Google Scholar] [CrossRef]
- Emiroglu, N.; Sallahoglu, K.; Cengiz, F.P.; Cemil, B.C.; Onsun, N. Three years dermoscopic follow-up of atypical nevi. Dermatol. Ther. 2020, 33. [Google Scholar] [CrossRef] [PubMed]
- Damsky, W.E.; Bosenberg, M. Melanocytic nevi and melanoma: Unraveling a complex relationship. Oncogene 2017, 36, 5771–5792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schlafly, A.; Pfeiffer, R.M.; Nagore, E.; Puig, S.; Calista, D.; Ghiorzo, P.; Menin, C.; Fargnoli, M.C.; Peris, K.; Song, L.; et al. Contribution of common genetic variants to familial aggregation of disease and implications for sequencing studies. PLoS Genet. 2019, 15. [Google Scholar] [CrossRef]
- Lee, K.J.; Janda, M.; Stark, M.S.; Sturm, R.A.; Soyer, H.P. On naevi and melanomas: Two sides of the same coin? Front. Med. 2021, 8. [Google Scholar] [CrossRef]
Familial Melanoma | ||
---|---|---|
Nevi-Resistant | Nevi-Related | |
High/Moderate-penetrance variant frequency | + | |
Polygenic Risk Scores | + | |
Nevus count | + | |
High inheritance | + | |
Nevus-associated melanoma occurrences | + | |
Melanomas in anatomic non-sun-exposed areas | + | |
Early onset of melanoma | + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pellegrini, S.; Elefanti, L.; Dall’Olmo, L.; Menin, C. The Interplay between Nevi and Melanoma Predisposition Unravels Nevi-Related and Nevi-Resistant Familial Melanoma. Genes 2021, 12, 1077. https://doi.org/10.3390/genes12071077
Pellegrini S, Elefanti L, Dall’Olmo L, Menin C. The Interplay between Nevi and Melanoma Predisposition Unravels Nevi-Related and Nevi-Resistant Familial Melanoma. Genes. 2021; 12(7):1077. https://doi.org/10.3390/genes12071077
Chicago/Turabian StylePellegrini, Stefania, Lisa Elefanti, Luigi Dall’Olmo, and Chiara Menin. 2021. "The Interplay between Nevi and Melanoma Predisposition Unravels Nevi-Related and Nevi-Resistant Familial Melanoma" Genes 12, no. 7: 1077. https://doi.org/10.3390/genes12071077
APA StylePellegrini, S., Elefanti, L., Dall’Olmo, L., & Menin, C. (2021). The Interplay between Nevi and Melanoma Predisposition Unravels Nevi-Related and Nevi-Resistant Familial Melanoma. Genes, 12(7), 1077. https://doi.org/10.3390/genes12071077