Sex Maintenance in Mammals
Abstract
:1. Testis and Ovary Cell Lineages Originate from the Same Precursors
2. Plasticity of the Gonadal Cell Fates after Sex Determination
3. Genes and Pathways Involved in the Maintenance of the Female Cell Fate
3.1. Inhibin/Follistatin/TGF-β
3.2. Estrogen Signaling
3.3. FOXL2
3.4. WNT Signaling
3.5. FOXO1 and FOXO3
3.6. Hippo Signaling
4. Genes Involved in the Maintenance of the Male Cell Fate
4.1. DMRT1
4.2. SOX9/SOX8
5. Antagonism between Male and Female Factors in Sexual Cell Fate Maintenance
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Nishimura, H.; L’Hernault, S.W. Spermatogenesis. Curr. Biol. 2017, 27, R988–R994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ni, F.-D.; Hao, S.-L.; Yang, W.-X. Multiple Signaling Pathways in Sertoli Cells: Recent Findings in Spermatogenesis. Cell Death Dis. 2019, 10, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Barrionuevo, F.; Burgos, M.; Jiménez, R. Origin and Function of Embryonic Sertoli Cells. Biomol. Concepts 2011, 2, 537–547. [Google Scholar] [CrossRef]
- Zirkin, B.R.; Papadopoulos, V. Leydig Cells: Formation, Function, and Regulation. Biol. Reprod. 2018, 99, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Robker, R.L.; Hennebold, J.D.; Russell, D.L. Coordination of Ovulation and Oocyte Maturation: A Good Egg at the Right Time. Endocrinology 2018, 159, 3209–3218. [Google Scholar] [CrossRef] [PubMed]
- Magoffin, D.A. Ovarian Theca Cell. Int. J. Biochem. Cell Biol. 2005, 37, 1344–1349. [Google Scholar] [CrossRef]
- Burgoyne, P.S.; Buehr, M.; Koopman, P.; Rossant, J.; McLaren, A. Cell-Autonomous Action of the Testis-Determining Gene: Sertoli Cells Are Exclusively XY in XX—XY Chimaeric Mouse Testes. Development 1988, 102, 443–450. [Google Scholar] [CrossRef]
- Albrecht, K.H.; Eicher, E.M. Evidence That Sry Is Expressed in Pre-Sertoli Cells and Sertoli and Granulosa Cells Have a Common Precursor. Dev. Biol. 2001, 240, 92–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sekido, R.; Bar, I.; Narváez, V.; Penny, G.; Lovell-Badge, R. SOX9 Is Up-Regulated by the Transient Expression of SRY Specifically in Sertoli Cell Precursors. Dev. Biol. 2004, 274, 271–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nef, S.; Schaad, O.; Stallings, N.R.; Cederroth, C.R.; Pitetti, J.-L.; Schaer, G.; Malki, S.; Dubois-Dauphin, M.; Boizet-Bonhoure, B.; Descombes, P.; et al. Gene Expression during Sex Determination Reveals a Robust Female Genetic Program at the Onset of Ovarian Development. Dev. Biol. 2005, 287, 361–377. [Google Scholar] [CrossRef] [PubMed]
- Beverdam, A.; Koopman, P. Expression Profiling of Purified Mouse Gonadal Somatic Cells during the Critical Time Window of Sex Determination Reveals Novel Candidate Genes for Human Sexual Dysgenesis Syndromes. Hum. Mol. Genet. 2006, 15, 417–431. [Google Scholar] [CrossRef] [Green Version]
- Bouma, G.J.; Hudson, Q.J.; Washburn, L.L.; Eicher, E.M. New Candidate Genes Identified for Controlling Mouse Gonadal Sex Determination and the Early Stages of Granulosa and Sertoli Cell Differentiation1. Biol. Reprod. 2010, 82, 380–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jameson, S.A.; Natarajan, A.; Cool, J.; DeFalco, T.; Maatouk, D.M.; Mork, L.; Munger, S.C.; Capel, B. Temporal Transcriptional Profiling of Somatic and Germ Cells Reveals Biased Lineage Priming of Sexual Fate in the Fetal Mouse Gonad. PLoS Genet. 2012, 8, e1002575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stévant, I.; Neirijnck, Y.; Borel, C.; Escoffier, J.; Smith, L.B.; Antonarakis, S.E.; Dermitzakis, E.T.; Nef, S. Deciphering Cell Lineage Specification during Male Sex Determination with Single-Cell RNA Sequencing. Cell Rep. 2018, 22, 1589–1599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stévant, I.; Kühne, F.; Greenfield, A.; Chaboissier, M.-C.; Dermitzakis, E.T.; Nef, S. Dissecting Cell Lineage Specification and Sex Fate Determination in Gonadal Somatic Cells Using Single-Cell Transcriptomics. Cell Rep. 2019, 26, 3272–3283.e3. [Google Scholar] [CrossRef] [Green Version]
- Barrionuevo, F.J.; Burgos, M.; Scherer, G.; Jiménez, R. Genes Promoting and Disturbing Testis Development. Histol. Histopatol. 2012, 11, 1361–1383. [Google Scholar]
- Sekido, R.; Lovell-Badge, R. Genetic Control of Testis Development. Sex. Dev. 2013, 7, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Svingen, T.; Koopman, P. Building the Mammalian Testis: Origins, Differentiation, and Assembly of the Component Cell Populations. Genes Dev. 2013, 27, 2409–2426. [Google Scholar] [CrossRef] [Green Version]
- Ewen, K.A.; Koopman, P. Mouse Germ Cell Development: From Specification to Sex Determination. Mol. Cell. Endocrinol. 2010, 323, 76–93. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-T.; Capel, B. Cell Fate Commitment during Mammalian Sex Determination. Curr. Opin. Genet. Dev. 2015, 32, 144–152. [Google Scholar] [CrossRef] [Green Version]
- Stévant, I.; Nef, S. Genetic Control of Gonadal Sex Determination and Development. Trends Genet. 2019, 35, 346–358. [Google Scholar] [CrossRef]
- Nef, S.; Stévant, I.; Greenfield, A. Chapter Six—Characterizing the bipotential mammalian gonad. In Current Topics in Developmental Biology; Capel, B., Ed.; Sex Determination in Vertebrates; Academic Press: Cambridge, MA, USA, 2019; Volume 134, pp. 167–194. [Google Scholar]
- Vining, B.; Ming, Z.; Bagheri-Fam, S.; Harley, V. Diverse Regulation but Conserved Function: SOX9 in Vertebrate Sex Determination. Genes 2021, 12, 486. [Google Scholar] [CrossRef]
- Engle, E.T. Tubular Adenomas and Testis-Like Tubules of the Ovaries of Aged Rats. Cancer Res. 1946, 6, 578–582. [Google Scholar]
- Taketo-Hosotani, T.; Merchant-Larios, H.; Thau, R.B.; Koide, S.S. Testicular Cell Differentiation in Fetal Mouse Ovaries Following Transplantation into Adult Male Mice. J. Exp. Zool. 1985, 236, 229–237. [Google Scholar] [CrossRef]
- Prépin, J.; Hida, N. Influence of Age and Medium on Formation of Epithelial Cords in the Rat Fetal Ovary In Vitro. Reproduction 1989, 87, 375–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whitworth, D.J.; Shaw, G.; Renfree, M.B. Gonadal Sex Reversal of the Developing Marsupial Ovary In Vivo and In Vitro. Development 1996, 122, 4057–4063. [Google Scholar] [CrossRef]
- Guigon, C.J.; Coudouel, N.; Mazaud-Guittot, S.; Forest, M.G.; Magre, S. Follicular Cells Acquire Sertoli Cell Characteristics after Oocyte Loss. Endocrinology 2005, 146, 2992–3004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrionuevo, F.J.; Zurita, F.; Burgos, M.; Jiménez, R. Testis-like Development of Gonads in Female Moles. New Insights on Mammalian Gonad Organogenesis. Dev. Biol. 2004, 268, 39–52. [Google Scholar] [CrossRef] [Green Version]
- Jost, A.; Perchellet, J.P.; Prepin, J.; Vigier, B. The Prenatal Development of Bovine Freemartins. In Intersexuality in the Animal Kingdom; Reinboth, R., Ed.; Springer: Berlin/Heidelberg, Germany, 1975; pp. 392–406. ISBN 978-3-642-66069-6. [Google Scholar]
- Dominguez, M.M.; Liptrap, R.M.; Croy, B.A.; Basrur, P.K. Hormonal Correlates of Ovarian Alterations in Bovine Freemartin Fetuses. Anim. Reprod. Sci. 1990, 22, 181–201. [Google Scholar] [CrossRef]
- Behringer, R.R.; Finegold, M.J.; Cate, R.L. Müllerian-Inhibiting Substance Function during Mammalian Sexual Development. Cell 1994, 79, 415–425. [Google Scholar] [CrossRef]
- Vigier, B.; Watrin, F.; Magre, S.; Tran, D.; Josso, N. Purified Bovine AMH Induces a Characteristic Freemartin Effect in Fetal Rat Prospective Ovaries Exposed to It In Vitro. Development 1987, 100, 43–55. [Google Scholar] [CrossRef]
- Whitworth, D.J. XX Germ Cells: The Difference between an Ovary and a Testis. Trends Endocrinol. Metab. 1998, 9, 2–6. [Google Scholar] [CrossRef]
- Rios-Rojas, C.; Bowles, J.; Koopman, P. On the Role of Germ Cells in Mammalian Gonad Development: Quiet Passengers or Back-Seat Drivers? Reproduction 2015, 149, R181–R191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maatouk, D.M.; Mork, L.; Hinson, A.; Kobayashi, A.; McMahon, A.P.; Capel, B. Germ Cells Are Not Required to Establish the Female Pathway in Mouse Fetal Gonads. PLoS ONE 2012, 7, e47238. [Google Scholar] [CrossRef] [PubMed]
- Uhlenhaut, N.H.; Jakob, S.; Anlag, K.; Eisenberger, T.; Sekido, R.; Kress, J.; Treier, A.-C.; Klugmann, C.; Klasen, C.; Holter, N.I.; et al. Somatic Sex Reprogramming of Adult Ovaries to Testes by FOXL2 Ablation. Cell 2009, 139, 1130–1142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durmuş, Y.; Kılıç, Ç.; Çakır, C.; Yüksel, D.; Boran, N.; Karalök, A.; Boyraz, G.; Turan, A.T. Sertoli–Leydig Cell Tumor of the Ovary: Analysis of a Single Institution Database and Review of the Literature. J. Obstet. Gynaecol. Res. 2019, 45, 1311–1318. [Google Scholar] [CrossRef] [PubMed]
- Kao, C.-S.; Cornejo, K.M.; Ulbright, T.M.; Young, R.H. Juvenile Granulosa Cell Tumors of the Testis. Am. J. Surg. Pathol. 2015, 39, 1159–1169. [Google Scholar] [CrossRef] [Green Version]
- Cornejo, K.M.; Young, R.H. Adult Granulosa Cell Tumors of the Testis: A Report of 32 Cases. Am. J. Surg. Pathol. 2014, 38, 1242–1250. [Google Scholar] [CrossRef]
- Hiramatsu, R.; Matoba, S.; Kanai-Azuma, M.; Tsunekawa, N.; Katoh-Fukui, Y.; Kurohmaru, M.; Morohashi, K.; Wilhelm, D.; Koopman, P.; Kanai, Y. A Critical Time Window of Sry Action in Gonadal Sex Determination in Mice. Development 2009, 136, 129–138. [Google Scholar] [CrossRef] [Green Version]
- Harikae, K.; Miura, K.; Shinomura, M.; Matoba, S.; Hiramatsu, R.; Tsunekawa, N.; Kanai-Azuma, M.; Kurohmaru, M.; Morohashi, K.; Kanai, Y. Heterogeneity in Sexual Bipotentiality and Plasticity of Granulosa Cells in Developing Mouse Ovaries. J. Cell Sci. 2013, 126, 2834–2844. [Google Scholar]
- Maatouk, D.M.; Natarajan, A.; Shibata, Y.; Song, L.; Crawford, G.E.; Ohler, U.; Capel, B. Genome-Wide Identification of Regulatory Elements in Sertoli Cells. Development 2017, 144, 720–730. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Moreno, S.A.; Futtner, C.R.; Salamone, I.M.; Gonen, N.; Lovell-Badge, R.; Maatouk, D.M. Gonadal Supporting Cells Acquire Sex-Specific Chromatin Landscapes during Mammalian Sex Determination. Dev. Biol. 2019, 446, 168–179. [Google Scholar] [CrossRef]
- Garcia-Moreno, S.A.; Lin, Y.-T.; Futtner, C.R.; Salamone, I.M.; Capel, B.; Maatouk, D.M. CBX2 Is Required during Male Sex Determination to Repress Female Fate at Bivalent Loci. bioRxiv 2018. [Google Scholar] [CrossRef] [Green Version]
- Vale, W.; Rivier, J.; Vaughan, J.; McClintock, R.; Corrigan, A.; Woo, W.; Karr, D.; Spiess, J. Purification and Characterization of an FSH Releasing Protein from Porcine Ovarian Follicular Fluid. Nature 1986, 321, 776–779. [Google Scholar] [CrossRef]
- Appiah Adu-Gyamfi, E.; Tanam Djankpa, F.; Nelson, W.; Czika, A.; Kumar Sah, S.; Lamptey, J.; Ding, Y.-B.; Wang, Y.-X. Activin and Inhibin Signaling: From Regulation of Physiology to Involvement in the Pathology of the Female Reproductive System. Cytokine 2020, 133, 155105. [Google Scholar] [CrossRef]
- Matzuk, M.M.; Finegold, M.J.; Su, J.-G.J.; Hsueh, A.J.W.; Bradley, A. α-Lnhibin Is a Tumour-Suppressor Gene with Gonadal Specificity in Mice. Nature 1992, 360, 313–319. [Google Scholar] [CrossRef]
- Lin, S.-Y.; Morrison, J.R.; Phillips, D.J.; de Kretser, D.M. Regulation of Ovarian Function by the TGF-b Superfamily and Follistatin. Reproduction 2003, 126, 133–148. [Google Scholar] [CrossRef]
- Welt, C.; Schneyer, A. Chapter 6—Inhibin, Activin, and Follistatin in Ovarian Physiology. In The Ovary, 3rd ed.; Leung, P.C.K., Adashi, E.Y., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 95–105. ISBN 978-0-12-813209-8. [Google Scholar]
- Jorgez, C.J.; Klysik, M.; Jamin, S.P.; Behringer, R.R.; Matzuk, M.M. Granulosa Cell-Specific Inactivation of Follistatin Causes Female Fertility Defects. Mol. Endocrinol. 2004, 18, 953–967. [Google Scholar] [CrossRef] [PubMed]
- Kumar, T.R.; Palapattu, G.; Wang, P.; Woodruff, T.K.; Boime, I.; Byrne, M.C.; Matzuk, M.M. Transgenic Models to Study Gonadotropin Function: The Role of Follicle-Stimulating Hormone in Gonadal Growth and Tumorigenesis. Mol. Endocrinol. 1999, 13, 851–865. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Ni, N.; Gao, Y.; Vincent, D.F.; Bartholin, L.; Li, Q. A Novel Mouse Model of Testicular Granulosa Cell Tumors. Mol. Hum. Reprod. 2018, 24, 343–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matthews, J.; Gustafsson, J.-Å. Estrogen Signaling: A Subtle Balance between ERα and ERβ. Mol. Interv. 2003, 3, 281. [Google Scholar] [CrossRef]
- Hamilton, K.J.; Hewitt, S.C.; Arao, Y.; Korach, K.S. Chapter Four—Estrogen Hormone Biology. In Current Topics in Developmental Biology; Forrest, D., Tsai, S., Eds.; Nuclear Receptors in Development and Disease; Academic Press: Cambridge, MA, USA, 2017; Volume 125, pp. 109–146. [Google Scholar]
- Lubahn, D.B.; Moyer, J.S.; Golding, T.S.; Couse, J.F.; Korach, K.S.; Smithies, O. Alteration of Reproductive Function but Not Prenatal Sexual Development after Insertional Disruption of the Mouse Estrogen Receptor Gene. Proc. Natl. Acad. Sci. USA 1993, 90, 11162–11166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krege, J.H.; Hodgin, J.B.; Couse, J.F.; Enmark, E.; Warner, M.; Mahler, J.F.; Sar, M.; Korach, K.S.; Gustafsson, J.-Å.; Smithies, O. Generation and Reproductive Phenotypes of Mice Lacking Estrogen Receptor β. Proc. Natl. Acad. Sci. USA 1998, 95, 15677–15682. [Google Scholar] [CrossRef] [Green Version]
- Dupont, S.; Krust, A.; Gansmuller, A.; Dierich, A.; Chambon, P.; Mark, M. Effect of Single and Compound Knockouts of Estrogen Receptors α (ERalpha) and β (ERbeta) on Mouse Reproductive Phenotypes. Development 2000, 127, 4277–4291. [Google Scholar] [CrossRef]
- Couse, J.F.; Hewitt, S.C.; Bunch, D.O.; Sar, M.; Walker, V.R.; Davis, B.J.; Korach, K.S. Postnatal Sex Reversal of the Ovaries in Mice Lacking Estrogen Receptors α and β. Science 1999, 286, 2328–2331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Britt, K.L.; Kerr, J.; O’Donnell, L.; Jones, M.E.E.; Drummond, A.E.; Davis, S.R.; Simpson, E.R.; Findlay, J.K. Estrogen Regulates Development of the Somatic Cell Phenotype in the Eutherian Ovary. FASEB J. 2002, 16, 1389–1397. [Google Scholar] [CrossRef] [Green Version]
- Crisponi, L.; Deiana, M.; Loi, A.; Chiappe, F.; Uda, M.; Amati, P.; Bisceglia, L.; Zelante, L.; Nagaraja, R.; Porcu, S.; et al. The Putative Forkhead Transcription Factor FOXL2 Is Mutated in Blepharophimosis/Ptosis/Epicanthus Inversus Syndrome. Nat. Genet. 2001, 27, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Pailhoux, E.; Vigier, B.; Chaffaux, S.; Servel, N.; Taourit, S.; Furet, J.-P.; Fellous, M.; Grosclaude, F.; Cribiu, E.P.; Cotinot, C.; et al. A 11.7-Kb Deletion Triggers Intersexuality and Polledness in Goats. Nat. Genet. 2001, 29, 453–458. [Google Scholar] [CrossRef]
- Boulanger, L.; Pannetier, M.; Gall, L.; Allais-Bonnet, A.; Elzaiat, M.; Le Bourhis, D.; Daniel, N.; Richard, C.; Cotinot, C.; Ghyselinck, N.B.; et al. FOXL2 Is a Female Sex-Determining Gene in the Goat. Curr. Biol. 2014, 24, 404–408. [Google Scholar] [CrossRef] [Green Version]
- Georges, A.; L’Hôte, D.; Todeschini, A.L.; Auguste, A.; Legois, B.; Zider, A.; Veitia, R.A. The Transcription Factor FOXL2 Mobilizes Estrogen Signaling to Maintain the Identity of Ovarian Granulosa Cells. eLife 2014, 3, e04207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicol, B.; Grimm, S.A.; Chalmel, F.; Lecluze, E.; Pannetier, M.; Pailhoux, E.; Dupin-De-Beyssat, E.; Guiguen, Y.; Capel, B.; Yao, H.H.-C. RUNX1 Maintains the Identity of the Fetal Ovary through an Interplay with FOXL2. Nat. Commun. 2019, 10, 5116. [Google Scholar] [CrossRef]
- Vainio, S.; Heikkilä, M.; Kispert, A.; Chin, N.; McMahon, A.P. Female Development in Mammals Is Regulated by Wnt-4 Signalling. Nature 1999, 397, 405–409. [Google Scholar] [CrossRef]
- Parma, P.; Radi, O.; Vidal, V.; Chaboissier, M.C.; Dellambra, E.; Valentini, S.; Guerra, L.; Schedl, A.; Camerino, G. R-Spondin1 Is Essential in Sex Determination, Skin Differentiation and Malignancy. Nat. Genet. 2006, 38, 1304–1309. [Google Scholar] [CrossRef] [PubMed]
- Maatouk, D.M.; DiNapoli, L.; Alvers, A.; Parker, K.L.; Taketo, M.M.; Capel, B. Stabilization of β-Catenin in XY Gonads Causes Male-to-Female Sex-Reversal. Hum. Mol. Genet. 2008, 17, 2949–2955. [Google Scholar] [CrossRef] [Green Version]
- Chassot, A.-A.; Ranc, F.; Gregoire, E.P.; Roepers-Gajadien, H.L.; Taketo, M.M.; Camerino, G.; de Rooij, D.G.; Schedl, A.; Chaboissier, M.-C. Activation of β-Catenin Signaling by Rspo1 Controls Differentiation of the Mammalian Ovary. Hum. Mol. Genet. 2008, 17, 1264–1277. [Google Scholar] [CrossRef] [Green Version]
- Maatouk, D.M.; Mork, L.; Chassot, A.-A.; Chaboissier, M.-C.; Capel, B. Disruption of Mitotic Arrest Precedes Precocious Differentiation and Transdifferentiation of Pregranulosa Cells in the Perinatal Wnt4 Mutant Ovary. Dev. Biol. 2013, 383, 295–306. [Google Scholar] [CrossRef]
- Behringer, R.R.; Cate, R.L.; Froelick, G.J.; Palmiter, R.D.; Brinster, R.L. Abnormal Sexual Development in Transgenic Mice Chronically Expressing Müllerian Inhibiting Substance. Nature 1990, 345, 167–170. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, L.; Hu, Y.; Chen, M.; Han, F.; Qin, Y.; Chen, M.; Cui, X.; Duo, S.; Tang, F.; et al. β-Catenin Directs the Transformation of Testis Sertoli Cells to Ovarian Granulosa-like Cells by Inducing Foxl2 Expression. J. Biol. Chem. 2017, 292, 17577–17586. [Google Scholar] [CrossRef] [Green Version]
- Calnan, D.R.; Brunet, A. The FoxO Code. Oncogene 2008, 27, 2276–2288. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Ren, Y.A.; Pangas, S.A.; Adams, J.; Zhou, W.; Castrillon, D.H.; Wilhelm, D.; Richards, J.S. FOXO1/3 and PTEN Depletion in Granulosa Cells Promotes Ovarian Granulosa Cell Tumor Development. Mol. Endocrinol. 2015, 29, 1006–1024. [Google Scholar] [CrossRef] [PubMed]
- Pan, D. The Hippo Signaling Pathway in Development and Cancer. Dev. Cell 2010, 19, 491–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, B.; Li, L.; Lei, Q.; Guan, K.-L. The Hippo–YAP Pathway in Organ Size Control and Tumorigenesis: An Updated Version. Genes Dev. 2010, 24, 862–874. [Google Scholar] [CrossRef] [Green Version]
- St John, M.A.R.; Tao, W.; Fei, X.; Fukumoto, R.; Carcangiu, M.L.; Brownstein, D.G.; Parlow, A.F.; McGrath, J.; Xu, T. Mice Deficient of Lats1 Develop Soft-Tissue Sarcomas, Ovarian Tumours and Pituitary Dysfunction. Nat. Genet. 1999, 21, 182–186. [Google Scholar] [CrossRef]
- Tsoi, M.; Morin, M.; Rico, C.; Johnson, R.L.; Paquet, M.; Gévry, N.; Boerboom, D. Lats1 and Lats2 Are Required for Ovarian Granulosa Cell Fate Maintenance. FASEB J. 2019, 33, 10819–10832. [Google Scholar] [CrossRef]
- Raymond, C.S.; Shamu, C.E.; Shen, M.M.; Seifert, K.J.; Hirsch, B.; Hodgkin, J.; Zarkower, D. Evidence for Evolutionary Conservation of Sex-Determining Genes. Nature 1998, 391, 691–695. [Google Scholar] [CrossRef] [PubMed]
- Raymond, C.S.; Murphy, M.W.; O’Sullivan, M.G.; Bardwell, V.J.; Zarkower, D. Dmrt1, a Gene Related to Worm and Fly Sexual Regulators, Is Required for Mammalian Testis Differentiation. Genes Dev. 2000, 14, 2587–2595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matson, C.K.; Murphy, M.W.; Sarver, A.L.; Griswold, M.D.; Bardwell, V.J.; Zarkower, D. DMRT1 Prevents Female Reprogramming in the Postnatal Mammalian Testis. Nature 2011, 476, 101–104. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, K.; Saga, Y. Retinoic Acid Signaling in Sertoli Cells Regulates Organization of the Blood-Testis Barrier through Cyclical Changes in Gene Expression. Development 2012, 139, 4347–4355. [Google Scholar] [CrossRef] [Green Version]
- Raverdeau, M.; Gely-Pernot, A.; Féret, B.; Dennefeld, C.; Benoit, G.; Davidson, I.; Chambon, P.; Mark, M.; Ghyselinck, N.B. Retinoic Acid Induces Sertoli Cell Paracrine Signals for Spermatogonia Differentiation but Cell Autonomously Drives Spermatocyte Meiosis. Proc. Natl. Acad. Sci. USA 2012, 109, 16582–16587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minkina, A.; Matson, C.K.; Lindeman, R.E.; Ghyselinck, N.B.; Bardwell, V.J.; Zarkower, D. DMRT1 Protects Male Gonadal Cells from Retinoid-Dependent Sexual Transdifferentiation. Dev. Cell 2014, 29, 511–520. [Google Scholar] [CrossRef] [Green Version]
- Bowles, J.; Feng, C.-W.; Ineson, J.; Miles, K.; Spiller, C.M.; Harley, V.R.; Sinclair, A.H.; Koopman, P. Retinoic Acid Antagonizes Testis Development in Mice. Cell Rep. 2018, 24, 1330–1341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, L.; Svingen, T.; Ng, E.T.; Koopman, P. Female-to-Male Sex Reversal in Mice Caused by Transgenic Overexpression of Dmrt1. Development 2015, 142, 1083–1088. [Google Scholar] [CrossRef] [Green Version]
- Lindeman, R.E.; Gearhart, M.D.; Minkina, A.; Krentz, A.D.; Bardwell, V.J.; Zarkower, D. Sexual Cell-Fate Reprogramming in the Ovary by DMRT1. Curr. Biol. 2015, 25, 764–771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagner, T.; Wirth, J.; Meyer, J.; Zabel, B.; Held, M.; Zimmer, J.; Pasantes, J.; Bricarelli, F.D.; Keutel, J.; Hustert, E.; et al. Autosomal Sex Reversal and Campomelic Dysplasia Are Caused by Mutations in and around the SRY-Related Gene SOX9. Cell 1994, 79, 1111–1120. [Google Scholar] [CrossRef]
- Foster, J.W.; Dominguez-Steglich, M.A.; Guioli, S.; Kwok, C.; Weller, P.A.; Stevanović, M.; Weissenbach, J.; Mansour, S.; Young, I.D.; Goodfellow, P.N.; et al. Campomelic Dysplasia and Autosomal Sex Reversal Caused by Mutations in an SRY -Related Gene. Nature 1994, 372, 525–530. [Google Scholar] [CrossRef]
- Chaboissier, M.-C.; Kobayashi, A.; Vidal, V.I.P.; Lützkendorf, S.; van de Kant, H.J.G.; Wegner, M.; de Rooij, D.G.; Behringer, R.R.; Schedl, A. Functional Analysis of Sox8 and Sox9 during Sex Determination in the Mouse. Development 2004, 131, 1891–1901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrionuevo, F.; Bagheri-Fam, S.; Klattig, J.; Kist, R.; Taketo, M.M.; Englert, C.; Scherer, G. Homozygous Inactivation of Sox9 Causes Complete XY Sex Reversal in Mice1. Biol. Reprod. 2006, 74, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Barrionuevo, F.; Georg, I.; Scherthan, H.; Lécureuil, C.; Guillou, F.; Wegner, M.; Scherer, G. Testis Cord Differentiation after the Sex Determination Stage Is Independent of Sox9 but Fails in the Combined Absence of Sox9 and Sox8. Dev. Biol. 2009, 327, 301–312. [Google Scholar] [CrossRef] [Green Version]
- Sock, E.; Schmidt, K.; Hermanns-Borgmeyer, I.; Bösl, M.R.; Wegner, M. Idiopathic Weight Reduction in Mice Deficient in the High-Mobility-Group Transcription Factor Sox8. Mol. Cell. Biol. 2001, 21, 6951–6959. [Google Scholar] [CrossRef] [Green Version]
- Georg, I.; Barrionuevo, F.; Wiech, T.; Scherer, G. Sox9 and Sox8 Are Required for Basal Lamina Integrity of Testis Cords and for Suppression of FOXL2 during Embryonic Testis Development in Mice1. Biol. Reprod. 2012, 87, 1–11. [Google Scholar] [CrossRef]
- Chalmel, F.; Lardenois, A.; Georg, I.; Barrionuevo, F.; Demougin, P.; Jégou, B.; Scherer, G.; Primig, M. Genome-Wide Identification of Sox8-, and Sox9-Dependent Genes during Early Post-Natal Testis Development in the Mouse. Andrology 2013, 1, 281–292. [Google Scholar] [CrossRef]
- Barrionuevo, F.J.; Hurtado, A.; Kim, G.-J.; Real, F.M.; Bakkali, M.; Kopp, J.L.; Sander, M.; Scherer, G.; Burgos, M.; Jiménez, R. Sox9 and Sox8 Protect the Adult Testis from Male-to-Female Genetic Reprogramming and Complete Degeneration. eLife 2016, 5, e15635. [Google Scholar] [CrossRef] [Green Version]
- Lindeman, R.E.; Murphy, M.W.; Agrimson, K.S.; Gewiss, R.L.; Bardwell, V.J.; Gearhart, M.D.; Zarkower, D. The Conserved Sex Regulator DMRT1 Recruits SOX9 in Sexual Cell Fate Reprogramming. Nucleic Acids Res. 2021, 49, 6144–6164. [Google Scholar] [CrossRef]
- Ottolenghi, C.; Pelosi, E.; Tran, J.; Colombino, M.; Douglass, E.; Nedorezov, T.; Cao, A.; Forabosco, A.; Schlessinger, D. Loss of Wnt4 and Foxl2 Leads to Female-to-Male Sex Reversal Extending to Germ Cells. Hum. Mol. Genet. 2007, 16, 2795–2804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pannetier, M.; Chassot, A.-A.; Chaboissier, M.-C.; Pailhoux, E. Involvement of FOXL2 and RSPO1 in Ovarian Determination, Development, and Maintenance in Mammals. Sex. Dev. 2016, 10, 167–184. [Google Scholar] [CrossRef]
- Blount, A.L.; Schmidt, K.; Justice, N.J.; Vale, W.W.; Fischer, W.H.; Bilezikjian, L.M. FoxL2 and Smad3 Coordinately Regulate Follistatin Gene Transcription*. J. Biol. Chem. 2009, 284, 7631–7645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kashimada, K.; Pelosi, E.; Chen, H.; Schlessinger, D.; Wilhelm, D.; Koopman, P. FOXL2 and BMP2 Act Cooperatively to Regulate Follistatin Gene Expression during Ovarian Development. Endocrinology 2011, 152, 272–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pisarska, M.D.; Kuo, F.-T.; Bentsi-Barnes, I.K.; Khan, S.; Barlow, G.M. LATS1 Phosphorylates Forkhead L2 and Regulates Its Transcriptional Activity. Am. J. Physiol.-Endocrinol. Metab. 2010, 299, E101–E109. [Google Scholar] [CrossRef] [Green Version]
- Shah, S.P.; Köbel, M.; Senz, J.; Morin, R.D.; Clarke, B.A.; Wiegand, K.C.; Leung, G.; Zayed, A.; Mehl, E.; Kalloger, S.E.; et al. Mutation of FOXL2 in Granulosa-Cell Tumors of the Ovary. N. Engl. J. Med. 2009, 360, 2719–2729. [Google Scholar] [CrossRef]
- Färkkilä, A.; Haltia, U.-M.; Tapper, J.; McConechy, M.K.; Huntsman, D.G.; Heikinheimo, M. Pathogenesis and Treatment of Adult-Type Granulosa Cell Tumor of the Ovary. Ann. Med. 2017, 49, 435–447. [Google Scholar] [CrossRef] [PubMed]
- Onder, S.; Hurdogan, O.; Bayram, A.; Yilmaz, I.; Sozen, H.; Yavuz, E. The Role of FOXL2, SOX9, and β-Catenin Expression and DICER1 Mutation in Differentiating Sex Cord Tumor with Annular Tubules from Other Sex Cord Tumors of the Ovary. Virchows Arch. 2021. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiménez, R.; Burgos, M.; Barrionuevo, F.J. Sex Maintenance in Mammals. Genes 2021, 12, 999. https://doi.org/10.3390/genes12070999
Jiménez R, Burgos M, Barrionuevo FJ. Sex Maintenance in Mammals. Genes. 2021; 12(7):999. https://doi.org/10.3390/genes12070999
Chicago/Turabian StyleJiménez, Rafael, Miguel Burgos, and Francisco J. Barrionuevo. 2021. "Sex Maintenance in Mammals" Genes 12, no. 7: 999. https://doi.org/10.3390/genes12070999
APA StyleJiménez, R., Burgos, M., & Barrionuevo, F. J. (2021). Sex Maintenance in Mammals. Genes, 12(7), 999. https://doi.org/10.3390/genes12070999