Analysis of Selected Variants of DRD2 and ANKK1 Genes in Combat Athletes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Genotyping
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sanchez-Roige, S.; Gray, J.C.; MacKillop, J.; Chen, C.H.; Palmer, A.A. The genetics of human personality. Genes Brain Behav. 2018, 17, e12439. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Roige, S.; Fontanillas, P.; Elson, S.L.; Gray, J.C.; de Wit, H.; MacKillop, J.; Palmer, A.A. Genome-Wide Association Studies of Impulsive Personality Traits (BIS-11 and UPPS-P) and Drug Experimentation in up to 22,861 Adult Research Participants Identify Loci in the CACNA1I and CADM2 genes. J. Neurosci. 2019, 39, 2562–2572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michałowska-Sawczyn, M.; Niewczas, M.; Król, P.; Czarny, W.; Rzeszutko, A.; Chmielowiec, K.; Chmielowiec, J.; Grzywacz, A.; Humińska-Lisowska, K.; Lachowicz, M.; et al. Associations between the dopamine D4 receptor gene polymorphisms and personality traits in elite athletes. Biol. Sport 2019, 36, 365–372. [Google Scholar] [CrossRef]
- Fischer, R.; Lee, A.; Verzijden, M.N. Dopamine genes are linked to Extraversion and Neuroticism personality traits, but only in demanding climates. Sci. Rep. 2018, 8, 1733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watson, J.D.; Crick, F.H. Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid. Nature 1974, 248, 765. [Google Scholar] [CrossRef]
- Jaekel, A.; Lill, P.; Whitelam, S.; Saccà, B. Insights into the Structure and Energy of DNA Nanoassemblies. Molecules 2020, 25, 5466. [Google Scholar] [CrossRef]
- Sherry, S.T.; Ward, M.H.; Kholodov, M.; Baker, J.; Phan, L.; Smigielski, E.M.; Sirotkin, K. dbSNP: The NCBI database of genetic variation. Nucleic Acids Res. 2001, 29, 308–311. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Biernacka, J.M.; Winham, S.J. Testing and estimation of X-chromosome SNP effects: Impact of model assumptions. Genet. Epidemiol. 2021. [Google Scholar] [CrossRef]
- Jacob, Y.; Spiteri, T.; Hart, N.H.; Anderton, R.S. The Potential Role of Genetic Markers in Talent Identification and Athlete Assessment in Elite Sport. Sports 2018, 6, 88. [Google Scholar] [CrossRef] [Green Version]
- Guo, S.; Iqbal, S.; Ma, R.; Song, J.; Yu, M.; Gao, Z. High-density genetic map construction and quantitative trait loci analysis of the stony hard phenotype in peach based on restriction-site associated DNA sequencing. BMC Genom. 2018, 19, 612. [Google Scholar] [CrossRef] [PubMed]
- Kitazawa, H.; Hasegawa, K.; Aruga, D.; Tanaka, M. Potential Genetic Contributions of the Central Nervous System to a Predisposition to Elite Athletic Traits: State-of-the-Art and Future Perspectives. Genes 2021, 12, 371. [Google Scholar] [CrossRef]
- Takeuchi, H.; Tomita, H.; Taki, Y.; Kikuchi, Y.; Ono, C.; Yu, Z.; Sekiguchi, A.; Nouchi, R.; Kotozaki, Y.; Nakagawa, S.; et al. The associations among the dopamine D2 receptor Taq1, emotional intelligence, creative potential measured by divergent thinking, and motivational state and these associations’ sex differences. Front. Psychol. 2015, 6, 912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suchanecka, A.; Chmielowiec, J.; Chmielowiec, K.; Masiak, J.; Sipak-Szmigiel, O.; Sznabowicz, M.; Czarny, W.; Michałowska-Sawczyn, M.; Trybek, G.; Grzywacz, A. Dopamine Receptor DRD2 Gene rs1076560, Personality Traits and Anxiety in the Polysubstance Use Disorder. Brain Sci. 2020, 10, 262. [Google Scholar] [CrossRef] [PubMed]
- Freels, T.G.; Gabriel, D.B.K.; Lester, D.B.; Simon, N.W. Risky decision-making predicts dopamine release dynamics in nucleus accumbens shell. Neuropsychopharmacology 2020, 45, 266–275. [Google Scholar] [CrossRef] [PubMed]
- Hranilovic, D.; Bucan, M.; Wang, Y. Emotional response in dopamine D2L receptor-deficient mice. Behav. Brain Res. 2008, 195, 246–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ranaldi, R. Dopamine and reward seeking: The role of ventral tegmental area. Rev. Neurosci. 2014, 25, 621–630. [Google Scholar] [CrossRef] [PubMed]
- Lammel, S.; Lim, B.K.; Malenka, R.C. Reward and aversion in a heterogeneous midbrain dopamine system. Neuropharmacology 2014, 76, 351–359. [Google Scholar] [CrossRef] [Green Version]
- Noohi, F.; Boyden, N.B.; Kwak, Y.; Humfleet, J.; Burke, D.T.; Müller, M.L.; Bohnen, N.I.; Seidler, R.D. Association of COMT val158met and DRD2 G>T genetic polymorphisms with individual differences in motor learning and performance in female young adults. J. Neurophysiol. 2014, 111, 628–640. [Google Scholar] [CrossRef] [Green Version]
- International HapMap 3 Consortium; Altshuler, D.M.; Gibbs, R.A.; Peltonen, L.; Dermitzakis, E.; Schaffner, S.F.; Yu, F.L.; Bonnen, P.E.; de Bakker, P.I.W.; Deloukas, P.; et al. Integrating common and rare genetic variation in diverse human populations. Nature 2010, 467, 52–58. [Google Scholar]
- Gelfand, Y.; Hernandez, Y.; Loving, J.; Benson, G. VNTRseek-a computational tool to detect tandem repeat variants in high-throughput sequencing data. Nucleic Acids Res. 2014, 42, 8884–8894. [Google Scholar] [CrossRef] [Green Version]
- Cherepkova, E.V.; Maksimov, V.N.; Kushnarev, A.P.; Shakhmatov, I.I.; Aftanas, L.I. The polymorphism of dopamine receptor D4 (DRD4) and dopamine transporter (DAT) genes in the men with antisocial behaviour and mixed martial arts fighters. World J. Biol. Psychiatry 2019, 20, 402–415. [Google Scholar] [CrossRef]
- Lippi, G.; Favaloro, E.J.; Guidi, G.C. The genetic basis of human athletic performance. Why are psychological components so often overlooked? J. Physiol. 2008, 586, 3017. [Google Scholar] [CrossRef]
- Fuss, J.; Gass, P. Endocannabinoids and voluntary activity in mice: Runner’s high and long-term consequences in emotional behaviors. Exp. Neurol. 2010, 224, 103–105. [Google Scholar] [CrossRef]
- Garland, T., Jr.; Schutz, H.; Chappell, M.A.; Keeney, B.K.; Meek, T.H.; Copes, L.E.; Acosta, W.; Drenowatz, C.; Maciel, R.C.; van Dijk, G.; et al. The biological control of voluntary exercise, spontaneous physical activity and daily energy expenditure in relation to obesity: Human and rodent perspectives. J. Exp. Biol. 2011, 214 Pt 2, 206–229. [Google Scholar] [CrossRef] [Green Version]
- Greenwood, B.N.; Fleshner, M. Exercise, stress resistance, and central serotonergic systems. Exerc. Sport Sci. Rev. 2011, 39, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Knab, A.M.; Bowen, R.S.; Hamilton, A.T.; Gulledge, A.A.; Lightfoot, J.T. Altered dopaminergic profiles: Implications for the regulation of voluntary physical activity. Behav. Brain Res. 2009, 204, 147–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knab, A.M.; Lightfoot, J.T. Does the difference between physically active and couch potato lie in the dopamine system? Int. J. Biol. Sci. 2010, 6, 133–150. [Google Scholar] [CrossRef] [PubMed]
- Mogenson, G.J.; Jones, D.L.; Yim, C.Y. From motivation to action: Functional interface between the limbic system and the motor system. Prog. Neurobiol. 1980, 14, 69–97. [Google Scholar] [CrossRef]
- Brené, S.; Bjørnebekk, A.; Åberg, E.; Mathé, A.A.; Olson, L.; Werme, M. Running is rewarding and antidepressive. Physiol. Behav. 2007, 92, 136–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greenwood, B.N.; Foley, T.E.; Le, T.V.; Strong, P.V.; Loughridge, A.B.; Day, H.; Fleshner, M. Long-term voluntary wheel running is rewarding and produces plasticity in the mesolimbic reward pathway. Behav. Brain Res. 2011, 217, 354–362. [Google Scholar] [CrossRef] [Green Version]
- Batty, N.J.; Fenrich, K.K.; Fouad, K. The role of cAMP and its downstream targets in neurite growth in the adult nervous system. Neurosci. Lett. 2016, 652, 1–8. [Google Scholar] [CrossRef]
- Barlas, Z.; Obhi, S.S. Cultural background influences implicit but not explicit sense of agency for the production of musical tones. Conscious. Cogn. 2014, 28, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Saito, N.; Takahata, K.; Murai, T.; Takahashi, H. Discrepancy between explicit judgement of agency and implicit feeling of agency: Implications for sense of agency and its disorders. Conscious. Cogn. 2015, 37, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Dewey, J.A.; Knoblich, G. Do implicit and explicit measures of the sense of agency measure the same thing? PLoS ONE 2014, 9, e110118. [Google Scholar] [CrossRef] [Green Version]
- Moore, J.W.; Middleton, D.; Haggard, P.; Fletcher, P.C. Exploring implicit and explicit aspects of sense of agency. Conscious. Cogn. 2012, 21, 1748–1753. [Google Scholar] [CrossRef] [Green Version]
- Schultz, W.; Dickinson, A. Neuronal coding of prediction errors. Annu. Rev. Neurosci. 2000, 23, 473–500. [Google Scholar] [CrossRef] [Green Version]
- Aston-Jones, G.; Cohen, J.D. An integrative theory of locus coeruleus-norepinephrine function. Adaptive gain and optimal performance. Annu. Rev. Neurosci. 2005, 28, 403–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Observed (Expected) | Allele Frequency | χ2 | p Value | ||
---|---|---|---|---|---|
DRD2 PROM. rs1799732 | |||||
Combat sport n = 258 | GG | 208 (202.4) | p allele freq (G) = 0.89 q allele freq (O) = 0.11 | 11.967 | 0.0005 * |
OO | 9 (3.4) | ||||
GO | 41 (52.3) | ||||
Controls n = 284 | GG | 229 (225.4) | p allele freq (G) = 0.89 q allele freq (O) = 0.11 | 4.870 | 0.027 * |
OO | 7 (3.4) | ||||
GO | 48 (55.2) | ||||
DRD2 rs1076560 | |||||
Combat sport n = 258 | CC | 180 (176.7) | p allele freq (C) = 0.83 q allele freq (A) = 0.17 | 2.029 | 0.147 |
AC | 67 (73.6) | ||||
AA | 11 (7.7) | ||||
Controls n = 284 | CC | 199 (197.6) | p allele freq (C) = 0.83 q allele freq (A) = 0.17 | 0.346 | 0.556 |
AC | 75 (77.7) | ||||
AA | 10 (7.6) | ||||
DRD2Tag1D rs1800498 | |||||
Combat sport n = 257 | AA | 100 (95.3) | p allele freq (A) = 0.60 q allele freq (G) = 0.40 | 1.515 | 0.218 |
AG | 113 (122.4) | ||||
GG | 44 (39.3) | ||||
Controls n = 284 | AA | 101 (98.8) | p allele freq (A) = 0.59 q allele freq (G) = 0.41 | 0.294 | 0.588 |
AG | 133 (137.4) | ||||
GG | 50 (47.8) | ||||
ANKK1 Tag1A rs1800497 | |||||
Combat sport n = 258 | GG | 179 (181.7) | p allele freq (G) = 0.84 q allele freq (A) = 0.16 | 1.523 | 0.217 |
AG | 75 (69.6) | ||||
AA | 4 (6.7) | ||||
Controls n = 284 | GG | 195 (196.1) | p allele freq (G) = 0.83 q allele freq (A) = 0.17 | 0.221 | 0.638 |
AG | 82 (79.8) | ||||
AA | 7 (8.1) | ||||
DRD2 Ex8 rs6276 | |||||
Combat sport n = 258 | TT | 116 (110.7) | p allele freq (T) = 0.66 q allele freq (C) = 0.34 | 2.967 | 0.144 |
CT | 106 (116.6) | ||||
CC | 36 (30.7) | ||||
Controls n = 284 | TT | 119 (117.3) | p allele freq (T) = 0.64 q allele freq (C) = 0.36 | 0.198 | 0.656 |
CT | 127 (130.4) | ||||
CC | 38 (36.3) | ||||
DRD2Tag1B rs1079597 | |||||
Combat sport n = 258 | CC | 192 (192.7) | p allele freq (C) = 0.86 q allele freq (T) = 0.14 | 0.1577 | 0.691 |
CT | 62 (60.5) | ||||
TT | 4 (4.7) | ||||
Controls n = 284 | CC | 195 (189.5) | p allele freq (C) = 0.82 q allele freq (T) = 0.18 | 4.7244 | 0.030 * |
CT | 74 (85.0) | ||||
TT | 15 (9.5) |
Group | Genotypes | Alleles | |||
---|---|---|---|---|---|
DRD2 PROM. rs1799732 | |||||
GG n (%) | OO n (%) | GO n (%) | G n (%) | O n (%) | |
Combat sport n = 258 | 208 (0.81) | 9 (0.03) | 41 (0.16) | 457 (0.81) | 59 (0.19) |
Controls n = 284 | 229 (0.81) | 7 (0.02) | 48 (0.17) | 506 (0.83) | 62 (0.17) |
χ2 p value | 0.564 0.754 | 0.073 0.786 | |||
DRD2 rs1076560 | |||||
CC n (%) | AC n (%) | AA n (%) | C n (%) | A n (%) | |
Combat sport n = 258–516 | 180 (0.70) | 67 (0.26) | 11 (0.04) | 427 (0.83) | 89 (0.17) |
Controls n = 284–568 | 199 (0.71) | 75 (0.26) | 10 (0.03) | 473 (0.83) | 95 (0.17) |
χ2 p value | 0.204 0.903 | 0.050 0.819 | |||
Tag1D rs1800498 | |||||
AA n (%) | AG n (%) | GG n (%) | A n (%) | G n (%) | |
Combat sport n = 257–514 | 100 (0.39) | 113 (0.44) | 44 (0.17) | 313 (0.61) | 201 (0.39) |
Controls n = 284 | 101 (0.36) | 133 (0.47) | 50 (0.18) | 335 (0.59) | 233 (0.41) |
χ2 p value | 0.668 0.716 | 0.410 0.521 | |||
ANKK1 Tag1A rs1800497 | |||||
GG n (%) | AG n (%) | AA n (%) | G n (%) | A n (%) | |
Combat sport n = 258–516 | 179 (0.69) | 75 (0.29) | 4 (0.02) | 433 (0.84) | 83 (0.16) |
Controls n = 284–568 | 195 (0.69) | 82 (0.29) | 7 (0.02) | 472 (0.83) | 96 (0.17) |
χ2 p value | 0.569 0.752 | 0.130 0.718 | |||
DRD2 Ex8 rs6276 | |||||
TT n (%) | CT n (%) | CC n (%) | T n (%) | C n (%) | |
Combat sport n = 258 | 116 (0.45) | 106 (0.41) | 36 (0.14) | 338 (0.65) | 178 (0.35) |
Controls n = 284 | 119 (0.42) | 127 (0.45) | 38 (0.13) | 365 (0.64) | 203 (0.36) |
χ2 p value | 0.739 0.690 | 0.180 0.668 | |||
DRD2Tag1B rs1079597 | |||||
CC n (%) | CT n (%) | TT n (%) | C n (%) | T n (%) | |
Combat sport n = 258 | 192 (0.74) | 62 (0.24) | 4 (0.02) | 446 (0.86) | 70 (0.14) |
Controls n = 284 | 195 (0.67) | 74 (0.27) | 15 (0.05) | 464 (0.82) | 104 (0.18) |
χ2 p value | 6.218 0.045 * | 4.520 0.034 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michałowska-Sawczyn, M.; Chmielowiec, K.; Chmielowiec, J.; Trybek, G.; Masiak, J.; Niewczas, M.; Cieszczyk, P.; Bajorek, W.; Król, P.; Grzywacz, A. Analysis of Selected Variants of DRD2 and ANKK1 Genes in Combat Athletes. Genes 2021, 12, 1239. https://doi.org/10.3390/genes12081239
Michałowska-Sawczyn M, Chmielowiec K, Chmielowiec J, Trybek G, Masiak J, Niewczas M, Cieszczyk P, Bajorek W, Król P, Grzywacz A. Analysis of Selected Variants of DRD2 and ANKK1 Genes in Combat Athletes. Genes. 2021; 12(8):1239. https://doi.org/10.3390/genes12081239
Chicago/Turabian StyleMichałowska-Sawczyn, Monika, Krzysztof Chmielowiec, Jolanta Chmielowiec, Grzegorz Trybek, Jolanta Masiak, Marta Niewczas, Paweł Cieszczyk, Wojciech Bajorek, Paweł Król, and Anna Grzywacz. 2021. "Analysis of Selected Variants of DRD2 and ANKK1 Genes in Combat Athletes" Genes 12, no. 8: 1239. https://doi.org/10.3390/genes12081239
APA StyleMichałowska-Sawczyn, M., Chmielowiec, K., Chmielowiec, J., Trybek, G., Masiak, J., Niewczas, M., Cieszczyk, P., Bajorek, W., Król, P., & Grzywacz, A. (2021). Analysis of Selected Variants of DRD2 and ANKK1 Genes in Combat Athletes. Genes, 12(8), 1239. https://doi.org/10.3390/genes12081239