Genetic Variants and Somatic Alterations Associated with MITF-E318K Germline Mutation in Melanoma Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Genotyping of MITF, MC1R and CDKN2A
2.3. Whole Exome Sequencing (WES)
2.4. Bioinformatics Processing of WES Data
3. Results
3.1. Genetic Testing for MITF-E318K, CDKN2A and MC1R in Melanoma Cohorts
3.2. Germline and Somatic Alterations of the MITF-E318K SM Carrier EW29/Pt5
3.3. Studies on MITF-E318K Carriers from the TCGA SKCM Collection
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Goding, C.R.; Arnheiter, H. MITF—The first 25 years. Genes Dev. 2019, 33, 983–1007. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Mao, W.; Chen, J.; Goding, C.R.; Cui, R.; Xu, Z.-X.; Miao, X. The protective role of MC1R in chromosome stability and centromeric integrity in melanocytes. Cell Death Discov. 2021, 7, 111. [Google Scholar] [CrossRef]
- Hoek, K.S.; Goding, C.R. Cancer stem cells versus phenotype-switching in melanoma. Pigment. Cell Melanoma Res. 2010, 23, 746–759. [Google Scholar] [CrossRef]
- Sensi, M.; Catani, M.; Castellano, G.; Nicolini, G.; Alciato, F.; Tragni, G.; De Santis, G.; Bersani, I.; Avanzi, G.; Tomassetti, A.; et al. Human Cutaneous Melanomas Lacking MITF and Melanocyte Differentiation Antigens Express a Functional Axl Receptor Kinase. J. Investig. Dermatol. 2011, 131, 2448–2457. [Google Scholar] [CrossRef] [Green Version]
- Giuliano, S.; Cheli, Y.; Ohanna, M.; Bonet, C.; Beuret, L.; Bille, K.; Loubat, A.; Hofman, V.; Hofman, P.; Ponzio, G.; et al. Microphthalmia-Associated Transcription Factor Controls the DNA Damage Response and a Lineage-Specific Senescence Program in Melanomas. Cancer Res. 2010, 70, 3813–3822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garraway, L.A.; Widlund, H.; Rubin, M.; Getz, G.; Berger, A.J.; Ramaswamy, S.; Beroukhim, R.; Milner, J.D.A.; Granter, S.R.; Du, J.; et al. Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nat. Cell Biol. 2005, 436, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Müller, J.; Krijgsman, O.; Tsoi, J.; Robert, L.; Hugo, W.; Song, C.; Kong, X.; Possik, P.A.; Cornelissen-Steijger, P.D.M.; Foppen, M.H.G.; et al. Low MITF/AXL ratio predicts early resistance to multiple targeted drugs in melanoma. Nat. Commun. 2014, 5, 5712. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.P.; Ferguson, J.; Arozarena, I.; Hayward, R.; Marais, R.; Chapman, A.; Hurlstone, A.; Wellbrock, C. Effect of SMURF2 Targeting on Susceptibility to MEK Inhibitors in Melanoma. J. Natl. Cancer Inst. 2012, 105, 33–46. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Del-Campo, L.; Martí-Díaz, R.; Montenegro, M.F.; González-Guerrero, R.; Hernández-Caselles, T.; Martínez-Barba, E.; Piñero-Madrona, A.; Cabezas-Herrera, J.; Goding, C.R.; Rodríguez-López, J.N. MITF induces escape from innate immunity in melanoma. J. Exp. Clin. Cancer Res. 2021, 40, 117. [Google Scholar] [CrossRef]
- Roesch, A.; Paschen, A.; Landsberg, J.; Helfrich, I.; Becker, J.C.; Schadendorf, D. Phenotypic tumour cell plasticity as a resistance mechanism and therapeutic target in melanoma. Eur. J. Cancer 2016, 59, 109–112. [Google Scholar] [CrossRef]
- Bertolotto, C.; Lesueur, F.; Giuliano, S.; Strub, T.; De Lichy, M.; Bille, K.; Dessen, P.; D’Hayer, B.; Mohamdi, H.; Remenieras, A.; et al. A SUMOylation-defective MITF germline mutation predisposes to melanoma and renal carcinoma. Nature 2011, 480, 94–98. [Google Scholar] [CrossRef]
- Yokoyama, S.; Woods, S.L.; Boyle, G.M.; Aoude, L.G.; MacGregor, S.; Zismann, V.; Gartside, M.; Cust, A.E.; Haq, R.; Harland, M.; et al. A novel recurrent mutation in MITF predisposes to familial and sporadic melanoma. Nature 2011, 480, 99–103. [Google Scholar] [CrossRef]
- Zhao, X. SUMO-Mediated Regulation of Nuclear Functions and Signaling Processes. Mol. Cell 2018, 71, 409–418. [Google Scholar] [CrossRef] [Green Version]
- Roider, E.M.; Fisher, D.E. The impact of MITF on melanoma development: News from bench and bedside. J. Investig. Dermatol. 2014, 134, 16–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paillerets, B.B.-D.; Lesueur, F.; Bertolotto, C. A germline oncogenic MITF mutation and tumor susceptibility. Eur. J. Cell Biol. 2014, 93, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Berwick, M.; MacArthur, J.; Orlow, I.; Kanetsky, P.; Begg, C.B.; Luo, L.; Reiner, A.; Sharma, A.; Armstrong, B.K.; Kricker, A.; et al. MITF E318K’s effect on melanoma risk independent of, but modified by, other risk factors. Pigment. Cell Melanoma Res. 2014, 27, 485–488. [Google Scholar] [CrossRef] [Green Version]
- Potrony, M.; Puig-Butille, J.A.; Aguilera, P.; Badenas, C.; Tell-Marti, G.; Carrera, C.; Del Pozo, L.J.; Conejo-Mir, J.; Malvehy, J.; Puig, S. Prevalence ofMITFp.E318K in Patients with Melanoma Independent of the Presence ofCDKN2ACausative Mutations. JAMA Dermatol. 2016, 152, 405–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sturm, R.A.; Fox, C.; McClenahan, P.; Jagirdar, K.; Ibarrola-Villava, M.; Banan, P.; Abbott, N.C.; Ribas, G.; Gabrielli, B.; Duffy, D.L.; et al. Phenotypic Characterization of Nevus and Tumor Patterns in MITF E318K Mutation Carrier Melanoma Patients. J. Investig. Dermatol. 2014, 134, 141–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonet, C.; Luciani, F.; Ottavi, J.-F.; Leclerc, J.; Jouenne, F.-M.; Boncompagni, M.; Bille, K.; Hofman, V.; Bossis, G.; De Donatis, G.M.; et al. Deciphering the Role of Oncogenic MITFE318K in Senescence Delay and Melanoma Progression. J. Natl. Cancer Inst. 2017, 109. [Google Scholar] [CrossRef] [PubMed]
- Bassoli, S.; Pellegrini, C.; Longo, C.; Di Nardo, L.; Farnetani, F.; Cesinaro, A.M.; Pellacani, G.; Fargnoli, M.C. Clinical, dermoscopic, and confocal features of nevi and melanomas in a multiple primary melanoma patient with the MITF p.E318K homozygous mutation. Melanoma Res. 2018, 28, 166–169. [Google Scholar] [CrossRef]
- Ghiorzo, P.; Pastorino, L.; Queirolo, P.; Bruno, W.; Tibiletti, M.G.; Nasti, S.; Andreotti, V.; Paillerets, B.B.-D.; Scarrà, G.B.; Genoa Pancreatic Cancer Study Group. Prevalence of the E318K MITF germline mutation in Italian melanoma patients: Associations with histological subtypes and family cancer history. Pigment. Cell Melanoma Res. 2012, 26, 259–262. [Google Scholar] [CrossRef]
- Guhan, S.M.; Artomov, M.; McCormick, S.; Njauw, C.-N.; Stratigos, A.J.; Shannon, K.; Ellisen, L.W.; Tsao, H. Cancer risks associated with the germline MITF(E318K) variant. Sci. Rep. 2020, 10, 17051. [Google Scholar] [CrossRef]
- Pollio, A.; Tomasi, A.; Seidenari, S.; Pellacani, G.; Rodolfo, M.; Frigerio, S.; Maurichi, A.; Turchetti, D.; Bassoli, S.; Ruini, C.; et al. Malignant and benign tumors associated with multiple primary melanomas: Just the starting block for the involvement ofMITF, PTENandCDKN2Ain multiple cancerogenesis? Pigment. Cell Melanoma Res. 2013, 26, 755–757. [Google Scholar] [CrossRef] [PubMed]
- Ciccarese, G.; Italian Melanoma Intergroup (I.M.I.); Dalmasso, B.; Bruno, W.; Queirolo, P.; Pastorino, L.; Andreotti, V.; Spagnolo, F.; Tanda, E.; Ponti, G.; et al. Clinical, pathological and dermoscopic phenotype of MITF p.E318K carrier cutaneous melanoma patients. J. Transl. Med. 2020, 18, 78. [Google Scholar] [CrossRef]
- Dika, E.; Patrizi, A.; Rossi, C.; Turchetti, D.; Miccoli, S.; Ferracin, M.; Veronesi, G.; Scarfì, F.; Lambertini, M. Clinical histopathological features and CDKN2A/CDK4/MITF mutational status of patients with multiple primary melanomas from Bologna: Italy is a fascinating but complex mosaic. G. Ital. Dermatol. Venereol. 2020. [Google Scholar] [CrossRef]
- Lambertini, M.; Mussi, M.; Dika, E. Nodular melanoma in an MITF p.E318K carrier patient: The Wolf in Little Red Riding Hood. Australas. J. Dermatol. 2021, 62, e146–e148. [Google Scholar] [CrossRef]
- Bruno, W.; Pastorino, L.; Ghiorzo, P.; Andreotti, V.; Martinuzzi, C.; Menin, C.; Elefanti, L.; Stagni, C.; Vecchiato, A.; Rodolfo, M.; et al. Multiple primary melanomas (MPMs) and criteria for genetic assessment: MultiMEL, a multicenter study of the Italian Melanoma Intergroup. J. Am. Acad. Dermatol. 2016, 74, 325–332. [Google Scholar] [CrossRef] [PubMed]
- De Simone, P.; Bottillo, I.; Valiante, M.; Iorio, A.; De Bernardo, C.; Majore, S.; D’Angelantonio, D.; Valentini, T.; Sperduti, I.; Piemonte, P.; et al. A Single Center Retrospective Review of Patients from Central Italy Tested for Melanoma Predisposition Genes. Int. J. Mol. Sci. 2020, 21, 9432. [Google Scholar] [CrossRef]
- Pastorino, L.; Andreotti, V.; Dalmasso, B.; Vanni, I.; Ciccarese, G.; Mandalà, M.; Spadola, G.; Pizzichetta, M.A.; Ponti, G.; Tibiletti, M.G.; et al. Insights into Genetic Susceptibility to Melanoma by Gene Panel Testing: Potential Pathogenic Variants in ACD, ATM, BAP1, and POT1. Cancers 2020, 12, 1007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frigerio, S.; Disciglio, V.; Manoukian, S.; Peissel, B.; Della Torre, G.; Maurichi, A.; Collini, P.; Pasini, B.; Gotti, G.; Ferrari, A.; et al. A large de novo9p21.3 deletion in a girl affected by astrocytoma and multiple melanoma. BMC Med. Genet. 2014, 15, 59. [Google Scholar] [CrossRef] [Green Version]
- Kanetsky, P.A.; Rebbeck, T.R.; Hummer, A.J.; Panossian, S.; Armstrong, B.K.; Kricker, A.; Marrett, L.D.; Millikan, R.C.; Gruber, S.B.; Culver, H.A.; et al. Population-Based Study of Natural Variation in the Melanocortin-1 Receptor Gene and Melanoma. Cancer Res. 2006, 66, 9330–9337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- John, P.R.; Ramsay, M. Four novel variants in MC1R in red-haired South African individuals of European descent: S83P, Y152X, A171D, P256S. Hum. Mutat. 2002, 19, 461–462. [Google Scholar] [CrossRef]
- Daniotti, M.; Ferrari, A.; Frigerio, S.; Casieri, P.; Miselli, F.; Zucca, E.; Collini, P.; Della Torre, G.; Manoukian, S.; Peissel, B.; et al. Cutaneous Melanoma in Childhood and Adolescence Shows Frequent Loss of INK4A and Gain of KIT. J. Investig. Dermatol. 2009, 129, 1759–1768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertoldi, L.; Forcato, C.; Vitulo, N.; Birolo, G.; De Pascale, F.; Feltrin, E.; Schiavon, R.; Anglani, F.; Negrisolo, S.; Zanetti, A.; et al. QueryOR: A comprehensive web platform for genetic variant analysis and prioritization. BMC Bioinform. 2017, 18, 225. [Google Scholar] [CrossRef] [Green Version]
- Read, J.; Wadt, K.A.W.; Hayward, N.K. Melanoma genetics. J. Med. Genet. 2015, 53, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Huang, K.-L.; Mashl, R.J.; Wu, Y.; Ritter, D.I.; Wang, J.; Oh, C.; Paczkowska, M.; Reynolds, S.; Wyczalkowski, M.A.; Oak, N.; et al. Pathogenic Germline Variants in 10,389 Adult Cancers. Cell 2018, 173, 355–370.e14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landi, M.T.; Bishop, D.T.; MacGregor, S.; Machiela, M.J.; Stratigos, A.J.; Ghiorzo, P.; Brossard, M.; Calista, D.; Choi, J.; Fargnoli, M.C.; et al. Genome-wide association meta-analyses combining multiple risk phenotypes provide insights into the genetic architecture of cutaneous melanoma susceptibility. Nat. Genet. 2020, 52, 494–504. [Google Scholar] [CrossRef]
- De Summa, S.; Guida, M.; Tommasi, S.; Strippoli, S.; Pellegrini, C.; Fargnoli, M.C.; Pilato, B.; Natalicchio, I.; Guida, G.; Pinto, R. Genetic profiling of a rare condition: Co-occurrence of albinism and multiple primary melanoma in a caucasian family. Oncotarget 2016, 8, 29751–29759. [Google Scholar] [CrossRef] [Green Version]
- Christodoulou, E.; Van Doorn, R.; Visser, M.; Teunisse, A.; Versluis, M.; Van Der Velden, P.; Hayward, N.; Jochemsen, A.; Gruis, N. NEK11 as a candidate high-penetrance melanoma susceptibility gene. J. Med. Genet. 2019, 57, 203–210. [Google Scholar] [CrossRef] [Green Version]
- Campos, C.; Fragoso, S.; Luís, R.; Pinto, F.; Brito, C.; Esteves, S.; Pataco, M.; Santos, S.; Machado, P.; Vicente, J.B.; et al. High-Throughput Sequencing Identifies 3 Novel Susceptibility Genes for Hereditary Melanoma. Genes 2020, 11, 403. [Google Scholar] [CrossRef] [Green Version]
- Sondka, Z.; Bamford, S.; Cole, C.G.; Ward, S.A.; Dunham, I.; Forbes, S.A. The COSMIC Cancer Gene Census: Describing genetic dysfunction across all human cancers. Nat. Rev. Cancer 2018, 18, 696–705. [Google Scholar] [CrossRef]
- Landrum, M.J.; Lee, J.M.; Riley, G.R.; Jang, W.; Rubinstein, W.S.; Church, D.M.; Maglott, D.R. ClinVar: Public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. 2014, 42, D980–D9805. [Google Scholar] [CrossRef] [Green Version]
- Mayakonda, A.; Lin, D.-C.; Assenov, Y.; Plass, C.; Koeffler, H.P. Maftools: Efficient and comprehensive analysis of somatic variants in cancer. Genome Res. 2018, 28, 1747–1756. [Google Scholar] [CrossRef] [Green Version]
- D’Aurizio, R.; Pippucci, T.; Tattini, L.; Giusti, B.; Pellegrini, M.; Magi, A. Enhanced copy number variants detection from whole-exome sequencing data using EXCAVATOR2. Nucleic Acids Res. 2016, 44, e154. [Google Scholar] [CrossRef]
- Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.; Larsson, E.; et al. The cBio Cancer Genomics Portal: An Open Platform for Exploring Multidimensional Cancer Genomics Data. Cancer Discov. 2012, 2, 401–404. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.; Sumer, S.O.; Sun, Y.; Jacobsen, A.; Sinha, R.; Larsson, E.; et al. Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal. Sci. Signal. 2013, 6, pl1. [Google Scholar] [CrossRef] [Green Version]
- Goggins, W.; Daniels, G.H.; Tsao, H. Elevation of thyroid cancer risk among cutaneous melanoma survivors. Int. J. Cancer 2006, 118, 185–188. [Google Scholar] [CrossRef] [PubMed]
- Aoude, L.G.; Bonazzi, V.F.; Brosda, S.; Patel, K.; Koufariotis, L.T.; Oey, H.; Nones, K.; Wood, S.; Pearson, J.V.; Lonie, J.M.; et al. Pathogenic germline variants are associated with poor survival in stage III/IV melanoma patients. Sci. Rep. 2020, 10, 17687. [Google Scholar] [CrossRef] [PubMed]
- Espinoza, C.D.R.; Roberts, N.; Chen, S.; Leacy, F.P.; Alexandrov, L.B.; Pornputtapong, N.; Halaban, R.; Krauthammer, M.; Cui, R.; Bishop, D.T.; et al. Germline MC1R status influences somatic mutation burden in melanoma. Nat. Commun. 2016, 7, 12064. [Google Scholar] [CrossRef] [PubMed]
- Muller, C.; Wendt, J.; Rauscher, S.; Burgstaller-Muehlbacher, S.; Sunder-Plassmann, R.; Scheurecker, C.; Richtig, E.; Fae, I.; Fischer, G.; Pehamberger, H.; et al. Characterization of patients at high risk of melanoma in Austria. Br. J. Dermatol. 2016, 174, 1308–1317. [Google Scholar] [CrossRef] [PubMed]
- Mangas, C.; Potrony, M.; Mainetti, C.; Bianchi, E.; Merlani, P.C.; Eberhardt, A.M.; Maspoli-Postizzi, E.; Marazza, G.; Marcollo-Pini, A.; Pelloni, F.; et al. Genetic susceptibility to cutaneous melanoma in southern Switzerland: Role of CDKN2A, MC1R and MITF. Br. J. Dermatol. 2016, 175, 1030–1037. [Google Scholar] [CrossRef]
- Landi, M.T.; Kanetsky, P.A.; Tsang, S.; Gold, B.; Munroe, D.; Rebbeck, T.; Swoyer, J.; Ter-Minassian, M.; Hedayati, M.; Grossman, L.; et al. MC1R, ASIP, and DNA Repair in Sporadic and Familial Melanoma in a Mediterranean Population. J. Natl. Cancer Inst. 2005, 97, 998–1007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmer, J.S.; Duffy, D.; Box, N.; Aitken, J.; O’Gorman, L.E.; Green, A.C.; Hayward, N.K.; Martin, N.; Sturm, R.A. Melanocortin-1 Receptor Polymorphisms and Risk of Melanoma: Is the Association Explained Solely by Pigmentation Phenotype? Am. J. Hum. Genet. 2000, 66, 176–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasquali, E.; Garcia-Borron, J.C.; Fargnoli, M.C.; Gandini, S.; Maisonneuve, P.; Bagnardi, V.; Specchia, C.; Cornelius, L.A.; Kayser, M.; Nijsten, T.; et al. MC1Rvariants increased the risk of sporadic cutaneous melanoma in darker-pigmented Caucasians: A pooled-analysis from the M-SKIP project. Int. J. Cancer 2014, 136, 618–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wendt, J.; Rauscher, S.; Burgstaller-Muehlbacher, S.; Fae, I.; Fischer, G.; Pehamberger, H.; Okamoto, I. Human Determinants and the Role of Melanocortin-1 Receptor Variants in Melanoma Risk Independent of UV Radiation Exposure. JAMA Dermatol. 2016, 152, 776–782. [Google Scholar] [CrossRef] [Green Version]
- Pellegrini, C.; Raimondi, S.; Di Nardo, L.; Ghiorzo, P.; Menin, C.; Manganoni, M.A.; Palmieri, G.; Guida, G.; Quaglino, P.; Stanganelli, I.; et al. Melanoma in Children and Adolescents: Analysis of Susceptibility Genes in 123 Italian Patients. JEADV 2021. [Google Scholar]
- Van Os, N.; Roeleveld, N.; Weemaes, C.; Jongmans, M.; Janssens, G.O.R.J.; Taylor, A.; Hoogerbrugge, N.; Willemsen, M. Health risks for ataxia-telangiectasia mutated heterozygotes: A systematic review, meta-analysis and evidence-based guideline. Clin. Genet. 2016, 90, 105–117. [Google Scholar] [CrossRef]
- Yang, X.R.; Rotunno, M.; Xiao, Y.; Ingvar, C.; Helgadottir, H.; Pastorino, L.; Van Doorn, R.; Bennett, H.; Graham, C.; Sampson, J.N.; et al. Multiple rare variants in high-risk pancreatic cancer-related genes may increase risk for pancreatic cancer in a subset of patients with and without germline CDKN2A mutations. Qual. Life Res. 2016, 135, 1241–1249. [Google Scholar] [CrossRef] [Green Version]
- Del Valle, J.; Rofes, P.; Moreno-Cabrera, J.M.; López-Dóriga, A.; Belhadj, S.; Vargas-Parra, G.; Teulé, À.; Cuesta, R.; Muñoz, X.; Campos, O.; et al. Exploring the Role of Mutations in Fanconi Anemia Genes in Hereditary Cancer Patients. Cancers 2020, 12, 829. [Google Scholar] [CrossRef] [Green Version]
- Wilhite, T.J.; Youland, R.S.; Tian, S.; Finley, R.R.; Sarkaria, J.N.; Corbin, K.S. Pathogenic Germ Line Variants in a Patient with Severe Toxicity from Breast Radiotherapy. Clin. Breast Cancer 2019, 19, e400–e405. [Google Scholar] [CrossRef]
- Fierheller, C.T.; Guitton-Sert, L.; Alenezi, W.M.; Revil, T.; Oros, K.K.; Bedard, K.; Arcand, S.L.; Serruya, C.; Behl, S.; Meunier, L.; et al. The genetic analysis of a founder Northern American population of European descent identifies FANCI as a candidate familial ovarian cancer risk gene. medRxiv 2020. [Google Scholar] [CrossRef]
- Castro-Vega, L.J.; Kiando, S.R.; Burnichon, N.; Buffet, A.; Amar, L.; Simian, C.; Berdelou, A.; Galan, P.; Schlumberger, M.; Bouatia-Naji, N.; et al. The MITF, p.E318K Variant, as a Risk Factor for Pheochromocytoma and Paraganglioma. J. Clin. Endocrinol. Metab. 2016, 101, 4764–4768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marjon, K.; Cameron, M.J.; Quang, P.; Clasquin, M.F.; Mandley, E.; Kunii, K.; McVay, M.; Choe, S.; Kernytsky, A.; Gross, S.; et al. MTAP Deletions in Cancer Create Vulnerability to Targeting of the MAT2A/PRMT5/RIOK1 Axis. Cell Rep. 2016, 15, 574–587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konteatis, Z.; Travins, J.; Gross, S.; Marjon, K.; Barnett, A.; Mandley, E.; Nicolay, B.; Nagaraja, R.; Chen, Y.; Sun, Y.; et al. Discovery of AG-270, a First-in-Class Oral MAT2A Inhibitor for the Treatment of Tumors with Homozygous MTAP Deletion. J. Med. Chem. 2021, 64, 4430–4449. [Google Scholar] [CrossRef]
Melanoma Cohorts a | MM | FM | NM | SM | PM |
---|---|---|---|---|---|
N cases (tot 248) | 78 | 74 | 15 | 59 | 22 |
Females–males | 39–39 | 47–27 | 9–6 | 20–39 | 9–13 |
Age at diagnosis (range; mean; median) | 19–86; 47; 44 | 19–84; 45; 42 | 31–80; 57; 60 | 23–90; 51; 51 | 1–18; 9; 9 |
Carriers of E318K MITF variant (tot 7; 4.7%) | 2 (2.6%) | 3 (4.0%) | 1 (6.7%) | 1 (1.7%) | 0 |
Carriers of CDKN2A variants | 15 (29%) | 28 (37%) | 0 | 1 (1.7%) | 1 (4.6%) |
G101W | 8 | 19 | 0 | 1 | 0 |
Other CDKN2A variants b | 7 | 9 | 0 | 0 | 1 |
Carriers of MC1R variants c | 56 (72%) | 53 (72%) | 11 (73%) | 41 (70%) | 12 (55%) |
≥2 | 28 (36%) | 19 (26%) | 4 (27%) | 12 (20%) | 3 (14%) |
1 | 28 (36%) | 34 (46%) | 8 (53%) | 29 (49%) | 9 (41%) |
0 (wt) | 22 (28%) | 21 (28%) | 4 (27%) | 18 (31%) | 10 (45%) |
R/R | 4 (5%) | 8 (11%) | 1 (7%) | 2 (3%) | 0 |
R/r | 23 (29%) | 8 (11%) | 2 (13%) | 7 (12%) | 1 (5%) |
R/0 | 14 (18%) | 15 (20%) | 3 (20%) | 11 (19%) | 3 (14%) |
r/r | 1 (1%) | 3 (4%) | 1 (7%) | 3 (5%) | 2 (9%) |
r/0 | 14 (18%) | 19 (26%) | 5 (33%) | 18 (31%) | 6 (27%) |
Pt ID | Sex/Age at Diagnosis | Pts Group | No. of Melanoma | Other Tumors | CDKN2A Status | MC1R Variants | MC1R Genotype |
---|---|---|---|---|---|---|---|
2844 | F/22 | FM | 4 | No | G101W | D294H | R/0 |
2845 | F/30 | FM * | 1 | No | G101W | R151C; V92M; (T314T) | R/r |
2907 | M/23 | FM | 2 | No | wt | R151C; V60L | R/r |
GM89 | F/43 | MM | 2 | No | wt | (Q233Q) | 0 (cons) |
GM92 | M/34 | MM | 3 | No | G101W | R151C; I155T; (T314T) | R/r |
3008 | M/22 | MN | 2 | ca. thyroid | wt | R160W | R/0 |
EW29/Pt5 | M/47 | SM | - | No | wt | wt | 0 |
Patients | Genes | Genotype | Melanoma Features | ||||||
---|---|---|---|---|---|---|---|---|---|
Patient-ID | Sex | Age a | MITF b | CDKN2A b | MC1R c | MC1R c | Sample Type | Tumor Disease Anatomic Site | BRAF Status |
TCGA-D3-A1Q5 | M | 60 | E318K | wt | V92M, R160W | R/r | Metastasis | Regional lymph node | V600E |
TCGA-D3-A1Q6 | M | 55 | E318K | wt | D294H | R/0 | Metastasis | Subcutaneous | V600E |
TCGA-EE-A2M8 | F | 54 | E318K | wt | R151C | r/0 | Metastasis | Regional lymph node | V600E |
TCGA-FS-A1ZS | M | 54 | E318K | wt | V92M | r/0 | Metastasis | Regional lymph node | V600E |
TCGA-W3-AA21 | M | 26 | E318K | wt | NA | NA | Metastasis | Regional lymph node | V600E |
TCGA-GF-A2C7 | M | 48 | E318K | wt | wt | 0 | Primary | Head and neck | V600E |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vergani, E.; Frigerio, S.; Dugo, M.; Devecchi, A.; Feltrin, E.; De Cecco, L.; Vallacchi, V.; Cossa, M.; Di Guardo, L.; Manoukian, S.; et al. Genetic Variants and Somatic Alterations Associated with MITF-E318K Germline Mutation in Melanoma Patients. Genes 2021, 12, 1440. https://doi.org/10.3390/genes12091440
Vergani E, Frigerio S, Dugo M, Devecchi A, Feltrin E, De Cecco L, Vallacchi V, Cossa M, Di Guardo L, Manoukian S, et al. Genetic Variants and Somatic Alterations Associated with MITF-E318K Germline Mutation in Melanoma Patients. Genes. 2021; 12(9):1440. https://doi.org/10.3390/genes12091440
Chicago/Turabian StyleVergani, Elisabetta, Simona Frigerio, Matteo Dugo, Andrea Devecchi, Erika Feltrin, Loris De Cecco, Viviana Vallacchi, Mara Cossa, Lorenza Di Guardo, Siranoush Manoukian, and et al. 2021. "Genetic Variants and Somatic Alterations Associated with MITF-E318K Germline Mutation in Melanoma Patients" Genes 12, no. 9: 1440. https://doi.org/10.3390/genes12091440
APA StyleVergani, E., Frigerio, S., Dugo, M., Devecchi, A., Feltrin, E., De Cecco, L., Vallacchi, V., Cossa, M., Di Guardo, L., Manoukian, S., Peissel, B., Ferrari, A., Gallino, G., Maurichi, A., Rivoltini, L., Sensi, M., & Rodolfo, M. (2021). Genetic Variants and Somatic Alterations Associated with MITF-E318K Germline Mutation in Melanoma Patients. Genes, 12(9), 1440. https://doi.org/10.3390/genes12091440