Mapping Retrotransposon LINE-1 Sequences into Two Cebidae Species and Homo sapiens Genomes and a Short Review on Primates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Karyotyping and Sequential Chromosome Staining
2.2. LINE-1 Probe Preparation
2.3. Fluorescent In Situ Hybridisation (FISH)
2.4. Genomic Browser
3. Results
3.1. LINE-1 Distribution of Chromosomes of Cebidae and H. sapiens
3.2. Genomic Browser Data
4. Discussion
4.1. FISH Data Analysis of LINE-1 in the Analysed Species
4.2. Cytogenomic Data Analysis of LINE-1 in Primates
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lander, E.S.; Linton, L.M.; Birren, B.; Nusbaum, C.; Zody, M.C.; Baldwin, J.; Devon, K.; Dewar, K.; Doyle, M.; FitzHugh, W.; et al. Initial sequencing and analysis of the human genome. Nature 2001, 409, 860. [Google Scholar] [PubMed]
- Tang, W.; Mun, S.; Joshi, A.; Han, K.; Liang, P. Mobile elements contribute to the uniqueness of the human genome with 15,000 human-specific insertions and 14 Mbp sequence increase. DNA Res. 2018, 25, 521–533. [Google Scholar] [CrossRef]
- Cordaux, R.; Batzer, M.A. The impact of retrotransposons on human genome evolution. Nature reviews. Genetics 2009, 10, 691–703. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.F.; Singchat, W.; Jehangir, M.; Suntronpong, A.; Panthum, T.; Malaivijitnond, S.; Srikulnath, K. Dark Matter of Primate Genomes: Satellite DNA Repeats and Their Evolutionary Dynamics. Cells 2020, 9, 2714. [Google Scholar] [CrossRef] [PubMed]
- Boissinot, S.; Roos, C.; Furano, A.V. Different rates of LINE-1 (L1) retrotransposon amplification and evolution in New World monkeys. J. Mol. Evol. 2004, 58, 122–130. [Google Scholar] [CrossRef]
- Richardson, S.R.; Doucet, A.J.; Kopera, H.C.; Moldovan, J.B.; Garcia-Perez, J.L.; Moran, J.V. The influence of LINE-1 and SINE retrotransposons on mammalian genomes. Microbiol. Spectr. 2015, 3, 1165–1208. [Google Scholar] [CrossRef]
- Brouha, B.; Schustak, J.; Badge, R.M.; Lutz-Prigge, S.; Farley, A.H.; Moran, J.V.; Kazazian, H.H. Hot L1s account for the bulk of retrotransposition in the human population. Proc. Natl. Acad. Sci. USA 2003, 100, 5280–5285. [Google Scholar] [CrossRef]
- Smit, A.F.A.; Hubley, R.; Green, P. RepeatMasker Open-3.0. 2010. Available online: http://www.repeatmasker.org (accessed on 19 August 2022).
- Mills, R.E.; Bennett, E.A.; Iskow, R.C.; Devine, S.E. Which transposable elements are active in the human genome? Trends Genet. 2007, 23, 183–191. [Google Scholar] [CrossRef]
- Khan, H.; Smit, A.; Boissinot, S. Molecular evolution and tempo of amplification of human LINE-1 retrotransposons since the origin of primates. Genome Res. 2006, 16, 78–87. [Google Scholar] [CrossRef]
- Xing, J.; Witherspoon, D.J.; Ray, D.A.; Batzer, M.A.; Jorde, L.B. Mobile DNA elements in primate and human evolution. Am. J. Phys. Anthropol. 2007, 50, 2–19. [Google Scholar] [CrossRef]
- Seuánez, H.N.; Forman, L.; Matayoshi, T.; Fanning, T.G. The Callimico goeldii (Primates, Platyrrhini) genome: Karyology and middle repetitive (LINE- 1) DNA sequences. Chromosoma 1989, 98, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.E.; Eo, J.; Kim, H.S. Composition and evolutionary importance of transposable elements in humans and primates. Genes Genom. 2015, 37, 135–140. [Google Scholar] [CrossRef]
- Paço, A.; Freitas, R.; Vieira-da-Silva, A. Conversion of DNA sequences: From a transposable element to a tandem repeat or to a gene. Genes 2019, 12, 1014. [Google Scholar] [CrossRef]
- Ceraulo, S.; Milioto, V.; Dumas, F. Centromeric enrichment of LINE-1 retrotransposon in two species of South American monkeys Alouatta belzebul and Ateles nancymaae (Platyrrhini, Primates). Caryologia 2021, 74, 111–119. [Google Scholar] [CrossRef]
- Klein, S.J.; O’Neill, R.J. Transposable elements: Genome innovation, chromosome diversity, and centromere conflict. Chromosome Res. 2018, 26, 5–23. [Google Scholar] [CrossRef] [PubMed]
- Böhne, A.; Brunet, F.; Galiana-Arnoux, D.; Schultheis, C.; Volff, J.-N. Transposable elements as drivers of genomic and biological diversity in vertebrates. Chromosome Res. 2008, 16, 203–215. [Google Scholar] [CrossRef]
- Gray, Y.H. It takes two transposons to tango: Transposable element-mediated chromosomal rearrangements. Trends Genet. 2000, 16, 461–468. [Google Scholar] [CrossRef]
- Belyayev, A. Bursts of transposable elements as an evolutionary driving force. J. Evol. Biol. 2014, 27, 2573–2584. [Google Scholar] [CrossRef]
- Paço, A.; Adega, F.; Chaves, R. Line-1 retrotransposons: From “parasite” sequences to functional elements. J. Appl. Genet. 2015, 56, 133–145. [Google Scholar] [CrossRef]
- Lee, J.; Han, K.; Meyer, T.J.; Kim, H.S.; Batzer, M.A. Chromosomal inversions between human and chimpanzee lineages caused by retrotransposons. PLoS ONE 2008, 3, e4047. [Google Scholar] [CrossRef] [Green Version]
- Ceraulo, S.; Perelman, P.L.; Dumas, F. Massive LINE-1 retrotransposon enrichment in tamarins of the Cebidae family (Platyrrhini, Primates) and its significance for genome evolution. J. Zool. Syst. Evol. Res. 2021, 59, 2553–2561. [Google Scholar] [CrossRef]
- Kazazian, H.H., Jr.; Moran, J.V. Mobile DNA in health and disease. N. Engl. J. Med. 2017, 377, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Kazazian, H.H., Jr.; Wong, C.; Youssoufian, H.; Scott, A.F.; Phillips, D.G.; Antonarakis, S.E. Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man. Nature 1988, 332, 164–166. [Google Scholar] [CrossRef] [PubMed]
- Tørresen, O.K.; Star, B.; Mier, P.; Andrade-Navarro, M.A.; Bateman, A.; Jarnot, P.; Gruca, A.; Grynberg, M.; Kajava, A.V.; Promponas, V.J.; et al. Tandem repeats lead to sequence assembly errors and impose multi-level challenges for genome and protein databases. Nucleic Acids Res. 2019, 47, 10994–11006. [Google Scholar] [CrossRef] [PubMed]
- Biscotti, M.A.; Olmo, E.; Heslop-Harrison, M.A.; Olmo, E.; Heslop-Harrison, J.S. Repetitive 241 DNA in eukaryotic genomes. Chromosome Res. 2015, 23, 415–420. [Google Scholar] [CrossRef]
- de Sotero-Caio, C.G.; Cabral-de-Mello, D.C.; da Silva Calixto, M.; Valente, G.T.; Martins, C.; Loreto, V.; Santos, N. Centromeric enrichment of LINE-1 retrotransposons and its significance for the chromosome evolution of Phyllostomid bats. Chromosome Res. 2017, 25, 313–325. [Google Scholar] [CrossRef]
- Rebuzzini, P.; Castiglia, R.; Nergadze, S.G.; Mitsainas, G.; Munclinger, P.; Zuccotti, M.; Capanna, E.; Redi, C.A.; Garagna, S. Quantitative variation of LINE-1 sequences in five species and three subspecies of the subgenus Mus and in five Robertsonian races of Mus musculus domesticus. Chromosome Res. 2009, 17, 65–76. [Google Scholar] [CrossRef]
- Dumas, F.; Sineo, L. The evolution of human synteny 4 by mapping sub-chromosomal specific probes in Primates. Caryologia 2014, 67, 281–291. [Google Scholar] [CrossRef]
- Dumas, F.; Sineo, L.; Ishida, T. Taxonomic identification of Aotus (Platyrrhinae) through cytogenetics|Identificazione tassonomica di Aotus (Platyrrhinae) mediante la citogenetica. J. Biol. Res. 2015, 88, 65–66. [Google Scholar]
- Scardino, R.; Milioto, V.; Proskuryakova, A.A.; Serdyukova, N.A.; Perelman, P.L.; Dumas, F. Evolution of the human chromosome 13 synteny: Evolutionary rearrangements, plasticity, human disease genes and cancer breakpoints. Genes 2020, 11, 383. [Google Scholar] [CrossRef]
- Ceraulo, S.; Perelman, L.P.; Mazzoleni, S.; Rovatsos, M.; Dumas, F. Repetitive Sequence Distribution on Saguinus, Leontocebus and Leontopithecus Tamarins (Platyrrhine, Primates) by Mapping Telomeric (TTAGGG) Motifs and rDNA Loci. Biology 2021, 10, 844. [Google Scholar] [CrossRef] [PubMed]
- Small, M.F.; Stanyon, R.; Smith, D.G.; Sineo, L. High resolution chromosomes of reshus macaques (macaca mulatta). Am. J. Primatol. 1995, 9, 63–67. [Google Scholar] [CrossRef]
- Lemskaya, N.A.; Kulemzina, A.I.; Beklemisheva, V.R.; Biltueva, L.S.; Proskuryakova, A.A.; Hallenbeck, J.M.; Graphodatsky, A.S. A combined banding method that allows the reliable identification of chromosomes as well as differentiation of AT-and GC-rich heterochromatin. Chromosome Res. 2018, 26, 307–315. [Google Scholar] [CrossRef]
- Richard, F.; Lombard, M.; Dutrillaux, B. ZOO-FISH suggests a complete homology between human and capuchin monkey (Platyrrhini) euchromatin. Genomics 1996, 36, 417–423. [Google Scholar] [CrossRef] [PubMed]
- Garcia, F.; Nogués, C.; Ponsà, M.; Ruiz-Herrera, A.; Egozcue, J.; Garcia Caldes, M. Chromosomal homologies between humans and Cebus apella chromosomes revealed by ZOO-FISH. Mamm. Genome 2000, 11, 399–401. [Google Scholar]
- Garcia, F.; Ruiz-Herrera, A.; Egozcue, J.; Ponsa, M.; Garcia, M. Chromosomal homologies between Cebus and Ateles (Primates) based on ZOO-FISH and G-banding comparisons. Am. J. Primatol. Off. J. Am. Soc. Primatol. 2002, 57, 177–188. [Google Scholar] [CrossRef]
- Dumas, F.; Mazzoleni, S. Neotropical primate evolution and phylogenetic reconstruction using chromosomal data. Ital. J. Zool. 2017, 84, 1–18. [Google Scholar] [CrossRef]
- Fernàndez, R.; Barragàn, M.; Bullejos, M.; Marchal, J.; Diaz de la Guardia, R.; Sanchez, A. New C-band protocol by heat denaturation in the presence of formamide. Hereditas 2002, 137, 145–148. [Google Scholar] [CrossRef]
- Waters, P.D.; Dobigny, G.; Pardini, A.T.; Robinson, T.J. LINE-1 distribution in Afrotheria and Xenarthra: Implications for understanding the evolution of LINE-1 in eutherian genomes. Chromosoma 2004, 113, 137–144. [Google Scholar] [CrossRef]
- Serfaty, D.M.B.; Carvalho, N.D.M.; Gross, M.C.; Gordo, M.; Schneider, C.H. Differential chromosomal organisation between Saguinus midas and Saguinus bicolor with accumulation of differences in the repetitive sequence DNA. Genetica 2017, 145, 359–369. [Google Scholar] [CrossRef]
- Scardino, R.; Mazzoleni, S.; Rovatsos, M.; Vecchioni, L.; Dumas, F. Molecular Cytogenetic Characterization of the Sicilian Endemic Pond Turtle Emys trinacris and the Yellow-Bellied Slider Trachemys scripta scripta (Testudines, Emydidae). Genes 2020, 11, 702. [Google Scholar] [CrossRef] [PubMed]
- Milioto, V.; Vlah, M.S.; Rovatsos, M.; Dumas, F. Chromosomal localization of 18S-28S rDNA and (TTAGGG)n sequences in two South African dormice of the genus Graphiurus (Rodentia: Gliridae). Cytogenet. Genome Res. 2019, 158, 145–151. [Google Scholar] [CrossRef]
- Levan, A.; Fredga, K.; Sandberg, A.A. Nomenclature for centromeric position on chromosomes. Hereditas 1964, 52, 201–220. [Google Scholar] [CrossRef]
- Perelman, P.; Johnson, W.; Roos, C.; Seuanez, H.N.; Horvath, J.E.; Moreira, M.A.M.; Kessing, B.; Pontius, J.; Roelke, M.; Rumpler, Y.; et al. A molecular phylogeny of living primates. PLoS Genet. 2011, 7, e1001342. [Google Scholar] [CrossRef] [PubMed]
- Cellamare, A.; Catacchio, C.R.; Alkan, C.; Giannuzzi, G.; Antonacci, F.; Cardone, M.F.; Ventura, M. New insights into centromere organization and evolution from the white-cheeked gibbon and marmoset. Mol. Biol. Evol. 2009, 26, 1889–190047. [Google Scholar] [CrossRef]
- Kapitonov, V.V.; Holmquist, G.P.; Jurka, J. L1 repeat is a basic unit of heterochromatin satellites in cetaceans. Mol. Biol. Evol. 1998, 15, 611–612. [Google Scholar] [CrossRef]
- Acosta, M.J.; Marchal, J.A.; Fernández-Espartero, C.H.; Bullejos, M.; Sánchez, A. Retroelements (LINEs and SINEs) in vole genomes: Differential distribution in the constitutive heterochromatin. Chromosome Res. 2008, 16, 949–959. [Google Scholar] [CrossRef]
- Korenberg, J.R.; Rykowski, M.C. Human genome organization: Alu, lines, and the molecular structure of metaphase chromosome bands. Cell 1988, 53, 391–400. [Google Scholar] [CrossRef]
- Mills, R.E.; Bennett, E.A.; Iskow, R.C.; Luttig, C.T.; Tsui, C.; Pittard, W.S.; Devine, S.E. Recently mobilized transposons in the human and chimpanzee genomes. Am. J. Hum. Genet. 2006, 78, 671–679. [Google Scholar] [CrossRef]
- Lee, J.; Cordaux, R.; Han, K.; Wang, J.; Hedges, D.J.; Liang, P.; Batzer, M.A. Differentevolutionary fates of recently integrated human and chimpanzee LINE-1retrotransposons. Gene 2007, 390, 18–27. [Google Scholar] [CrossRef]
- Konkel, M.K.; Walker, J.A.; Batzer, M.A. LINEs and SINEs of primate evolution. Evol. Anthropol. Issues News Rev. 2010, 19, 236–249. [Google Scholar] [CrossRef] [PubMed]
- Ovchinnikov, I.; Rubin, A.; Swergold, G.D. Tracing the LINEs of human evolution. Proc. Natl. Acad. Sci. USA 2002, 99, 10522–10527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ovchinnikov, I.; Troxel, A.B.; Swergold, G.D. Genomic characterization of recent human LINE-1 insertions: Evidence supporting random insertion. Genome Res. 2001, 11, 2050–2058. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Thomas, J.; Touchman, J.; Blakesley, B.; Bouard, G.; Beckstrom-Sternberg, S.; McDowell, J.; Maskeri, B.; Thomas, P.; Zhao, S.; et al. Analysis of primate genomic variation reveals a repeat-driven expansion of the human genome. Genome Res. 2003, 13, 358–368. [Google Scholar] [CrossRef]
- Ohshima, K.; Hattori, M.; Yada, T.; Gojobori, T.; Sakaki, Y.; Okada, N. Whole-genome screening indicates a possible burst of formation of processed pseudogenes and Alu repeats by particular L1 subfamilies in ancestral primates. Genome Biol. 2003, 4, R74. [Google Scholar] [CrossRef] [PubMed]
- Kvikstad, E.M.; Makova, K.D. The (r)evolution of SINE versus LINE distributions in primate genomes: Sex chromosomes are important. Genome Res. 2010, 20, 600–613. [Google Scholar] [CrossRef]
- Gibbs, R.A.; Rogers, J.; Katze, M.G.; Bumgarner, R.; Weinstock, G.M.; Mardis, E.R.; Remington, K.A.; Strausberg, R.L.; Venter, J.C.; Wilson, R.K.; et al. Evolutionary and biomedical insights from the rhesus macaque genome. Science 2007, 316, 222–234. [Google Scholar] [CrossRef]
- Mathews, L.M.; Chi, S.Y.; Greenberg, N.; Ovchinnikov, I.; Swergold, G.D. Large differences between LINE-1 amplification rates in the human and chimpanzee lineages. Am. J. Hum. Genet. 2003, 72, 739–748. [Google Scholar] [CrossRef]
- Sookdeo, A.; Ruiz-García, M.; Schneider, H.; Boissinot, S. Contrasting rates of LINE-1 amplification among New World Primates of the Atelidae family. Cytogenet. Genome Res. 2018, 154, 217–228. [Google Scholar] [CrossRef]
- Tang, W.; Liang, P. Comparative genomics analysis reveals high levels of differential retrotransposition among primates from the hominidae and the cercopithecidae families. Genome Biol. Evol. 2019, 11, 3309–3325. [Google Scholar] [CrossRef]
- Lee, S.; Tang, W.; Liang, P.; Han, K. A comprehensive analysis of chimpanzee (Pan troglodytes)-specific LINE-1 retrotransposons. Gene 2019, 693, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Jeon, S.; Kim, S.; Oh, M.H.; Liang, P.; Tang, W.; Han, K. A comprehensive analysis of gorilla-specific LINE-1 retrotransposons. Genes Genom. 2021, 43, 1133–1141. [Google Scholar] [CrossRef] [PubMed]
- Rogers, R.L. Chromosomal rearrangements as barriers to genetic homogenization between archaic and modern humans. Mol. Biol. Evol. 2015, 32, 3064–3078. [Google Scholar] [CrossRef] [PubMed]
- Logsdon, G.A.; Vollger, M.R.; Hsieh, P.; Mao, Y.; Liskovykh, M.A.; Koren, S.; Eichler, E.E. The structure, function and evolution of a complete human chromosome 8. Nature 2021, 593, 101–107. [Google Scholar] [CrossRef]
- Nurk, S.; Koren, S.; Rhie, A.; Rautiainen, M.; Bzikadze, A.V.; Mikheenko, A.; Phillippy, A.M. The complete sequence of a human genome. Science, 2022; 376, 44–53. [Google Scholar]
- Meyer, T.J.; Held, U.; Nevonen, K.A.; Klawitter, S.; Pirzer, T.; Carbone, L.; Schumann, G.G. The flow of the gibbon LAVA element is facilitated by the LINE-1 retrotransposition machinery. Genome Biol. Evol. 2016, 8, 3209–3225. [Google Scholar] [CrossRef]
- Carbone, L.; Harris, R.A.; Mootnick, A.R.; Milosavljevic, A.; Martin, D.I.; Rocchi, M.; Capozzi, O.; Archidiacono, N.; Konkel, M.K.; Walker, J.A. Centromere remodeling in Hoolock leuconedys (Hylobatidae) by a new transposable element unique to the gibbons. Genome Biol. Evol. 2012, 4, 760–770. [Google Scholar] [CrossRef]
- Bulazel, K.; Metcalfe, C.; Ferreri, G.C.; Yu, J.; Eldridge, M.D.; O’Neill, R.J. Cytogenetic and molecular evaluation of centromere-associated DNA sequences from a marsupial (Macropodidae: Macropus rufogriseus) X chromosome. Genetics 2006, 172, 1129–1137. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milioto, V.; Perelman, P.L.; Paglia, L.L.; Biltueva, L.; Roelke, M.; Dumas, F. Mapping Retrotransposon LINE-1 Sequences into Two Cebidae Species and Homo sapiens Genomes and a Short Review on Primates. Genes 2022, 13, 1742. https://doi.org/10.3390/genes13101742
Milioto V, Perelman PL, Paglia LL, Biltueva L, Roelke M, Dumas F. Mapping Retrotransposon LINE-1 Sequences into Two Cebidae Species and Homo sapiens Genomes and a Short Review on Primates. Genes. 2022; 13(10):1742. https://doi.org/10.3390/genes13101742
Chicago/Turabian StyleMilioto, Vanessa, Polina L. Perelman, Laura La Paglia, Larisa Biltueva, Melody Roelke, and Francesca Dumas. 2022. "Mapping Retrotransposon LINE-1 Sequences into Two Cebidae Species and Homo sapiens Genomes and a Short Review on Primates" Genes 13, no. 10: 1742. https://doi.org/10.3390/genes13101742
APA StyleMilioto, V., Perelman, P. L., Paglia, L. L., Biltueva, L., Roelke, M., & Dumas, F. (2022). Mapping Retrotransposon LINE-1 Sequences into Two Cebidae Species and Homo sapiens Genomes and a Short Review on Primates. Genes, 13(10), 1742. https://doi.org/10.3390/genes13101742