The quality of poultry products depends on genotype, rearing system, and environment. The aim of this study was to investigate the effects of different rearing systems on meat quality, amino acid composition, and breast muscle transcriptome from Lueyang black-bone chickens. Lueyang black-bone chickens
[...] Read more.
The quality of poultry products depends on genotype, rearing system, and environment. The aim of this study was to investigate the effects of different rearing systems on meat quality, amino acid composition, and breast muscle transcriptome from Lueyang black-bone chickens. Lueyang black-bone chickens (
n = 900) were randomly divided into three groups (cage, flat-net, and free-range groups), with three replicates per group (100 chickens per replicate). At 16 weeks, a total of 36 healthy chickens (six males and six females per group) were collected, and their breast muscles were sampled to detect meat quality parameters, amino acid composition, and fatty acid contents. Furthermore, breast muscles from six random hens in each group were used for RNA-seq analysis. The results revealed that the values of pH, shear force, inosine monophosphate (IMP), palmitic acid, and linoleic acid in the free-range group were significantly higher than those in the caged group (
p < 0.05). Fat content in the free-range group was significantly lower than in the caged and flat-net groups (
p < 0.05). Glutamate (Glu) levels, the amino acid crucial for the umami taste, was significantly higher in the free-range group than in the caged group (
p < 0.05). Meanwhile, there was no significant difference between the free-range and flat-net groups (
p > 0.05). The breast muscle transcriptome results showed that there were 291, 131, and 387 differently expressed genes (DEGs) among the three comparison groups (caged vs. free-range, flat-net vs. caged, and flat-net vs. free-range, respectively) that were mainly related to muscle development and amino acid metabolism pathways. To validate the accuracy of the transcriptome data, eight genes
(GOS2,
ASNS,
NMRK2,
GADL1,
SMTNL2,
SLC7A5,
AMPD1, and
GLUL) which relate to fat deposition, skeletal muscle function, and flavor formation were selected for Real-time Quantitative PCR (RT-qPCR) verification. In conclusion, these results suggested that rearing systems significantly influenced the meat quality and gene expression of Lueyang black-bone chickens. All the data proved that free-range and flat-net systems may provide better flavor to consumers by affecting the deposition of flavor substances and the expression of related genes. These findings will provide a valuable theoretical basis for the rearing system selection in the poultry industry.
Full article