Time-Varying Gene Expression Network Analysis Reveals Conserved Transition States in Hematopoietic Differentiation between Human and Mouse
Abstract
:1. Introduction
2. Materials and Methods
2.1. scRNA-seq Data from Hematopoietic Stem and Progenitor Cells (HSPCs) of Human and Mouse
2.2. Preprocessing of Gene Expression Data
2.3. Selection of the Most Relevant Genes
2.4. Estimating Time-Varying Graphs with the LOGGLE Model
2.5. Local Group Graphical Lasso Estimate
2.6. Model Fitting and Parameter Adjustment
2.7. Global Network Properties
2.8. Network Similarity Analysis
2.9. Centrality Analysis
2.10. Characterization of a Global Network with Concepts of Entropy and Energy
3. Results
3.1. scRNA-seq Identified a Comprehensive and Conserved List of HSPC Types
3.2. Differentiation Trajectories in Human and Mouse Hematopoiesis
3.3. Evolution of Time-Varying Network Graphs during Hematopoietic Differentiation
3.4. Estimated Time-Varying Networks Were Robust to the Choice of Pseudo-Time Construction Tool
3.5. Structural Measures of Transcription Regulation Networks of Genes Involved in Hematopoiesis
3.6. Hub Genes Accompanying the Differentiation in Hematopoiesis
3.7. Conservation of Time-Varying Networks between Human and Mouse
3.8. Conserved Networks between Human and Mouse
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, X.; Gao, S.; Wu, Z.; Kajigaya, S.; Feng, X.; Liu, Q.; Townsley, D.M.; Cooper, J.; Chen, J.; Keyvanfar, K.; et al. Single-cell RNA-seq reveals a distinct transcriptome signature of aneuploid hematopoietic cells. Blood 2017, 130, 2762–2773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pratapa, A.; Jalihal, A.P.; Law, J.N.; Bharadwaj, A.; Murali, T.M. Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic data. Nat. Methods 2020, 17, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Liu, X.; Zhang, A.; Jiang, Z.; Chen, L.; Zhang, X. Genome-wide dynamic network analysis reveals a critical transition state of flower development in Arabidopsis. BMC Plant Biol. 2019, 19, 11–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, J.; Sharon, N.; Bar-Joseph, Z. Temporal modelling using single-cell transcriptomics. Nat. Rev. Genet. 2022, 23, 355–368. [Google Scholar] [CrossRef] [PubMed]
- Jo, K.; Sung, I.; Lee, D.; Jang, H.; Kim, S. Inferring transcriptomic cell states and transitions only from time series transcriptome data. Sci. Rep. 2021, 11, 12566–12578. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhang, S.; Feng, X.; Wu, Z.; Dubois, W.; Thovarai, V.; Ahluwalia, S.; Gao, G.; Chen, J.; Peat, T.; et al. Conventional co-housing modulates murine gut microbiota and hematopoietic gene expression. Int. J. Mol. Sci. 2020, 21, 6143. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Gao, Z.; Diamond, C.; Kajigaya, S.; Chen, J.; Shi, R.; Palmer, C.; Hsu, A.P.; Calvo, K.R.; Hickstein, D.D.; et al. Sequencing of RNA in single cells reveals a distinct transcriptome signature of hematopoiesis in GATA2 deficiency. Blood Adv. 2020, 4, 2656–2670. [Google Scholar] [CrossRef]
- Hallac, D.; Park, Y.; Boyd, S.; Leskovec, J. Network inference via the time-varying graphical lasso. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada, 4 August 2017; pp. 205–213. [Google Scholar]
- Gao, S.; Wu, Z.; Feng, X.; Kajigaya, S.; Wang, X.; Young, N.S. Comprehensive network modeling from single cell RNA sequencing of human and mouse reveals well conserved transcription regulation of hematopoiesis. BMC Genom. 2020, 21 (Suppl. 11), 849–863. [Google Scholar] [CrossRef]
- Gao, S.; Wu, Z.; Kannan, J.; Mathews, L.; Feng, X.; Kajigaya, S.; Young, N.S. Comparative transcriptomic analysis of the hematopoietic system between human and mouse by single cell RNA sequencing. Cells 2021, 10, 973. [Google Scholar] [CrossRef]
- Ahmed, A.; Xing, E.P. Recovering time-varying networks of dependencies in social and biological studies. Proc. Natl. Acad. Sci. USA 2009, 106, 11878–11883. [Google Scholar] [CrossRef]
- Wang, H.; Wu, Y.; Fang, R.; Sa, J.; Li, Z.; Cao, H.; Cui, Y. Time-varying gene network analysis of human prefrontal cortex development. Front. Genet. 2020, 11, 574543–574559. [Google Scholar] [CrossRef]
- Xu, T.; Ou-Yang, L.; Yan, H.; Zhang, X.F. Time-varying differential network analysis for revealing network rewiring over cancer progression. IEEE/ACM Trans. Comput. Biol. Bioinform. 2021, 18, 1632–1642. [Google Scholar] [CrossRef]
- Yang, J.; Peng, J. Estimating time-varying graphical models. Comput. Graph. Stat. 2020, 29, 191–202. [Google Scholar] [CrossRef] [Green Version]
- Butler, A.; Hoffman, P.; Smibert, P.; Papalexi, E.; Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 2018, 36, 411–420. [Google Scholar] [CrossRef]
- Trapnell, C.; Cacchiarelli, D.; Grimsby, J.; Pokharel, P.; Li, S.; Morse, M.; Lennon, N.J.; Livak, K.J.; Mikkelsen, T.S.; Rinn, J.L. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 2014, 32, 381–386. [Google Scholar] [CrossRef] [Green Version]
- Hamey, F.K.; Nestorowa, S.; Kinston, S.J.; Kent, D.G.; Wilson, N.K.; Göttgens, B. Reconstructing blood stem cell regulatory network models from single-cell molecular profiles. Proc. Natl. Acad. Sci. USA 2017, 114, 5822–5829. [Google Scholar] [CrossRef] [Green Version]
- De Graaf, C.A.; Choi, J.; Baldwin, T.M.; Bolden, J.E.; Fairfax, K.A.; Robinson, A.J.; Christine Biben, C.; Morgan, C.; Ramsay, K.; Ng, A.P.; et al. Haemopedia: An expression atlas of murine hematopoietic cells. Stem Cell Rep. 2016, 7, 571–582. [Google Scholar] [CrossRef] [Green Version]
- Kuntal, B.K.; Dutta, A.; Mande, S.S. CompNet: A GUI based tool for comparison of multiple biological interaction networks. BMC Bioinform. 2016, 17, 185–195. [Google Scholar] [CrossRef] [Green Version]
- Hirsch, J.E. An index to quantify an individual’s scientific research output. Proc. Natl. Acad. Sci. USA 2005, 102, 16569–16572. [Google Scholar] [CrossRef] [Green Version]
- Kajdanowicz, T.; Morzy, M. Using graph and vertex entropy to compare empirical graphs with theoretical graph models. Entropy 2016, 18, 320. [Google Scholar] [CrossRef]
- Gutman, I. The energy of a graph: Old and new results. In Algebraic Combinatorics and Applications; Springer: Berlin/Heidelberg, Germany, 2001; pp. 196–211. [Google Scholar]
- Alikhani, S.; Ghanbari, N. Randic energy of specific graphs. Appl. Math. Comput. 2015, 269, 722–730. [Google Scholar] [CrossRef] [Green Version]
- Zhou, P.; Wang, S.; Li, T.; Nie, Q. Dissecting transition cells from single-cell transcriptome data through multiscale stochastic dynamics. Nat. Commun. 2021, 12, 5609–5623. [Google Scholar] [CrossRef]
- Alon, U. Network motifs: Theory and experimental approaches. Nat. Rev. Genet. 2007, 8, 450–461. [Google Scholar] [CrossRef]
- Saelens, W.; Cannoodt, R.; Todorov, H.; Saeys, Y. A comparison of single-cell trajectory inference methods. Nat. Biotechnol. 2019, 37, 547–554. [Google Scholar] [CrossRef]
- Kelly, S.; Davide, R.; Russell, B.; Fletcher, D.D.; John, N.; Nir, Y.; Elizabeth, P.; Sandrine, D. Slingshot: Cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genom. 2018, 19, 477. [Google Scholar]
- Gerstein, M.B.; Kundaje, A.; Hariharan, M.; Landt, S.G.; Yan, K.-K.; Cheng, C.; Mu, X.J.; Khurana, E.; Rozowsky, J.; Alexander, R.; et al. Architecture of the human regulatory network derived from ENCODE data. Nature 2012, 489, 91–100. [Google Scholar] [CrossRef] [Green Version]
- Estrada, E.; Benzi, M. What is the meaning of the graph energy after all? Discret. Appl. Math. 2017, 230, 71–77. [Google Scholar] [CrossRef] [Green Version]
- Kocabas, F.; Zheng, J.; Thet, S.; Copeland, N.G.; Jenkins, N.A.; DeBerardinis, R.J.; Zhang, C.; Sadek, H.A. Meis1 regulates the metabolic phenotype and oxidant defense of hematopoietic stem cells. Blood 2012, 120, 4963–4972. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, R.; Ohneda, K.; Yamamoto, M.; Philipsen, S. GATA1 function, a paradigm for transcription factors in hematopoiesis. Mol. Cell. Biol. 2005, 25, 1215–1227. [Google Scholar] [CrossRef] [Green Version]
- Jo, J.; Baek, J.; Lee, S.; Kim, D.; Kang, M.; Hwang, S.J. Edge representation learning with hypergraphs. Adv. Neural. Inf. Process. Syst. 2021, 34, 7534–7546. [Google Scholar]
- Beisser, D.; Klau, G.W.; Dandekar, T.; Müller, T.; Marcus, T.; Dittrich, M.T. BioNet: An R-Package for the functional analysis of biological networks. Bioinformatics 2010, 26, 1129–1130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, C.; Turck, C.W.; Kurosaki, T.; Chan, A.C. BLNK: A central linker protein in B cell activation. Immunity 1998, 9, 93–103. [Google Scholar] [CrossRef]
- Watts, D.J.; Strogatz, S.H. Collective dynamics of ‘small-world’ networks. Nature 1998, 393, 440–442. [Google Scholar] [CrossRef] [PubMed]
- Davies, P.C.; Demetrius, L.; Tuszynski, J.A. Cancer as a dynamical phase transition. Theor. Biol. Med. Model. 2011, 8, 30–45. [Google Scholar] [CrossRef] [Green Version]
- Aihara, K.; Liu, R.; Koizumi, K.; Liu, X.; Chen, L. Dynamical network biomarkers: Theory and applications. Gene 2022, 808, 145997–146006. [Google Scholar] [CrossRef]
- Wang, J.; Wilson, R.C.; Hancock, E.R. Minimising entropy changes in dynamic network evolution. In Graph-Based Representations in Pattern Recognition; Foggia, P., Liu, C.L., Vento, M., Eds.; Springer: Cham, Switzerland, 2017; pp. 255–265. [Google Scholar]
- Koolen, J.H.; Moulton, V. Maximal energy graphs. Adv. Appl. Math. 2001, 26, 47–52. [Google Scholar] [CrossRef] [Green Version]
- Gutman, I.; Zhou, B. Laplacian energy of a graph. Linear Algebra Appl. 2006, 414, 29–37. [Google Scholar] [CrossRef]
- Cvetkovic, D.; Grout, J. Graphs with extremal energy should have a small number of distinct eigenvalues. Bulletin 2007, 134, 43–57. [Google Scholar]
- Chung, F.R.K. CBMS Regional Conference Series in Mathematics; University of Pennsylvania: Philadelphia, PA, USA, 1997; Volume 92. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, S.; Chen, Y.; Wu, Z.; Kajigaya, S.; Wang, X.; Young, N.S. Time-Varying Gene Expression Network Analysis Reveals Conserved Transition States in Hematopoietic Differentiation between Human and Mouse. Genes 2022, 13, 1890. https://doi.org/10.3390/genes13101890
Gao S, Chen Y, Wu Z, Kajigaya S, Wang X, Young NS. Time-Varying Gene Expression Network Analysis Reveals Conserved Transition States in Hematopoietic Differentiation between Human and Mouse. Genes. 2022; 13(10):1890. https://doi.org/10.3390/genes13101890
Chicago/Turabian StyleGao, Shouguo, Ye Chen, Zhijie Wu, Sachiko Kajigaya, Xujing Wang, and Neal S. Young. 2022. "Time-Varying Gene Expression Network Analysis Reveals Conserved Transition States in Hematopoietic Differentiation between Human and Mouse" Genes 13, no. 10: 1890. https://doi.org/10.3390/genes13101890
APA StyleGao, S., Chen, Y., Wu, Z., Kajigaya, S., Wang, X., & Young, N. S. (2022). Time-Varying Gene Expression Network Analysis Reveals Conserved Transition States in Hematopoietic Differentiation between Human and Mouse. Genes, 13(10), 1890. https://doi.org/10.3390/genes13101890