Combination of Serum and Plasma Biomarkers Could Improve Prediction Performance for Alzheimer’s Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Serum and Plasma Data Collection
2.2. Assay
2.3. 10 Times Repeated 5-Fold Cross-Validation
2.4. Performance Measurement
2.5. Feature Selection
3. Results
3.1. Recursive Feature Elimination
3.2. Serum Only vs. Plasma_Only vs. Serum + Plasma vs. Serum + Plasma + Feature Elimination
3.3. Serum + Plasma vs. Serum Only + FeatureElimination vs. Plasma Only + Feature Elimination
3.4. Age as Covariate
4. Discussion
4.1. Challenges of Integrating the Serum and Plasma Data
4.2. Insignificant Variables Selected in the Final Serum and Plasma Mixture
4.3. Limitations
4.3.1. Small Sample Size
4.3.2. Overfitting Measurement
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alzheimer’s Association. 2022 Alzheimer’s Disease Facts and Figures. Available online: https://www.alz.org/alzheimers-dementia/facts-figures (accessed on 25 August 2022).
- Nguyen, T.T.; Ta, Q.T.H.; Nguyen, T.K.O.; Nguyen, T.T.D.; Vo, V.G. Role of Body-Fluid Biomarkers in Alzheimer’s Disease Diagnosis. Diagnostics 2020, 10, 326. [Google Scholar] [CrossRef] [PubMed]
- Zetterberg, H.; Burnham, S.C. Blood-based molecular biomarkers for Alzheimer’s disease. Mol. Brain 2019, 12, 26. [Google Scholar] [CrossRef] [PubMed]
- Hampel, H.; O’Bryant, S.E.; Molinuevo, J.L.; Zetterberg, H.; Masters, C.L.; Lista, S.; Kiddle, S.J.; Batrla, R.; Blennow, K. Blood-based biomarkers for Alzheimer disease: Mapping the road to the clinic. Nat. Rev. Neurol. 2018, 14, 639–652. [Google Scholar] [CrossRef] [PubMed]
- Mattsson-Carlgren, N.; Leuzy, A.; Janelidze, S.; Palmqvist, S.; Stomrud, E.; Strandberg, O.; Smith, R.; Hansson, O. The implications of different approaches to define AT(N) in Alzheimer disease. J. Neurol. 2020, 94, e2233–e2244. [Google Scholar] [CrossRef]
- O’Bryant, S.E.; Zhang, F.; Silverman, W.; Lee, J.H.; Krinsky-McHale, S.J.; Pang, D.; Hall, J.; Schupf, N. Proteomic profiles of incident mild cognitive impairment and Alzheimer’s disease among adults with Down syndrome. Alzheimer’s Dement. 2020, 12, e12033. [Google Scholar] [CrossRef]
- O’Bryant, S.E.; Zhang, F.; Johnson, L.A.; Hall, J.; Edwards, M.; Grammas, P.; Oh, E.; Lyketsos, C.G.; Rissman, R.A. A Precision Medicine Model for Targeted NSAID Therapy in Alzheimer’s Disease. J. Alzheimer’s Dis. 2018, 66, 97–104. [Google Scholar] [CrossRef]
- O’Bryant, S.E.; Xiao, G.; Zhang, F.; Edwards, M.; German, D.C.; Yin, X.; Como, T.; Reisch, J.; Huebinger, R.M.; Graff-Radford, N.; et al. Validation of a serum screen for Alzheimer’s disease across assay platforms, species, and tissues. J. Alzheimer’s Dis. 2014, 42, 1325–1335. [Google Scholar] [CrossRef]
- O’Bryant, S.E.; Xiao, G.; Edwards, M.; Devous, M.; Gupta, V.B.; Martins, R.; Zhang, F.; Barber, R.; Texas Alzheimer’s, R.; Care, C. Biomarkers of Alzheimer’s disease among Mexican Americans. J. Alzheimer’s Dis. 2013, 34, 841–849. [Google Scholar] [CrossRef]
- O’Bryant, S.E.; Xiao, G.; Barber, R.; Reisch, J.; Hall, J.; Cullum, C.M.; Doody, R.; Fairchild, T.; Adams, P.; Wilhelmsen, K.; et al. A blood-based algorithm for the detection of Alzheimer’s disease. Dement. Geriatr. Cogn. Disord. 2011, 32, 55–62. [Google Scholar] [CrossRef]
- O’Bryant, S.E.; Edwards, M.; Johnson, L.; Hall, J.; Villarreal, A.E.; Britton, G.B.; Quiceno, M.; Cullum, C.M.; Graff-Radford, N.R. A blood screening test for Alzheimer’s disease. Alzheimer’s Dement. 2016, 3, 83–90. [Google Scholar] [CrossRef] [Green Version]
- Doecke, J.D.; Laws, S.M.; Faux, N.G.; Wilson, W.; Burnham, S.C.; Lam, C.P.; Mondal, A.; Bedo, J.; Bush, A.I.; Brown, B.; et al. Blood-based protein biomarkers for diagnosis of Alzheimer disease. Arch. Neurol. 2012, 69, 1318–1325. [Google Scholar] [CrossRef] [PubMed]
- Ray, S.; Britschgi, M.; Herbert, C.; Takeda-Uchimura, Y.; Boxer, A.; Blennow, K.; Friedman, L.F.; Galasko, D.R.; Jutel, M.; Karydas, A.; et al. Classification and prediction of clinical Alzheimer’s diagnosis based on plasma signaling proteins. Nat. Med. 2007, 13, 1359–1362. [Google Scholar] [CrossRef] [PubMed]
- Nichols, J.A.; Herbert Chan, H.W.; Baker, M.A.B. Machine learning: Applications of artificial intelligence to imaging and diagnosis. Biophys. Rev. 2019, 11, 111–118. [Google Scholar] [CrossRef]
- Zhang, F.; Kaufman, H.L.; Deng, Y.; Drabier, R. Recursive SVM biomarker selection for early detection of breast cancer in peripheral blood. BMC Med. Genom. 2013, 6 (Suppl. 1), S4. [Google Scholar] [CrossRef] [PubMed]
- McKhann, G.; Drachman, D.; Folstein, M.; Katzman, R.; Price, D.; Stadlan, E.M. Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 1984, 34, 939–944. [Google Scholar] [CrossRef] [PubMed]
- Cummings, J. Alzheimer’s disease diagnostic criteria: Practical applications. Alzheimer’s Res. 2012, 4, 35. [Google Scholar] [CrossRef] [PubMed]
- Blacker, D.; Albert, M.S.; Bassett, S.S.; Go, R.C.; Harrell, L.E.; Folstein, M.F. Reliability and validity of NINCDS-ADRDA criteria for Alzheimer’s disease. The National Institute of Mental Health Genetics Initiative. Arch. Neurol. 1994, 51, 1198–1204. [Google Scholar] [CrossRef]
- Zhang, F.; Petersen, M.; Johnson, L.; Hall, J.; O’Bryant, S.E. Recursive Support Vector Machine Biomarker Selection for Alzheimer’s Disease. J. Alzheimer’s Dis. 2021, 79, 1691–1700. [Google Scholar] [CrossRef]
- Kishimoto, T. IL-6: From its discovery to clinical applications. Int. Immunol. 2010, 22, 347–352. [Google Scholar] [CrossRef]
- Cojocaru, I.M.; Cojocaru, M.; Miu, G.; Sapira, V. Study of interleukin-6 production in Alzheimer’s disease. Rom. J. Intern. Med. 2011, 49, 55–58. [Google Scholar]
- Lyra, E.S.N.M.; Goncalves, R.A.; Pascoal, T.A.; Lima-Filho, R.A.S.; Resende, E.P.F.; Vieira, E.L.M.; Teixeira, A.L.; de Souza, L.C.; Peny, J.A.; Fortuna, J.T.S.; et al. Pro-inflammatory interleukin-6 signaling links cognitive impairments and peripheral metabolic alterations in Alzheimer’s disease. Transl. Psychiatry 2021, 11, 251. [Google Scholar] [CrossRef] [PubMed]
- Koyama, A.; O’Brien, J.; Weuve, J.; Blacker, D.; Metti, A.L.; Yaffe, K. The role of peripheral inflammatory markers in dementia and Alzheimer’s disease: A meta-analysis. J. Gerontol. A Biol. Sci. Med. Sci. 2013, 68, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Rakic, S.; Hung, Y.M.A.; Smith, M.; So, D.; Tayler, H.M.; Varney, W.; Wild, J.; Harris, S.; Holmes, C.; Love, S.; et al. Systemic infection modifies the neuroinflammatory response in late stage Alzheimer’s disease. Acta Neuropathol. Commun. 2018, 6, 88. [Google Scholar] [CrossRef] [PubMed]
- Diniz, B.S.; Teixeira, A.L.; Ojopi, E.B.; Talib, L.L.; Mendonca, V.A.; Gattaz, W.F.; Forlenza, O.V. Higher serum sTNFR1 level predicts conversion from mild cognitive impairment to Alzheimer’s disease. J. Alzheimer’s Dis. 2010, 22, 1305–1311. [Google Scholar] [CrossRef]
- Hu, W.T.; Ozturk, T.; Kollhoff, A.; Wharton, W.; Christina Howell, J.; Weiner, M.; Aisen, P.; Petersen, R.; Jack, C.R.; Jagust, W.; et al. Higher CSF sTNFR1-related proteins associate with better prognosis in very early Alzheimer’s disease. Nat. Commun. 2021, 12, 4001. [Google Scholar] [CrossRef]
- Videm, V.; Albrigtsen, M. Soluble ICAM-1 and VCAM-1 as markers of endothelial activation. Scand. J. Immunol. 2008, 67, 523–531. [Google Scholar] [CrossRef]
- Huang, C.W.; Tsai, M.H.; Chen, N.C.; Chen, W.H.; Lu, Y.T.; Lui, C.C.; Chang, Y.T.; Chang, W.N.; Chang, A.Y.; Chang, C.C. Clinical significance of circulating vascular cell adhesion molecule-1 to white matter disintegrity in Alzheimer’s dementia. Thromb. Haemost. 2015, 114, 1230–1240. [Google Scholar] [CrossRef]
- Zajkowska, M.; Mroczko, B. From Allergy to Cancer-Clinical Usefulness of Eotaxins. Cancers 2021, 13, 128. [Google Scholar] [CrossRef]
- Huber, A.K.; Giles, D.A.; Segal, B.M.; Irani, D.N. An emerging role for eotaxins in neurodegenerative disease. Clin. Immunol. 2018, 189, 29–33. [Google Scholar] [CrossRef]
- Soares, H.D.; Potter, W.Z.; Pickering, E.; Kuhn, M.; Immermann, F.W.; Shera, D.M.; Ferm, M.; Dean, R.A.; Simon, A.J.; Swenson, F.; et al. Plasma biomarkers associated with the apolipoprotein E genotype and Alzheimer disease. Arch. Neurol. 2012, 69, 1310–1317. [Google Scholar] [CrossRef]
- Gupta, V.B.; Hone, E.; Pedrini, S.; Doecke, J.; O’Bryant, S.; James, I.; Bush, A.I.; Rowe, C.C.; Villemagne, V.L.; Ames, D.; et al. Altered levels of blood proteins in Alzheimer’s disease longitudinal study: Results from Australian Imaging Biomarkers Lifestyle Study of Ageing cohort. Alzheimer’s Dement. 2017, 8, 60–72. [Google Scholar] [CrossRef] [PubMed]
- Baird, A.L.; Westwood, S.; Lovestone, S. Blood-Based Proteomic Biomarkers of Alzheimer’s Disease Pathology. Front. Neurol. 2015, 6, 236. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Lee, H.K.; Moo, L.; Hanlon, E.; Stein, T.; Xia, W. Common proteomic profiles of induced pluripotent stem cell-derived three-dimensional neurons and brain tissue from Alzheimer patients. J. Proteom. 2018, 182, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Mattson, M.P. Pathways towards and away from Alzheimer’s disease. Nature 2004, 430, 631–639. [Google Scholar] [CrossRef]
- O’Bryant, S.E.; Petersen, M.; Hall, J.; Large, S.; Johnson, L.A.; Team, H.-H.S. Plasma Biomarkers of Alzheimer’s Disease Are Associated with Physical Functioning Outcomes Among Cognitively Normal Adults in the Multi-Ethnic HABS-HD Cohort. J. Gerontol. A Biol. Sci. Med. Sci. 2022, glac169. [Google Scholar] [CrossRef]
- O’Bryant, S.E.; Petersen, M.; Hall, J.; Johnson, L. APOEepsilon4 Genotype Is Related to Brain Amyloid Among Mexican Americans in the HABS-HD Study. Front. Neurol. 2022, 13, 834685. [Google Scholar] [CrossRef]
- O’Bryant, S.E.; Petersen, M.; Hall, J.; Johnson, L.; Team, H.-H.S. Metabolic Factors Are Related to Brain Amyloid among Mexican Americans: A HABS-HD Study. J. Alzheimer’s Dis. 2022, 86, 1745–1750. [Google Scholar] [CrossRef]
- O’Bryant, S.E.; Zhang, F.; Petersen, M.; Hall, J.R.; Johnson, L.A.; Yaffe, K.; Braskie, M.; Vig, R.; Toga, A.W.; Rissman, R.A.; et al. Proteomic Profiles of Neurodegeneration Among Mexican Americans and Non-Hispanic Whites in the HABS-HD Study. J. Alzheimer’s Dis. 2022, 86, 1243–1254. [Google Scholar] [CrossRef]
AD Mean (SD) | Normal Control Mean (SD) | p-Value | |
---|---|---|---|
N | 79 | 65 | |
Age | 76.14 (8.79) | 71.57 (8.91) | 0.002 |
Education | 14.61 (3.07) | 15.72 (2.63) | 0.020 |
Sex (% M) | 30.4 | 32.3 | 0.806 |
Protein | GeneID | NC | AD | Direction | p-Value |
---|---|---|---|---|---|
Serum_IL7 | 3574 | 5.26 | 10.15 | up | 7.23 × 10−15 |
Serum_IL6 | 3569 | 2.19 | 4.40 | up | 0.001 |
Plasma_TPO | 7173 | 424.31 | 495.23 | up | 0.026 |
Plasma_Eotaxin3 | 10,344 | 2.06 | 1.43 | down | 0.036 |
Plasma_sTNFR1 | 7132 | 3261.06 | 3468.76 | up | 0.352 |
Plasma_IL6 | 3569 | 4.43 | 5.12 | up | 0.413 |
Serum_sVCAM1 | 7412 | 491.83 | 508.53 | up | 0.426 |
Serum_sTNFR1 | 7132 | 3988.99 | 3848.72 | down | 0.542 |
Plasma_sICAM1 | 3383 | 310.35 | 318.40 | up | 0.545 |
Plasma_SAA | 6287 | 8345.07 | 10,110.06 | up | 0.673 |
Serum | Plasma | Serum + Plasma | Serum + Plasma + Feature Elimination | |||||
---|---|---|---|---|---|---|---|---|
Predicted | AD | NC | AD | NC | AD | NC | AD | NC |
AD mean ± sd | 64 63.88 ± 0.34 | 4 4.46 ± 1.22 | 61 60.66 ± 1.49 | 8 8.05 ± 1.97 | 64 64.00 ± 0.00 | 3 2.57 ± 1.34 | 64 64.00 ± 0.03 | 2 1.70 ± 1.01 |
NC mean ± sd | 0 0.12 ± 0.34 | 48 47.54 ± 1.22 | 3 3.34 ± 1.49 | 44 43.95 ± 1.97 | 0 0.00 ± 0.00 | 49 49.43 ± 1.34 | 0 0.00 ± 0.03 | 50 50.30 ± 1.01 |
Precision/PPV | 94.12% | 88.41% | 95.52% | 96.97% | ||||
Accuracy | 96.55% | 90.52% | 97.41% | 98.28% | ||||
Sensitivity | 100.00% | 95.31% | 100.00% | 100.00% | ||||
Specificity | 92.31% | 84.62% | 94.23% | 96.15% | ||||
NPV | 100.00% | 93.62% | 100.00% | 100.00% | ||||
AUC | 99.55% | 97.25% | 99.98% | 99.16% |
Serum | Plasma | Serum + Plasma | Serum + Plasma + Feature Elimination | |||||
---|---|---|---|---|---|---|---|---|
Predicted | AD | NC | AD | NC | AD | NC | AD | NC |
AD mean ± sd | 14 14.37 ± 0.86 | 3 3.30 ± 1.49 | 12 11.74 ± 1.57 | 7 6.64 ± 1.71 | 15 14.54 ± 0.64 | 4 3.71 ± 1.54 | 15 14.57 ± 0.71 | 3 2.52 ± 1.27 |
NC mean ± sd | 1 0.63 ± 0.86 | 10 9.70 ± 1.49 | 3 3.26 ± 1.57 | 6 6.36 ± 1.71 | 0 0.46 ± 0.64 | 9 9.29 ± 1.54 | 0 0.43 ± 0.71 | 10 10.48 ± 1.27 |
Precision/PPV | 82.35% | 63.16% | 78.95% | 83.33% | ||||
Accuracy | 85.71% | 64.29% | 85.71% | 89.29% | ||||
Sensitivity | 93.33% | 80.00% | 100.00% | 100.00% | ||||
Specificity | 76.92% | 46.15% | 69.23% | 76.92% | ||||
NPV | 90.91% | 66.67% | 100.00% | 100.00% | ||||
AUC | 92.78% | 70.91% | 93.96% | 95.99% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, F.; Petersen, M.; Johnson, L.; Hall, J.; O’Bryant, S.E. Combination of Serum and Plasma Biomarkers Could Improve Prediction Performance for Alzheimer’s Disease. Genes 2022, 13, 1738. https://doi.org/10.3390/genes13101738
Zhang F, Petersen M, Johnson L, Hall J, O’Bryant SE. Combination of Serum and Plasma Biomarkers Could Improve Prediction Performance for Alzheimer’s Disease. Genes. 2022; 13(10):1738. https://doi.org/10.3390/genes13101738
Chicago/Turabian StyleZhang, Fan, Melissa Petersen, Leigh Johnson, James Hall, and Sid E. O’Bryant. 2022. "Combination of Serum and Plasma Biomarkers Could Improve Prediction Performance for Alzheimer’s Disease" Genes 13, no. 10: 1738. https://doi.org/10.3390/genes13101738
APA StyleZhang, F., Petersen, M., Johnson, L., Hall, J., & O’Bryant, S. E. (2022). Combination of Serum and Plasma Biomarkers Could Improve Prediction Performance for Alzheimer’s Disease. Genes, 13(10), 1738. https://doi.org/10.3390/genes13101738