Interactions between Environmental Factors and Glutathione S-Transferase (GST) Genes with Respect to Detectable Blood Aluminum Concentrations in Jamaican Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Assessment of Al Exposure
2.3. Statistical and Genetic Analysis
3. Results
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Exley, C. A biogeochemical cycle for aluminium? J. Inorg. Biochem. 2003, 97, 1–7. [Google Scholar] [CrossRef]
- Igbokwe, I.O.; Igwenagu, E.; Igbokwe, N.A. Aluminium toxicosis: A review of toxic actions and effects. Interdiscip. Toxicol. 2019, 12, 45–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haynes, W.M. Abundance of Elements in the Earth’s Crust and in the Sea, 95th ed.; CRC Press: Boca Raton, FL, USA, 2016; pp. 14–17. [Google Scholar]
- Exley, C. Aluminum in Biological Systems. In Encyclopedia of Metalloproteins; Kretsinger, R.H., Uversky, V.N., Permyakov, E.A., Eds.; Springer: New York, NY, USA, 2013; pp. 33–34. [Google Scholar]
- Becaria, A.; Campbell, A.; Bondy, S.C. Aluminum as a toxicant. Toxicol. Ind. Health 2002, 18, 309–320. [Google Scholar] [CrossRef]
- Kongerud, J.; Søyseth, V. Respiratory disorders in aluminum smelter workers. J. Occup. Environ. Med. 2014, 56, S60–S70. [Google Scholar] [CrossRef] [Green Version]
- Taiwo, O.A.; Sircar, K.D.; Slade, M.D.; Cantley, L.F.; Vegso, S.J.; Rabinowitz, P.M.; Fiellin, M.G.; Cullen, M.R. Incidence of asthma among aluminum workers. J. Occup. Environ. Med. 2006, 48, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Chappard, D.; Bizot, P.; Mabilleau, G.; Hubert, L. Aluminum and bone: Review of new clinical circumstances associated with Al(3+) deposition in the calcified matrix of bone. Morphologie 2016, 100, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Klein, G.L. Aluminum toxicity to bone: A multisystem effect? Osteoporos. Sarcopenia 2019, 5, 2–5. [Google Scholar] [CrossRef]
- Fewtrell, M.S.; Edmonds, C.J.; Isaacs, E.; Bishop, N.J.; Lucas, A. Aluminium exposure from parenteral nutrition in preterm infants and later health outcomes during childhood and adolescence. Proc. Nutr. Soc. 2011, 70, 299–304. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, Y.; Miao, L.; Wang, Y.; Liu, Y.; Yan, X.; Cui, X.; Li, H. Immunotoxicity of aluminum. Chemosphere 2014, 104, 1–6. [Google Scholar] [CrossRef]
- Zuo, Y.; Lu, X.; Wang, X.; Sooranna, S.R.; Tao, L.; Chen, S.; Li, H.; Huang, D.; Nai, G.; Chen, H.; et al. High-Dose Aluminum Exposure Further Alerts Immune Phenotype in Aplastic Anemia Patients. Biol. Trace Elem. Res. 2021, 199, 1743–1753. [Google Scholar] [CrossRef]
- Troisi, J.; Giugliano, L.; Sarno, L.; Landolfi, A.; Richards, S.; Symes, S.; Colucci, A.; Maruotti, G.; Adair, D.; Guida, M.; et al. Serum metallome in pregnant women and the relationship with congenital malformations of the central nervous system: A case-control study. BMC Pregnancy Childbirth 2019, 19, 471. [Google Scholar] [CrossRef] [PubMed]
- Mouro, V.G.S.; Menezes, T.P.; Lima, G.D.A.; Domingues, R.R.; Souza, A.C.F.; Oliveira, J.A.; Matta, S.L.P.; Machado-Neves, M. How Bad Is Aluminum Exposure to Reproductive Parameters in Rats? Biol. Trace Elem. Res. 2018, 183, 314–324. [Google Scholar] [CrossRef] [PubMed]
- Yokel, R.A. Aluminum reproductive toxicity: A summary and interpretation of scientific reports. Crit. Rev. Toxicol. 2020, 50, 551–593. [Google Scholar] [CrossRef] [PubMed]
- Exley, C.; Clarkson, E. Aluminium in human brain tissue from donors without neurodegenerative disease: A comparison with Alzheimer’s disease, multiple sclerosis and autism. Sci. Rep. 2020, 10, 7770. [Google Scholar] [CrossRef] [PubMed]
- Kawahara, M.; Kato-Negishi, M. Link between Aluminum and the Pathogenesis of Alzheimer’s Disease: The Integration of the Aluminum and Amyloid Cascade Hypotheses. Int. J. Alzheimers Dis. 2011, 2011, 276393. [Google Scholar] [CrossRef] [Green Version]
- Mold, M.; Umar, D.; King, A.; Exley, C. Aluminium in brain tissue in autism. J. Trace Elem. Med. Biol. 2018, 46, 76–82. [Google Scholar] [CrossRef]
- Agency for Toxic Substances and Disease Registry (ATSDR), Toxicological Profile for Aluminum; Agency for Toxic Substances and Disease Registry, Department of Health and Human Services, Division of Toxicology and Environmental Medicine: Atlanta, GA, USA, 2008.
- Krewski, D.; Yokel, R.A.; Nieboer, E.; Borchelt, D.; Cohen, J.; Harry, J.; Kacew, S.; Lindsay, J.; Mahfouz, A.M.; Rondeau, V. Human health risk assessment for aluminium, aluminium oxide, and aluminium hydroxide. J. Toxicol. Environ. Health Part B 2007, 10, 1–269. [Google Scholar] [CrossRef]
- Becker, L.C.; Boyer, I.; Bergfeld, W.F.; Belsito, D.V.; Hill, R.A.; Klaassen, C.D.; Liebler, D.C.; Marks Jr, J.G.; Shank, R.C.; Slaga, T.J. Safety assessment of alumina and aluminum hydroxide as used in cosmetics. Int. J. Toxicol. 2016, 35, 16S–33S. [Google Scholar] [CrossRef]
- Advenier, E.; Landry, C.; Colomb, V.; Cognon, C.; Pradeau, D.; Florent, M.; Goulet, O.; Ricour, C.; Corriol, O. Aluminum contamination of parenteral nutrition and aluminum loading in children on long-term parenteral nutrition. J. Pediatr. Gastroenterol. Nutr. 2003, 36, 448–453. [Google Scholar] [CrossRef] [Green Version]
- Willhite, C.C.; Karyakina, N.A.; Yokel, R.A.; Yenugadhati, N.; Wisniewski, T.M.; Arnold, I.M.; Momoli, F.; Krewski, D. Systematic review of potential health risks posed by pharmaceutical, occupational and consumer exposures to metallic and nanoscale aluminum, aluminum oxides, aluminum hydroxide and its soluble salts. Crit. Rev. Toxicol. 2014, 44, 1–80. [Google Scholar] [CrossRef]
- Stahl, T.; Taschan, H.; Brunn, H. Aluminium content of selected foods and food products. Environ. Sci. Eur. 2011, 23, 37. [Google Scholar] [CrossRef] [Green Version]
- Yokel, R.A. Aluminum in food–the nature and contribution of food additives. In Food Additive; El-Samragy, Y., Ed.; Intech: Rijeka, Croatia, 2012; pp. 203–228. [Google Scholar]
- Filippini, T.; Tancredi, S.; Malagoli, C.; Cilloni, S.; Malavolti, M.; Violi, F.; Vescovi, L.; Bargellini, A.; Vinceti, M. Aluminum and tin: Food contamination and dietary intake in an Italian population. J. Trace Elem. Med. Biol. 2019, 52, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Qiao, L.; Zhang, H.; Chen, J. Exposure and risk assessment for aluminium and heavy metals in Puerh tea. Sci. Total Environ. 2010, 408, 2777–2784. [Google Scholar] [CrossRef] [PubMed]
- Millour, S.; Noël, L.; Kadar, A.; Chekri, R.; Vastel, C.; Sirot, V.; Leblanc, J.C.; Guérin, T. Pb, Hg, Cd, As, Sb and Al levels in foodstuffs from the 2nd French total diet study. Food Chem. 2011, 126, 1787–1799. [Google Scholar] [CrossRef] [PubMed]
- Dordevic, D.; Buchtova, H.; Jancikova, S.; Macharackova, B.; Jarosova, M.; Vitez, T.; Kushkevych, I. Aluminum contamination of food during culinary preparation: Case study with aluminum foil and consumers’ preferences. Food Sci. Nutr. 2019, 7, 3349–3360. [Google Scholar] [CrossRef]
- Al-Ashmawy, M.A. Prevalence and public health significance of aluminum residues in milk and some dairy products. J. Food Sci. 2011, 76, T73–T76. [Google Scholar] [CrossRef]
- World Health Organization; Food Agriculture Organization of the United Nations. Joint FAO/WHO Expert Committee on Food Additives. Evaluation of Certain Food Additives and Contaminants: Seventy-Fourth [74th] Report of the Joint FAO/WHO Expert Committee on Food Additives; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Aung, N.N.; Yoshinaga, J.; Takahashi, J.I. Dietary intake of toxic and essential trace elements by the children and parents living in Tokyo Metropolitan Area, Japan. Food Addit. Contam. 2006, 23, 883–894. [Google Scholar] [CrossRef]
- Arnich, N.; Sirot, V.; Rivière, G.; Jean, J.; Noël, L.; Guérin, T.; Leblanc, J.C. Dietary exposure to trace elements and health risk assessment in the 2nd French Total Diet Study. Food Chem. Toxicol. 2012, 50, 2432–2449. [Google Scholar] [CrossRef]
- Yang, M.; Jiang, L.; Huang, H.; Zeng, S.; Qiu, F.; Yu, M.; Li, X.; Wei, S. Dietary exposure to aluminium and health risk assessment in the residents of Shenzhen, China. PLoS ONE 2014, 9, e89715. [Google Scholar] [CrossRef]
- Rose, M.; Baxter, M.; Brereton, N.; Baskaran, C. Dietary exposure to metals and other elements in the 2006 UK Total Diet Study and some trends over the last 30 years. Food Addit. Contam. 2010, 27, 1380–1404. [Google Scholar] [CrossRef]
- Antoine, J.M.R.; Fung, L.A.H.; Grant, C.N. Assessment of the potential health risks associated with the aluminium, arsenic, cadmium and lead content in selected fruits and vegetables grown in Jamaica. Toxicol. Rep. 2017, 4, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Lalor, G.C. Geochemical mapping in Jamaica. Environ. Geochem. Health 1996, 18, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculturre Organization of the United Nations (FAO). Fishery and Aquaculture Country Profiles, Jamaica. Available online: https://www.fao.org/fishery/en/facp/jam?lang=en (accessed on 12 October 2022).
- Hose, H.R. Bauxite Mineralogy. In Essential Readings in Light Metals: Volume 1 Alumina and Bauxite; Donaldson, D., Raahauge, B.E., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 21–29. [Google Scholar]
- Hayes, J.D.; Pulford, D.J. The glutathione S-transferase supergene family: Regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit. Rev. Biochem. Mol. Biol. 1995, 30, 445–600. [Google Scholar] [CrossRef] [PubMed]
- Whalen, R.; Boyer, T.D. Human glutathione S-transferases. Semin. Liver Dis. 1998, 18, 345–358. [Google Scholar] [CrossRef] [PubMed]
- Nebert, D.W.; Vasiliou, V. Analysis of the glutathione S-transferase (GST) gene family. Hum. Genom. 2004, 1, 460–464. [Google Scholar] [CrossRef] [PubMed]
- Josephy, P.D. Genetic variations in human glutathione transferase enzymes: Significance for pharmacology and toxicology. Hum. Genom. Proteom. 2010, 2010, 876940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Zhao, W.; Malhotra, A. Efficacy of Curcumin in Ameliorating Aluminum- Induced Neurotoxicity. J. Environ. Pathol. Toxicol. Oncol. 2018, 37, 163–172. [Google Scholar] [CrossRef] [PubMed]
- El-Demerdash, F.M.; Baghdadi, H.H.; Ghanem, N.F.; Mhanna, A.B.A. Nephroprotective role of bromelain against oxidative injury induced by aluminium in rats. Environ. Toxicol. Pharmacol. 2020, 80, 103509. [Google Scholar] [CrossRef]
- Hałatek, T.; Trzcinka-Ochocka, M.; Matczak, W.; Gruchała, J. Serum Clara cell protein as an indicator of pulmonary impairment in occupational exposure at aluminum foundry. Int. J. Occup. Med. Environ. Health 2006, 19, 211–223. [Google Scholar] [CrossRef] [Green Version]
- Autrup, H. Genetic polymorphisms in human xenobiotica metabolizing enzymes as susceptibility factors in toxic response. Mutat. Res. 2000, 464, 65–76. [Google Scholar] [CrossRef]
- Said, S.; Moubarz, G.; Awadalla, H.; Sharaf, N.; Hegazy, N.; Elsaied, A.; Abdel Gawad, A.; Elkhafif, M. Role of Glutathione-S-Transferase M1 (GSTM1) and T1 (GSTT1) Genes on Aluminum Concentration and Oxidative Markers among Autistic Children. Egypt. J. Chem. 2021, 64, 7591–7601. [Google Scholar] [CrossRef]
- Rahbar, M.H.; Samms-Vaughan, M.; Pitcher, M.R.; Bressler, J.; Hessabi, M.; Loveland, K.A.; Christian, M.A.; Grove, M.L.; Shakespeare-Pellington, S.; Beecher, C.; et al. Role of Metabolic Genes in Blood Aluminum Concentrations of Jamaican Children with and without Autism Spectrum Disorder. Int. J. Environ. Res. Public Health 2016, 13, 1095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahbar, M.H.; Samms-Vaughan, M.; Lee, M.; Christian, M.A.; Bressler, J.; Hessabi, M.; Grove, M.L.; Shakespeare-Pellington, S.; Desai, C.C.; Reece, J.A.; et al. Interaction between manganese and GSTP1 in relation to autism spectrum disorder while controlling for exposure to mixture of lead, mercury, arsenic, and cadmium. Res. Autism. Spectr. Disord. 2018, 55, 50–63. [Google Scholar] [CrossRef] [PubMed]
- Rahbar, M.H.; Samms-Vaughan, M.; Lee, M.; Zhang, J.; Hessabi, M.; Bressler, J.; Bach, M.A.; Grove, M.L.; Shakespeare-Pellington, S.; Beecher, C.; et al. Interaction between a Mixture of Heavy Metals (Lead, Mercury, Arsenic, Cadmium, Manganese, Aluminum) and GSTP1, GSTT1, and GSTM1 in Relation to Autism Spectrum Disorder. Res. Autism. Spectr. Disord. 2020, 79, 101681. [Google Scholar] [CrossRef]
- Rahbar, M.H.; Samms-Vaughan, M.; Saroukhani, S.; Bressler, J.; Hessabi, M.; Grove, M.L.; Shakspeare-Pellington, S.; Loveland, K.A.; Beecher, C.; McLaughlin, W. Associations of Metabolic Genes (GSTT1, GSTP1, GSTM1) and Blood Mercury Concentrations Differ in Jamaican Children with and without Autism Spectrum Disorder. Int. J. Environ. Res. Public Health 2021, 18, 1377. [Google Scholar] [CrossRef]
- Rutter, M.; Bailey, A.; Lord, C. The Social Communication Questionnaire: Manual; Western Psychological Services: Los Angeles, CA, USA, 2003. [Google Scholar]
- Rahbar, M.H.; Samms-Vaughan, M.; Zhao, Y.; Saroukhani, S.; Zaman, S.F.; Bressler, J.; Hessabi, M.; Grove, M.L.; Shakspeare-Pellington, S.; Loveland, K.A. Additive and Interactive Associations of Environmental and Sociodemographic Factors with the Genotypes of Three Glutathione S-Transferase Genes in Relation to the Blood Arsenic Concentrations of Children in Jamaica. Int. J. Environ. Res. Public Health 2022, 19, 466. [Google Scholar] [CrossRef]
- Rahbar, M.H.; Samms-Vaughan, M.; Hessabi, M.; Bressler, J.; Gillani, S.; Grove, M.L.; Shakespeare-Pellington, S.; Loveland, K.A. Correlation between concentrations of four heavy metals in cord blood and childhood blood of Jamaican children. J. Environ. Sci. Health Part A 2021, 56, 1196–1205. [Google Scholar] [CrossRef]
- Kleinbaum, D.G.; Klein, M. Logistic Regression: A Self-Learning Text, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 602–634. [Google Scholar]
- SAS Institute Inc. SAS®, 9.4; SAS Institute Inc.: Cary, NC, USA, 2013. [Google Scholar]
- Bach, M.A.; Samms-Vaughan, M.; Hessabi, M.; Bressler, J.; Lee, M.; Zhang, J.; Shakespeare-Pellington, S.; Grove, M.L.; Loveland, K.A.; Rahbar, M.H. Association of Polychlorinated Biphenyls and Organochlorine Pesticides with Autism Spectrum Disorder in Jamaican Children. Res. Autism. Spectr. Disord. 2020, 76, 101587. [Google Scholar] [CrossRef]
- Greenberg, W.A.; Wilding, L.P. Pre- and Post-Mined Bauxite Soils of Jamaica: Physical and Chemical Properties. Soil Sci. Soc. Am. J. 2007, 71, 181–188. [Google Scholar] [CrossRef]
- Bojórquez-Quintal, E.; Escalante-Magaña, C.; Echevarría-Machado, I.; Martínez-Estévez, M. Aluminum, a Friend or Foe of Higher Plants in Acid Soils. Front. Plant Sci. 2017, 8, 1767. [Google Scholar] [CrossRef]
- Xu, G.S.; Jin, R.P.; Zhang, Z.W.; Zhang, W.Q.; Ren, D.L.; Chen, J.; Huang, G.W. Preliminary study on aluminum content of foods and aluminum intake of residents in Tianjin. Biomed. Environ. Sci. 1993, 6, 319–325. [Google Scholar] [PubMed]
- Liang, J.; Liang, X.; Cao, P.; Wang, X.; Gao, P.; Ma, N.; Li, N.; Xu, H. A Preliminary Investigation of Naturally Occurring Aluminum in Grains, Vegetables, and Fruits from Some Areas of China and Dietary Intake Assessment. J. Food Sci. 2019, 84, 701–710. [Google Scholar] [CrossRef] [PubMed]
- Jee, Y.; Cho, S.I. Associations between socioeconomic status and blood cadmium levels in Korea. Epidemiol. Health 2019, 41, e2019018. [Google Scholar] [CrossRef] [PubMed]
- Brailsford, J.M.; Hill, T.D.; Burdette, A.M.; Jorgenson, A.K. Are Socioeconomic Inequalities in Physical Health Mediated by Embodied Environmental Toxins? Socius 2018, 4, 2378023118771462. [Google Scholar] [CrossRef]
- Adamou, T.Y.; Riva, M.; Muckle, G.; Laouan-Sidi, E.A.; Ayotte, P. Socio-economic inequalities in blood mercury (Hg) and serum polychlorinated biphenyl (PCB) concentrations among pregnant Inuit women from Nunavik, Canada. Can. J. Public Health 2018, 109, 671–683. [Google Scholar] [CrossRef] [PubMed]
- Mölenberg, F.J.M.; Mackenbach, J.D.; Poelman, M.P.; Santos, S.; Burdorf, A.; van Lenthe, F.J. Socioeconomic inequalities in the food environment and body composition among school-aged children: A fixed-effects analysis. Int. J. Obes. 2021, 45, 2554–2561. [Google Scholar] [CrossRef]
- Damen, F.W.M.; Luning, P.A.; Fogliano, V.; Steenbekkers, B.L.P.A. What influences mothers’ snack choices for their children aged 2–7? Food Qual. Prefer. 2019, 74, 10–20. [Google Scholar] [CrossRef]
- Schläwicke Engström, K.; Strömberg, U.; Lundh, T.; Johansson, I.; Vessby, B.; Hallmans, G.; Skerfving, S.; Broberg, K. Genetic variation in glutathione-related genes and body burden of methylmercury. Environ. Health Perspect. 2008, 116, 734–739. [Google Scholar] [CrossRef] [Green Version]
- Hayes, J.D.; Strange, R.C. Glutathione S-transferase polymorphisms and their biological consequences. Pharmacology 2000, 61, 154–166. [Google Scholar] [CrossRef]
- Goodrich, J.M.; Wang, Y.; Gillespie, B.; Werner, R.; Franzblau, A.; Basu, N. Glutathione enzyme and selenoprotein polymorphisms associate with mercury biomarker levels in Michigan dental professionals. Toxicol. Appl. Pharmacol. 2011, 257, 301–308. [Google Scholar] [CrossRef]
- Custodio, H.M.; Harari, R.; Gerhardsson, L.; Skerfving, S.; Broberg, K. Genetic influences on the retention of inorganic mercury. Arch. Environ. Occup. Health 2005, 60, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Dobritzsch, D.; Grancharov, K.; Hermsen, C.; Krauss, G.-J.; Schaumlöffel, D. Inhibitory effect of metals on animal and plant glutathione transferases. J. Trace Elem. Med. Biol. 2020, 57, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Kalinina, E.V.; Chernov, N.N.; Novichkova, M.D. Role of glutathione, glutathione transferase, and glutaredoxin in regulation of redox-dependent processes. Biochemistry 2014, 79, 1562–1583. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, V.M.; Del Razo, L.M.; Limón-Pacheco, J.H.; Giordano, M.; Sánchez-Peña, L.C.; Uribe-Querol, E.; Gutiérrez-Ospina, G.; Gonsebatt, M.E. Glutathione reductase inhibition and methylated arsenic distribution in Cd1 mice brain and liver. Toxicol. Sci. 2005, 84, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.H.; Lalor, G.C.; Preston, J.; Robotham, H.; Thompson, C.; Vutchkov, M.K. Heavy metals in Jamaican surface soils. Environ. Geochem. Health 1996, 18, 113–121. [Google Scholar] [CrossRef]
- Özaslan, M.S.; Demir, Y.; Küfrevioğlu, O.I.; Çiftci, M. Some metals inhibit the glutathione S-transferase from Van Lake fish gills. J. Biochem. Mol. Toxicol. 2017, 31, e21967. [Google Scholar] [CrossRef]
- Bosch, A.C.; O’Neill, B.; Sigge, G.O.; Kerwath, S.E.; Hoffman, L.C. Heavy metals in marine fish meat and consumer health: A review. J. Sci. Food Agric. 2016, 96, 32–48. [Google Scholar] [CrossRef]
- Ricketts, P.; Voutchkov, M.; Chan, H.M. Risk-Benefit Assessment for Total Mercury, Arsenic, Selenium, and Omega-3 Fatty Acids Exposure from Fish Consumption in Jamaica. Biol. Trace Elem. Res. 2020, 197, 262–270. [Google Scholar] [CrossRef]
- Harris, P.A.; Taylor, R.; Thielke, R.; Payne, J.; Gonzalez, N.; Conde, J.G. Research electronic data capture (REDCap)—A metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. 2009, 42, 377–381. [Google Scholar] [CrossRef]
Variables | Categories | n (%) | |
---|---|---|---|
Child | Sex | Male | 299 (81.7) |
Female | 67 (18.3) | ||
Age (months) | Age < 72 | 275 (75.1) | |
Age ≥ 72 | 91 (24.9) | ||
Race | Afro-Caribbean | 356 (97.3) | |
Placeof birth (Parish) | Kingston parish | 229 (62.6) | |
Other parishes a | 137 (37.4) | ||
Maternal age (at child’s birth) (n = 360) | Less than 35 | 319 (88.6) | |
More than or equal to 35 | 41 (11.4) | ||
Parental education level (n = 356) | Both up to high school b | 194 (54.5) | |
At least one beyond high school c | 162 (45.5) | ||
Socioeconomic status (SES) | High SES (own a car) | 149 (40.7) | |
GSTT1 (n = 348) | DD (null alleles) | 91 (26.1) | |
Homozygote (I/I) or heterozygote (I/D) | 257 (73.9) | ||
GSTM1 (n = 349) | DD | 86 (24.6) | |
I/I or I/D | 263 (75.4) | ||
GSTP1 (n = 351) | Ile/Ile | 95 (27.1) | |
Ile/Val | 179 (51.0) | ||
Val/Val | 77 (21.9) |
Exposure Variables | Categories | ≥LoD (n = 230) | <LoD (n = 136) | Odds Ratio (95% CI) | p Value * | ||
---|---|---|---|---|---|---|---|
Child | Sex | Male | 192 (83.5) | 107(78.7) | 0.73 (0.43, 1.25) | 0.25 | |
Age (months) | Age ≥ 72 | 62 (27.0) | 29 (21.3) | 1.36 (0.82, 2.25) | 0.23 | ||
Race | Afro-Caribbean | 223 (97.0) | 133 (97.8) | 0.72 (0.18, 2.83) | 0.64 | ||
Place of birth (Parish) | Kingston parish | 144 (62.6) | 85 (62.5) | 1.01 (0.65, 1.56) | 0.98 | ||
Maternal age in years (at child’s birth) | More than or equal to 35 | 26 (11.6) a | 15 (11.1) b | 1.05 (0.53, 2.05) | 0.90 | ||
Parental education level | At least one beyond high school ** | 89 (39.6) c | 73 (55.7) d | 0.52 (0.34, 0.80) | 0.003 | ||
Socioeconomic status (SES) | High SES (own a car) | 92 (40.0) | 57 (41.9) | 0.92 (0.60, 1.42) | 0.72 | ||
GSTT1 *** ≥LoD (n = 218) <LoD (n = 130) | DD | 50 (22.9) | 41 (31.5) | 0.65 (0.10, 1.05) | 0.08 | ||
I/I or I/D | 168 (77.1) | 89 (68.5) | (ref) | ||||
GSTM1 *** ≥LoD (n = 218) <LoD (n = 131) | DD | 50 (22.9) | 36 (27.5) | 0.78 (0.48, 1.29) | 0.34 | ||
I/I or I/D | 168 (77.1) | 95(72.5) | (ref) | ||||
GSTP1 ≥LoD (n = 219) <LoD (n = 132) | Ile/Ile | 61 (27.8) | 34 (25.8) | (ref) | |||
Ile/Val | 111 (50.7) | 68 (51.5) | 0.91 (0.54, 1.53) | 0.72 | |||
Val/Val | 47 (21.5) | 30 (22.7) | 0.87 (0.47, 1.62) | 0.67 | |||
Source of Piped water | Drinking | 199 (94.3) e | 150 (97.4) | 0.76 (0.26, 2.22) | 0.61 | ||
Cooking | 201 (95.3) f | 152 (98.7) | 0.55 (0.15, 2.07) | 0.38 | |||
Consumption | Seafood | Saltwater fish | 160 (75.5) | 91 (59.1) | 1.40 (0.89, 2.20) | 0.14 | |
Fresh water fish (Pond fish, tilapia) | 75 (35.4) | 39 (25.3) | 1.80 (1.11, 2.91) | 0.02 | |||
Tuna (Canned fish) | 84 (39.6) | 48 (31.2) | 0.64 (0.41, 0.99) | 0.04 | |||
Grain and starches | Whole wheat bread | 142 (67.0) | 92 (59.7) | 1.49 (0.96, 2.31) | 0.07 | ||
Cakes/Buns | 186 (87.7) | 124 (80.5) | 1.87 (1.05, 3.32) | 0.03 | |||
Pasta, macaroni, noodles | 176 (83.0) | 141 (91.6) | 0.50 (0.25, 1.01) | 0.05 | |||
Fruits and vegetables | Peas, beans, nut, legumes | Red peas, gungo peas | 182 (85.9) | 108 (70.1) | 1.96 (1.18, 3.27) | 0.01 | |
Broad beans | 151 (71.2) | 66 (42.9) | 1.84 (1.19, 2.83) | <0.01 | |||
String beans | 112 (52.8) | 42 (27.3) | 3.27 (2.05, 5.22) | <0.01 | |||
Root vegetables | Yam, sweet potato, dasheen, coco | 140 (66.0) | 113 (73.4) | 0.60 (0.37, 0.97) | 0.03 | ||
Leafy vegetables | Lettuce | 146 (68.9) | 81 (52.6) | 1.84 (1.19, 2.84) | <0.01 | ||
Callaloo, broccoli, or pakchoi | 186 (87.7) | 112 (72.7) | 1.54 (0.90, 2.62) | 0.11 | |||
Cabbage | 120 (56.6) | 108 (70.1) | 0.50 (0.32, 0.80) | <0.01 | |||
Fruits | Tomatoes | 172 (81.1) | 100 (64.9) | 1.36 (0.84, 2.19) | 0.21 | ||
Ackee | 142 (67.0) | 110 (71.4) | 0.66 (0.41, 1.06) | 0.09 | |||
Avocado | 151 (71.2) | 71 (46.1) | 1.51 (0.98, 2.33) | 0.06 | |||
Green banana | 141 (66.5) | 117 (76.0) | 0.59 (0.36, 0.95) | 0.03 | |||
Fried plantain | 183 (86.3) | 128 (83.1) | 0.59 (0.31, 1.11) | 0.10 |
Models | GSTT1 a,b Genotypes | GSTM1c,d Genotypes | GSTP1e,f Genotypes | OR (95%CI) | p Value * | Overall Interaction p Value ** |
---|---|---|---|---|---|---|
Unadjusted Model for interactive effect between GSTT1 and GSTM1 including the corresponding main effect | ||||||
Recessive | DD | DD vs. I/I or I/D (ref) | 0.43 (0.17, 1.11) | 0.08 | 0.11 | |
I/I or I/D | 1.08 (0.59, 2.00) | 0.79 | ||||
DD vs. I/I or I/D (ref) | DD | 0.33 (0.13, 0.87) | 0.03 | |||
I/I or I/D | 0.84 (0.47,1.48) | 0.79 | ||||
Unadjusted Model for interactive effect between GSTM1 and GSTP1 including the corresponding main effect | ||||||
Co-dominant | DD | Ile/Val vs. Ile/Ile (ref) | 0.38 (0.12, 1.19) | 0.10 | 0.06 | |
Val/Val vs. Ile/Ile (ref) | 0.20 (0.05, 0.82) | 0.03 | ||||
Ile/Val vs. Val/Val (ref) | 1.93 (0.59, 6.28) | 0.28 | ||||
I/I or I/D | Ile/Val vs. Ile/Ile (ref) | 1.19 (0.66, 2.15) | 0.57 | |||
Val/Val vs. Ile/Ile (ref) | 1.32 (0.65, 2.69) | 0.45 | ||||
Ile/Val vs. Val/Val (ref) | 0.90 (0.47, 1.72) | 0.75 | ||||
DD vs. I/I or I/D (ref) | Ile/Ile | 2.24 (0.74, 6.74) | 0.15 | |||
Ile/Val | 0.71 (0.36, 1.40) | 0.32 | ||||
Val/Val | 0.33 (0.10, 1.07) | 0.06 | ||||
Dominant | DD | Val/Val or Ile/Val vs. Ile/Ile (ref) | 0.32 (0.11, 0.98) | <0.05 | 0.04 | |
I/I or I/D | 1.23 (0.70, 2.14) | 0.47 | ||||
DD vs. I/I or I/D (ref) | Val/Val or Ile/Val | 0.59 (0.33, 1.05) | 0.07 | |||
Ile/Ile | 2.24 (0.74, 6.74) | 0.15 | ||||
Recessive | DD | Val/Val vs. Ile/Ile or Ile/Val (ref) | 0.39 (0.12, 1.23) | 0.11 | 0.10 | |
I/I or I/D | 1.18 (0.64, 2.17) | 0.59 | ||||
DD vs. I/I or I/D (ref) | Val/Val | 0.33 (0.10, 1.07) | 0.06 | |||
Ile/Ile or Ile/Val | 0.99 (0.57, 1.76) | 0.99 |
Environmental Factor (Food Consumption) (Yes vs. No) | Gene | Models | Genotypes | OR (95% CI) | p Value a | Overall Interaction p Value b |
---|---|---|---|---|---|---|
Porridge | GSTT1 | Recessive | DD | 1.51 (0.46, 4.91) | 0.49 | 0.03 |
I/I or I/D | 0.27 (0.10, 0.73) | 0.01 | ||||
Macaroni | GSTT1 | Recessive | DD | 1.97 (0.52, 7.52) | 0.32 | 0.03 |
I/I or I/D | 0.22 (0.05, 0.97) | <0.05 | ||||
Green banana | GSTT1 | Recessive | DD | 1.47 (0.55, 3.90) | 0.44 | 0.04 |
I/I or I/D | 0.45 (0.25, 0.82) | 0.01 | ||||
Broad beans (fava beans) | GSTM1 | Recessive | DD | 3.96 (1.57, 9.97) | <0.01 | <0.05 |
I/I or I/D | 1.37 (0.82, 2.27) | 0.23 | ||||
Saltwater fish | GSTP1 | Co-dominant | Ile/Ile | 3.36 (1.37, 8.24) | <0.01 | 0.03 |
Ile/Val | 1.26 (0.67, 2.38) | 0.47 | ||||
Val/Val | 0.53 (0.18, 1.58) | 0.26 | ||||
Dominant | Val/Val or Ile/Val | 1.0 (0.58, 1.72) | 0.99 | 0.02 | ||
Ile/Ile | 3.36 (1.37, 8.24) | <0.01 | ||||
Recessive | Val/Val | 0.53 (0.18, 1.58) | 0.26 | 0.05 | ||
Ile/Ile or Ile/Val | 1.76 (1.05, 2.94) | 0.03 | ||||
White bread | GSTP1 | Co-dominant | Ile/Ile | 2.49(1.05, 5.90) | 0.04 | 0.06 |
Ile/Val | 0.82 (0.43, 1.55) | 0.53 | ||||
Val/Val | 0.59 (0.20, 1.75) | 0.34 | ||||
Dominant | Val/Val or Ile/Val | 0.75 (0.43, 1.29) | 0.30 | 0.02 | ||
Ile/Ile | 2.49 (1.05, 5.90) | 0.04 | ||||
Recessive | Val/Val | 0.59 (0.20, 1.75) | 0.34 | 0.24 | ||
Ile/Ile or Ile/Val | 1.20 (0.73, 2.00) | 0.47 | ||||
Whole wheat bread | GSTP1 | Co-dominant | Ile/Ile | 0.59 (0.23, 1.52) | 0.27 | 0.07 |
Ile/Val | 2.19 (1.17, 4.11) | 0.01 | ||||
Val/Val | 1.76 (0.70, 4.48) | 0.23 | ||||
Dominant | Val/Val or Ile/Val | 2.05 (1.22, 3.45) | <0.01 | 0.02 | ||
Ile/Ile | 0.59 (0.23, 1.52) | 0.27 | ||||
Recessive | Val/Val | 1.76 (0.70, 4.48) | 0.23 | 0.72 | ||
Ile/Ile or Ile/Val | 1.45 (0.87, 2.42) | 0.16 |
Models for GSTP1 * | Environmental Factor (EF) | Category | Genotypes | OR (95%CI) | p Value a | Overall Interaction p Value b |
---|---|---|---|---|---|---|
Co-dominant | EF1 | G1 vs. G2 | - | 0.57 (0.36, 0.91) | 0.02 | - |
EF2 | Yes vs. No | - | 3.07 (1.85, 5.09) | <0.01 | - | |
EF3 | Yes vs. No | Ile/Ile | 2.73 (1.07, 6.96) | 0.04 | 0.02 | |
Ile/Val | 0.98 (0.50, 1.93) | 0.95 | ||||
Val/Val | 0.36 (0.11, 1.14) | 0.08 | ||||
Dominant | EF1 | G1 vs. G2 | - | 0.56 (0.36, 0.90) | 0.02 | - |
EF2 | Yes vs. No | - | 2.94 (1.78, 4.83) | <0.01 | - | |
EF3 | Yes vs. No | Ile/Val or Val/Val | 0.75 (0.42, 1.35) | 0.34 | 0.02 | |
Ile/Ile | 2.74 (1.08, 6.99) | 0.03 | ||||
Recessive | EF1 | G1 vs. G2 | - | 0.57 (0.36, 0.91) | 0.02 | - |
EF2 | Yes vs. No | - | 3.07 (1.85, 5.06) | <0.01 | - | |
EF3 | Yes vs. No | Val/Val | 0.36 (0.11, 1.14) | 0.08 | 0.04 | |
Ile/Ile or Ile/Val | 1.39 (0.81, 2.41) | 0.23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahbar, M.H.; Samms-Vaughan, M.; Zhao, Y.; Saroukhani, S.; Bressler, J.; Hessabi, M.; Grove, M.L.; Shakespeare-Pellington, S.; Loveland, K.A. Interactions between Environmental Factors and Glutathione S-Transferase (GST) Genes with Respect to Detectable Blood Aluminum Concentrations in Jamaican Children. Genes 2022, 13, 1907. https://doi.org/10.3390/genes13101907
Rahbar MH, Samms-Vaughan M, Zhao Y, Saroukhani S, Bressler J, Hessabi M, Grove ML, Shakespeare-Pellington S, Loveland KA. Interactions between Environmental Factors and Glutathione S-Transferase (GST) Genes with Respect to Detectable Blood Aluminum Concentrations in Jamaican Children. Genes. 2022; 13(10):1907. https://doi.org/10.3390/genes13101907
Chicago/Turabian StyleRahbar, Mohammad H., Maureen Samms-Vaughan, Yuansong Zhao, Sepideh Saroukhani, Jan Bressler, Manouchehr Hessabi, Megan L. Grove, Sydonnie Shakespeare-Pellington, and Katherine A. Loveland. 2022. "Interactions between Environmental Factors and Glutathione S-Transferase (GST) Genes with Respect to Detectable Blood Aluminum Concentrations in Jamaican Children" Genes 13, no. 10: 1907. https://doi.org/10.3390/genes13101907
APA StyleRahbar, M. H., Samms-Vaughan, M., Zhao, Y., Saroukhani, S., Bressler, J., Hessabi, M., Grove, M. L., Shakespeare-Pellington, S., & Loveland, K. A. (2022). Interactions between Environmental Factors and Glutathione S-Transferase (GST) Genes with Respect to Detectable Blood Aluminum Concentrations in Jamaican Children. Genes, 13(10), 1907. https://doi.org/10.3390/genes13101907