A Comparative Presentation of Mouse Models That Recapitulate Most Features of Alport Syndrome
Abstract
:1. Alport Syndrome
2. Mouse Models for Alport Syndrome
3. Comparison of Lifespan
4. Comparison of Sex, Morphological, and Physiological Characteristics
5. Comparison of Homeostasis and Metabolism
6. Comparison of Glomerular Alterations
7. Comparison of Tubular Alterations
8. Comparison of Fibrosis and Inflammation in the Interstitium
9. Comparison of Ocular and Hearing Defects
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alport, A.C. Hereditary Familial Congenital Haemorrhagic Nephritis. Br. Med. J. 1927, 1, 504–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savige, J.; Sheth, S.; Leys, A.; Nicholson, A.; Mack, H.G.; Colville, D. Ocular features in Alport syndrome: Pathogenesis and clinical significance. Clin. J. Am. Soc. Nephrol. 2015, 10, 703–709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savige, J.; Gregory, M.; Gross, O.; Kashtan, C.; Ding, J.; Flinter, F. Expert guidelines for the management of alport syndrome and thin basement membrane nephropathy. J. Am. Soc. Nephrol. 2013, 24, 364–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flinter, F. Alport’s syndrome. J. Med. Genet. 1997, 34, 326–330. [Google Scholar] [CrossRef] [Green Version]
- Deltas, C.; Savva, I.; Voskarides, K.; Papazachariou, L.; Pierides, A. Carriers of Autosomal Recessive Alport Syndrome with Thin Basement Membrane Nephropathy Presenting as Focal Segmental Glomerulosclerosis in Later Life. Nephron 2015, 130, 271–280. [Google Scholar] [CrossRef]
- Jais, J.P.; Knebelmann, B.; Giatras, I.; De Marchi, M.; Rizzoni, G.; Renieri, A.; Weber, M.; Gross, O.; Netzer, K.O.; Flinter, F.; et al. X-linked Alport syndrome: Natural history in 195 families and genotype- phenotype correlations in males. J. Am. Soc. Nephrol. 2000, 11, 649–657. [Google Scholar] [CrossRef]
- Hertz, J.M.; Thomassen, M.; Storey, H.; Flinter, F. Clinical utility gene card for: Alport syndrome—Update 2014. Eur. J. Hum. Genet. 2015, 23, 1269. [Google Scholar] [CrossRef] [Green Version]
- Abrahamson, D.R.; Hudson, B.G.; Stroganova, L.; Borza, D.-B.; John, P.L.S. Cellular origins of type IV collagen networks in developing glomeruli. J. Am. Soc. Nephrol. 2009, 20, 1471–1479. [Google Scholar] [CrossRef] [Green Version]
- Feingold, J.; Bois, E.; Chompert, A.; Broyer, M.; Gubler, M.-C.; Grünfeld, J.-P. Genetic heterogeneity of Alport syndrome. Kidney Int. 1985, 27, 672–677. [Google Scholar] [CrossRef] [Green Version]
- Savige, J.; Colville, D.; Rheault, M.N.; Gear, S.; Lennon, R.; Lagas, S.; Finlay, M.; Flinter, F. Alport Syndrome in Women and Girls. Clin. J. Am. Soc. Nephrol. 2016, 11, 1713–1720. [Google Scholar] [CrossRef]
- Gibson, J.; Fieldhouse, R.; Chan, M.M.; Sadeghi-Alavijeh, O.; Burnett, L.; Izzi, V.; Persikov, A.V.; Gale, D.P.; Storey, H.; Savige, J.; et al. Prevalence Estimates of Predicted Pathogenic COL4A3-COL4A5 Variants in a Population Sequencing Database and Their Implications for Alport Syndrome. J. Am. Soc. Nephrol. 2021, 32, 2273–2290. [Google Scholar] [CrossRef]
- Tsiakkis, D.; Pieri, M.; Koupepidou, P.; Demosthenous, P.; Panayidou, K.; Deltas, C. Genotype-phenotype correlation in X-linked Alport syndrome patients carrying missense mutations in the collagenous domain of COL4A5. Clin. Genet. 2012, 82, 297–299. [Google Scholar] [CrossRef]
- Voskarides, K.; Arsali, M.; Athanasiou, Y.; Elia, A.; Pierides, A.; Deltas, C. Evidence that NPHS2-R229Q predisposes to proteinuria and renal failure in familial hematuria. Pediatr. Nephrol. 2012, 27, 675–679. [Google Scholar] [CrossRef]
- Voskarides, K.; Stefanou, C.; Pieri, M.; Demosthenous, P.; Felekkis, K.; Arsali, M.; Athanasiou, Y.; Xydakis, D.; Stylianou, K.; Daphnis, E.; et al. A functional variant in NEPH3 gene confers high risk of renal failure in primary hematuric glomerulopathies. Evidence for predisposition to microalbuminuria in the general population. PLoS ONE 2017, 12, e0174274. [Google Scholar] [CrossRef] [Green Version]
- Takemon, Y.; Wright, V.; Davenport, B.; Gatti, D.M.; Sheehan, S.M.; Letson, K.; Savage, H.S.; Lennon, R.; Korstanje, R. Uncovering Modifier Genes of X-Linked Alport Syndrome Using a Novel Multiparent Mouse Model. J. Am. Soc. Nephrol. 2021, 32, 1961–1973. [Google Scholar] [CrossRef]
- Gross, O.; Beirowski, B.; Koepke, M.-L.; Kuck, J.; Reiner, M.; Addicks, K.; Smyth, N.; Schulze-Lohoff, E.; Weber, M. Preemptive ramipril therapy delays renal failure and reduces renal fibrosis in COL4A3-knockout mice with Alport syndrome. Kidney Int. 2003, 63, 438–446. [Google Scholar] [CrossRef] [Green Version]
- Gross, O.; Licht, C.; Anders, H.J.; Hoppe, B.; Beck, B.; Tönshoff, B.; Höcker, B.; Wygoda, S.; Ehrich, J.H.; Pape, L.; et al. Early angiotensin-converting enzyme inhibition in Alport syndrome delays renal failure and improves life expectancy. Kidney Int. 2012, 81, 494–501. [Google Scholar] [CrossRef] [Green Version]
- Miner, J.H.; Sanes, J.R. Molecular and functional defects in kidneys of mice lacking collagen alpha 3(IV): Implications for Alport syndrome. J. Cell Biol. 1996, 135, 1403–1413. [Google Scholar] [CrossRef]
- Cosgrove, D.; Meehan, D.T.; Grunkemeyer, J.A.; Kornak, J.M.; Sayers, R.; Hunter, W.J.; Samuelson, G.C. Collagen COL4A3 knockout: A mouse model for autosomal Alport syndrome. Genes Dev. 1996, 10, 2981–2992. [Google Scholar] [CrossRef] [Green Version]
- Beirowski, B.; Weber, M.; Gross, O. Chronic renal failure and shortened lifespan in COL4A3+/− mice: An animal model for thin basement membrane nephropathy. J. Am. Soc. Nephrol. 2006, 17, 1986–1994. [Google Scholar] [CrossRef]
- LeBleu, V.; Sund, M.; Sugimoto, H.; Birrane, G.; Kanasaki, K.; Finan, E.; Miller, C.A.; Gattone, V.H.; McLaughlin, H.; Shield, C.F.; et al. Identification of the NC1 domain of {α}3 chain as critical for {α}3{α}4{α}5 type IV collagen network assembly. J. Biol. Chem. 2010, 285, 41874–41885. [Google Scholar] [CrossRef] [Green Version]
- Odiatis, C.; Savva, I.; Pieri, M.; Ioannou, P.; Petrou, P.; Papagregoriou, G.; Antoniadou, K.; Makrides, N.; Stefanou, C.; Ljubanović, D.G.; et al. A glycine substitution in the collagenous domain of Col4a3 in mice recapitulates late onset Alport syndrome. Matrix Biol. Plus 2021, 9, 100053. [Google Scholar] [CrossRef]
- Pieri, M.; Stefanou, C.; Zaravinos, A.; Erguler, K.; Stylianou, K.; Lapathitis, G.; Karaiskos, C.; Savva, I.; Paraskeva, R.; Dweep, H.; et al. Evidence for activation of the unfolded protein response in collagen IV nephropathies. J. Am. Soc. Nephrol. 2014, 25, 260–275. [Google Scholar] [CrossRef] [Green Version]
- Pokidysheva, E.N.; Seeger, H.; Pedchenko, V.; Chetyrkin, S.; Bergmann, C.; Abrahamson, D.; Cui, Z.W.; Delpire, E.; Fervenza, F.C.; Fidler, A.L.; et al. Collagen IV(alpha345) dysfunction in glomerular basement membrane diseases. I. Discovery of a COL4A3 variant in familial Goodpasture’s and Alport diseases. J. Biol. Chem. 2021, 296, 100590. [Google Scholar] [CrossRef]
- Arnold, C.N.; Xia, Y.; Lin, P.; Ross, C.; Schwander, M.; Smart, N.G.; Müller, U.; Beutler, B. Rapid identification of a disease allele in mouse through whole genome sequencing and bulk segregation analysis. Genetics 2011, 187, 633–641. [Google Scholar] [CrossRef] [Green Version]
- Korstanje, R.; Caputo, C.R.; Doty, R.A.; Cook, S.A.; Bronson, R.T.; Davisson, M.T.; Miner, J.H. A mouse Col4a4 mutation causing Alport glomerulosclerosis with abnormal collagen alpha3alpha4alpha5(IV) trimers. Kidney Int. 2014, 85, 1461–1468. [Google Scholar] [CrossRef] [Green Version]
- Falcone, S.; Wisby, L.; Nicol, T.; Blease, A.; Starbuck, B.; Parker, A.; Sanderson, J.; Brown, S.D.M.; Scudamore, C.L.; Pusey, C.D.; et al. Modification of an aggressive model of Alport Syndrome reveals early differences in disease pathogenesis due to genetic background. Sci. Rep. 2019, 9, 20398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, W.; Phillips, C.; Killen, P.D.; Hlaing, T.; Harrison, W.R.; Elder, F.; Miner, J.H.; Overbeek, P.; Meisler, M.H. Insertional mutation of the collagen genes Col4a3 and Col4a4 in a mouse model of Alport syndrome. Genomics 1999, 61, 113–124. [Google Scholar] [CrossRef] [PubMed]
- Rheault, M.N.; Kren, S.M.; Thielen, B.K.; Mesa, H.A.; Crosson, J.T.; Thomas, W.; Sado, Y.; Kashtan, C.E.; Segal, Y. Mouse model of X-linked Alport syndrome. J. Am. Soc. Nephrol. 2004, 15, 1466–1474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashikami, K.; Asahina, M.; Nozu, K.; Iijima, K.; Nagata, M.; Takeyama, M. Establishment of X-linked Alport syndrome model mice with a Col4a5 R471X mutation. Biochem. Biophys. Rep. 2019, 17, 81–86. [Google Scholar] [CrossRef]
- Randles, M.J.; Woolf, A.S.; Huang, J.L.; Byron, A.; Humphries, J.D.; Price, K.L.; Kolatsi-Joannou, M.; Collinson, S.; Denny, T.; Knight, D.; et al. Genetic Background is a Key Determinant of Glomerular Extracellular Matrix Composition and Organization. J. Am. Soc. Nephrol. 2015, 26, 3021–3034. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.S.; Wang, X.P.; Miner, J.H.; Morello, R.; Sado, Y.; Abrahamson, D.R.; Borza, D.B. Loss of alpha3/alpha4(IV) collagen from the glomerular basement membrane induces a strain-dependent isoform switch to alpha5alpha6(IV) collagen associated with longer renal survival in Col4a3-/- Alport mice. J. Am. Soc. Nephrol. 2006, 17, 1962–1969. [Google Scholar] [CrossRef] [Green Version]
- Bekheirnia, M.R.; Reed, B.; Gregory, M.C.; McFann, K.; Shamshirsaz, A.A.; Masoumi, A.; Schrier, R.W. Genotype-phenotype correlation in X-linked Alport syndrome. J. Am. Soc. Nephrol. 2010, 21, 876–883. [Google Scholar] [CrossRef] [Green Version]
- Talbi, K.; Cabrita, I.; Schreiber, R.; Kunzelmann, K. Gender-Dependent Phenotype in Polycystic Kidney Disease Is Determined by Differential Intracellular Ca(2+) Signals. Int. J. Mol. Sci. 2021, 22, 6019. [Google Scholar] [CrossRef]
- Kim, M.; Piaia, A.; Shenoy, N.; Kagan, D.; Gapp, B.; Kueng, B.; Weber, D.; Dietrich, W.; Ksiazek, I. Progression of Alport Kidney Disease in Col4a3 Knock Out Mice Is Independent of Sex or Macrophage Depletion by Clodronate Treatment. PLoS ONE 2015, 10, e0141231. [Google Scholar] [CrossRef] [Green Version]
- Gaytan, F.; Morales, C.; Leon, S.; Heras, V.; Barroso, A.; Avendaño, M.S.; Vazquez, M.J.; Castellano, J.M.; Roa, J.; Tena-Sempere, M. Development and validation of a method for precise dating of female puberty in laboratory rodents: The puberty ovarian maturation score (Pub-Score). Sci. Rep. 2017, 7, 46381. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Lai, C.-F.; Chang-Panesso, M.; Humphreys, B.D. Proximal Tubule Translational Profiling during Kidney Fibrosis Reveals Proinflammatory and Long Noncoding RNA Expression Patterns with Sexual Dimorphism. J. Am. Soc. Nephrol. 2020, 31, 23–38. [Google Scholar] [CrossRef]
- Pierides, A.; Voskarides, K.; Athanasiou, Y.; Ioannou, K.; Damianou, L.; Arsali, M.; Zavros, M.; Pierides, M.; Vargemezis, V.; Patsias, C.; et al. Clinico-pathological correlations in 127 patients in 11 large pedigrees, segregating one of three heterozygous mutations in the COL4A3/COL4A4 genes associated with familial haematuria and significant late progression to proteinuria and chronic kidney disease from focal segmental glomerulosclerosis. Nephrol. Dial. Transplant. 2009, 24, 2721–2729. [Google Scholar]
- Savige, J.; Mack, H.; Thomas, R.; Langsford, D.; Pianta, T. Alport Syndrome With Kidney Cysts Is Still Alport Syndrome. Kidney Int. Rep. 2022, 7, 339–342. [Google Scholar] [CrossRef]
- Mak, R.H.; Ikizler, A.T.; Kovesdy, C.P.; Raj, D.S.; Stenvinkel, P.; Kalantar-Zadeh, K. Wasting in chronic kidney disease. J. Cachexia Sarcopenia Muscle 2011, 2, 9–25. [Google Scholar] [CrossRef] [Green Version]
- Stubbs, J.R.; He, N.; Idiculla, A.; Gillihan, R.; Liu, S.; David, V.; Hong, Y.; Quarles, L.D. Longitudinal evaluation of FGF23 changes and mineral metabolism abnormalities in a mouse model of chronic kidney disease. J. Bone Miner Res. 2012, 27, 38–46. [Google Scholar] [CrossRef]
- Song, J.Y.; Saga, N.; Kawanishi, K.; Hashikami, K.; Takeyama, M.; Nagata, M. Bidirectional, non-necrotizing glomerular crescents are the critical pathology in X-linked Alport syndrome mouse model harboring nonsense mutation of human COL4A5. Sci. Rep. 2020, 10, 18891. [Google Scholar] [CrossRef]
- Jarad, G.; Knutsen, R.H.; Mecham, R.P.; Miner, J.H. Albumin contributes to kidney disease progression in Alport syndrome. Am. J. Physiol. Renal. Physiol. 2016, 311, 120–130. [Google Scholar] [CrossRef] [Green Version]
- Ding, W.; Yousefi, K.; Goncalves, S.; Goldstein, B.J.; Sabater, A.L.; Kloosterboer, A.; Ritter, P.; Lambert, G.; Mendez, A.J.; Shehadeh, L.A. Osteopontin deficiency ameliorates Alport pathology by preventing tubular metabolic deficits. JCI Insight 2018, 3, e94818. [Google Scholar] [CrossRef] [Green Version]
- Yokota, T.; Omachi, K.; Suico, M.A.; Kamura, M.; Kojima, H.; Fukuda, R.; Motomura, K.; Teramoto, K.; Kaseda, S.; Kuwazuru, J.; et al. STAT3 inhibition attenuates the progressive phenotypes of Alport syndrome mouse model. Nephrol. Dial. Transplant. 2018, 33, 214–223. [Google Scholar] [CrossRef] [Green Version]
- Heidet, L.; Gubler, M.C. The renal lesions of Alport syndrome. J. Am. Soc. Nephrol. 2009, 20, 1210–1215. [Google Scholar] [CrossRef] [Green Version]
- Lin, X.; Suh, J.H.; Go, G.; Miner, J.H. Feasibility of repairing glomerular basement membrane defects in Alport syndrome. J. Am. Soc. Nephrol. 2014, 25, 687–692. [Google Scholar] [CrossRef] [Green Version]
- Kashtan, C.E.; Kim, Y. Distribution of the α1 and α2 chains of collagen IV and of collagens V and VI in Alport syndrome. Kidney Int. 1992, 42, 115–126. [Google Scholar] [CrossRef] [Green Version]
- Gubler, M.-C.; Knebelmann, B.; Beziau, A.; Broyer, M.; Pirson, Y.; Haddoum, F.; Kleppel, M.M.; Antignac, C. Autosomal recessive Alport syndrome: Immunohistochemical study of type IV collagen chain distribution. Kidney Int. 1995, 47, 1142–1147. [Google Scholar] [CrossRef] [Green Version]
- Ninomiya, Y.; Kagawa, M.; Iyama, K.; Naito, I.; Kishiro, Y.; Seyer, J.M.; Sugimoto, M.; Oohashi, T.; Sado, Y. Differential expression of two basement membrane collagen genes, COL4A6 and COL4A5, demonstrated by immunofluorescence staining using peptide-specific monoclonal antibodies. J. Cell Biol. 1995, 130, 1219–1229. [Google Scholar] [CrossRef] [Green Version]
- Cosgrove, D.; Samuelson, G.; Meehan, D.T.; Miller, C.; McGee, J.; Walsh, E.J.; Siegel, M. Ultrastructural, physiological, and molecular defects in the inner ear of a gene-knockout mouse model for autosomal Alport syndrome. Hear. Res. 1998, 121, 84–98. [Google Scholar] [CrossRef]
- Yousefi, K.; Irion, C.I.; Takeuchi, L.M.; Ding, W.; Lambert, G.; Eisenberg, T.; Sukkar, S.; Granzier, H.L.; Methawasin, M.; Lee, D.I.; et al. Osteopontin Promotes Left Ventricular Diastolic Dysfunction Through a Mitochondrial Pathway. J. Am. Coll. Cardiol. 2019, 73, 2705–2718. [Google Scholar] [CrossRef] [PubMed]
- Neuburg, S.; Dussold, C.; Gerber, C.; Wang, X.; Francis, C.; Qi, L.; David, V.; Wolf, M.; Martin, A. Genetic background influences cardiac phenotype in murine chronic kidney disease. Nephrol. Dial. Transplant. 2018, 33, 1129–1137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sudhakar, A.; Sugimoto, H.; Yang, C.; Lively, J.; Zeisberg, M.; Kalluri, R. Human tumstatin and human endostatin exhibit distinct antiangiogenic activities mediated by alpha v beta 3 and alpha 5 beta 1 integrins. Proc. Natl. Acad. Sci. USA 2003, 100, 4766–4771. [Google Scholar] [CrossRef] [Green Version]
- Hamano, Y.; Zeisberg, M.; Sugimoto, H.; Lively, J.C.; Maeshima, Y.; Yang, C.; Hynes, R.O.; Werb, Z.; Sudhakar, A.; Kalluri, R. Physiological levels of tumstatin, a fragment of collagen IV alpha3 chain, are generated by MMP-9 proteolysis and suppress angiogenesis via αV β3 integrin. Cancer Cell 2003, 3, 589–601. [Google Scholar] [CrossRef] [Green Version]
- Kashtan, C.; Schachter, A.; Klickstein, L.; Liu, X.; Jennings, L.; Finkel, N. Urinary Monocyte Chemoattractant Protein-1 in Patients With Alport Syndrome. Kidney Int. Rep. 2022, 7, 1112–1114. [Google Scholar] [CrossRef]
- Aypek, H.; Krisp, C.; Lu, S.; Liu, S.; Kylies, D.; Kretz, O.; Wu, G.; Moritz, M.; Amann, K.; Benz, K.; et al. Loss of the collagen IV modifier prolyl 3-hydroxylase 2 causes thin basement membrane nephropathy. J. Clin. Investig. 2022, 132, e147253. [Google Scholar] [CrossRef]
- Deltas, C. Thin basement membrane lesion is not only a collagen IV nephropathy: Don’t underestimate “decorative” additions to collagen. Kidney Int. 2022; ahead of print. [Google Scholar] [CrossRef]
Date | Type of Genetic Modification/Alteration | Description of the Specific Alteration | Official Name in MGD | Existence in Humans | Reference |
---|---|---|---|---|---|
1996 | Knockout (in R1 ES cells) | Col4a3 Neo cassette replaced the first three exons of the NC1 domain | Col4a3tm1Jhm | No | [18] |
1996 | Knockout (in 129X1/SvJ ES cells) | Col4a3 Neo cassette replaced exon 5 of the NC1 domain | Col4a3tm1Dec/J | No | [19] |
2006 | Heterozygous knockout | Col4a3 Neo cassette replaced exon 5 of the NC1 domain | Col4a3tm1Dec/J/+ | No | [20] |
2010 | Knockout of mouse Col4α3 NC1—Knockin of human Col4α5 NC1 | Col4a3 Substitution of the mouse Col4α3 NC1 with the human Col4α5 NC1 | Col4a3tm1.1Rk1 | No | [21] |
2014 | Homozygous knockin—missense mutation | Col4a3 Substitution p.G1332E | Not existing yet—here, presented as Col4a3p.G1332E | Yes | [22,23] |
2014 | Heterozygous knockin—missense mutation | Col4a3 Substitution p.G1332E | Not existing yet—here, presented as Col4a3p.G1332E/+ | Yes | [22,23] |
2021 | Compound heterozygous knockin—missense mutation | Col4a3 Substitution p.G1332E Created by crossing the homozygous Col4a3tm1Dec/J with the homozygous Col4a3p.G1332E | Not existing yet—here, presented as Col4a3p.G1332E/- | Yes | [22,23] |
2021 | Homozygous CRISPR/cas-mediated knockin of a peptide | Col4a3 Substitution of His1669 with an 8 amino acids peptide (QQNCYFSS—Z-appendage) | Col4a3em1Bghn | Yes | [24] |
2021 | Heterozygous CRISPR/cas-mediated knockin of a peptide | Col4a3 Substitution of His1669 with an 8 amino acids peptide (QQNCYFSS—Z-appendage) | Col4a3em1Bghn/+ | Yes | [24] |
2011 | ENU mutagenesis, single nucleotide mutation—destroys splice donor site | Col4a4 GA in the intron 8 destroying the canonical splice donor site | Col4a4m1Btlr | No | [25] |
2013 | Spontaneous mutation | Col4a4 GA in the GT splice donor of exon 30—exon skipping but maintains ORF | Col4a4bwk | No | [26] |
2019 | ENU-mediated mutagenesis | Col4a4 Nonsense mutation p.G400X | Col4a4m1H | No | [27] |
1999 | Double knockout | Col4a3 and Col4a4 Insertion of the 4.1kb tyrosinase minigene TyBS | Not existing yet—here, presented as Col4Δ3-4 | No | [28] |
2004 | Single nucleotide mutagenesis | Col4a5 Nonsense mutation c.213 G>T; p.G5X; creation of a stop codon at exon 1 (7S domain) | Col4a5tm1Yseg | Yes | [29] |
2019 | Single nucleotide mutagenesis (CRISPR/cas) | Col4a5 Nonsense mutation c.1411 C>T; p.R471X; creation of a stop codon at exon 21 | Col4a5em1Keha | Yes | [30] |
Strain | Model’s Name | Lifespan | Hematuria | Proteinuria | Fibrosis—Inflammation | GBM Morphology/ Composition | Glomerular Alterations | Tubular Alterations | Expression of Collagens | Serum Creatinine | BUN/ Serum Urea | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|---|
(129X1/SvJ x 129S1/Sv)F1-Kitl+ | Col4a3tm1Jhm | 3 months (5% lived longer than 4 months) | Absent | Protein/creatinine ratio: 2–>20-fold after 2 months | Extracellular matrix between tubules by ~P60 | Altered appearance (basket weave-like) and molecular composition by P60 | Thickened Bowman’s capsule, thickened-closed capillary loops, filled with hyalin by P60 | Atrophied, dilated, filled with hyalin by ~P60, Kim-1 upregulation, apoptosis | Absence of Col4a3, Col4a4, and Col4a5 but presence of Col4a1, Col4a2, and collagen VI in GBM | Normal until 2 months, then increased | Normal until 2 months, then increased | [18,43] |
129X1/SvJ | Col4a3tm1Dec/J | 50% survival: 70.9 ± 6.0 days | Present (900–3000 corpuscles per mL) by 2 weeks | 10-15 mg/ml by 6-6.5 weeks | Present in glomeruli by 14 weeks | Focal thinning, splitting, progressing rarefication, and multilamination) and altered molecular composition at 4 to 14 weeks | Thickened Bowman’s capsule, expansion of the mesangial matrix, presence of microvilli on the pedicles, collapsed capillaries | Enhanced staining for fibronectin, increased proliferation, metabolic, and mitochondrial defects | Absence of Col4a3, Col4a4, and Col4a5 from GBM and TBM and the presence of Col4a1 and Col4a2 into mesangial area, GBM, and TBM | Increased at 8–9 weeks | Began to rise at ~10 weeks; reached 10x of wild-type control | [19,20,44] |
129X1/SvJ | Col4a3tm1Dec/J-heterozygous | 50% survival Col4a3+/−: 21.7 ± 2.5 SD months; Col4a3 +/+: 30.3 ± 2.4 SD months; Col4a3 −/−: 70.9 ± 6.0 SD days | Present after 8 weeks | Mild proteinuria (>0.1 g/L) increased to >3 g/L before death | Upregulated expression of fibronectin and fibrosis markers at 10 and 30 weeks | Reduction in the thickness of GBM by 12 months | Increased mesangial cells, thickened Bowman’s capsule, expression of EHS- laminin, interstitial myofibroblasts, and macrophages in glomeruli at 30 weeks, glomerulosclerosis at 12 months | Increased cellular size, vast amounts of euchromatin, increased intratubular protein load at 12 months | Not measured | Not measured | Increased at 18 months; reached >125 mg/dL before death | [20] |
C57BL/6J (10+ generations from 129Sv to C57BL/6J) | Col4a3tm1.1Rk1 | 23–30 weeks | Not measured | Albumin/creatinine ratio: 0.82 ± 0.16 at 8 weeks; 17.37 ± 0.83 at 12 weeks | Interstitial fibrosis/inflammatory infiltration initiating at 12 weeks; extensive at 22 weeks (61% ± 5.31) | Altered molecular composition with Col4a1/Col4a2 chains assembling into the α2α1α1/α2α1α1 network; focal thinning-thickening at 22 weeks | Podocyte foot process effacement at 22 weeks; glomerulosclerosis initiating at 12 weeks; extensive at 22 weeks (38% ± 3.6) | Tubular atrophy (initiating at 12 weeks; extensive at 22 weeks) | Absence of Col4a3 and Col4a4 from GBM and the presence of Col4a1, Col4a2, Col4a5, and Col4a6 into mesangium, GBM, and Bowman’s capsule | Increased at 22 weeks (0.425 ± 0.0692 mg/dL) | Not measured | [21] |
129X1/SvJ (5 generations from C57BL/6J to 129X1/SvJ) | Col4a3p.G1332E homozygous | Mean survival time: 15.1 months | Intermittent after 3 months | Albuminuria: >0.1 g/L at 3 months, increased to >1 g/L after 15 months | Moderate to severe periglomerular and interstitial fibrosis; mild to moderate infiltration by lymphocytes by 20 months | Thinning-thickening and splitting morphology by 5 months | Segmental or global glomerulosclerosis by 20 months | Tubular injury | Expression of ~35 kDa collagen IV NC1 fragments at the GBM, absence at the TBM | Increased at 15–22 months in 62.5% of homozygotes | Increased at 15–22 months in 62.5% of homozygotes | [22] |
C57BL/6J | Col4a3em1Bghn | Not measured | Not measured | Moderate albuminuria (albumin-to-creatinine ratio) from 9 to 23 weeks | Not measured | GBM thinning and thickening, lamellated and occasionally split (age not defined) | Podocyte foot process effacement (age not defined), glomerulosclerosis; occasional formation of crescents | Not measured | Normal expression of Col4a3, Col4a4, and Col4a5 proteins | Not measured | Not measured | [24] |
C57BL/6J | Col4a3em1Bghn heterozygous | Not measured—some mice were used for experiments at the age of one year | Not measured | Mild albuminuria (albumin-to-creatinine ratio) at one year | Not measured | GBM thinning and thickening at one year | Glomerulosclerosis | Not measured | Normal expression of Col4a3, Col4a4, and Col4a5 proteins | Not measured | Not measured | [24] |
C57BL/6J | Col4a4m1Btlr | 6–7 months | Present by 3 months old (Chemstrip analysis) | Proteinuria initiates at 3 months, established by 4 months (Chemstrip analysis) | Focal/segmental glomerulosclerosis; Interstitial fibrosis by 5 months | Not examined | Not examined | Tubular atrophy and dilation by 5 months | Not measured | Not measured | Increased at 5 months | [25] |
NONcNZO4/Lt | Col4a4bwk | Mean survival time: 124 days | Not measured | Elevated Albumin/creatinine by 4 weeks, reaching 3,400 mg/g at 6 weeks | Glomerulosclerosis, tubulointerstitial nephritis, inflammatory cells in the interstitium at 3 months | Not examined | Synechiae, expansion of mesangial matrix, glomerular crescents at 3 months | Tubular protein casts, tubular atrophy examined at 3 months | Low expression of Col4a3/a4/a5 and increased expression of Col4a2 in the GBM at 5 and 10 weeks | Not measured | Not measured | [26] |
129S1/ SvImJ | Not measured | Not measured | Albumin/creatinine 3000 mg/g (females), 5000 mg/g (males) at 12 weeks | Late-onset (9 weeks) glomerulosclerosis, inflammatory cell infiltration | Splitting, thickening, and basket-weave-like morphology, extensive lesions at 6 weeks | Podocyte foot effacement at 6 weeks | Late-onset (9 weeks) tubular protein casts and tubular atrophy | Not measured | Not measured | Not measured | ||
DBA/2J | Mean age of death: 84 days | Not measured | Albumin/creatinine 7300 mg/g (females), 8700 mg/g (males) at 12 weeks | Early-onset (6 weeks) glomerulosclerosis and mild inflammatory cell infiltration | Splitting, thickening, basket-weave-like morphology, extensive lesions at 6 weeks | Podocyte foot effacement at 6 weeks | Early-onset (6 weeks) tubular protein casts, tubular atrophy | Not measured | Not measured | Not measured | ||
63% C3H.Pde6b+/37% C57BL/6J | Col4a4m1H | Mean survival time: 70 days | Not measured | Protein/creatinine ratio: not significantly increased at 4 and 7 weeks | Not examined | Glomerular enlargement, increased cellularity, and sclerosis (at 53 days) | Tubular dilation, hyaline casts (at 53 days) | Absence of Col4a4 from glomeruli | Increased at 4 weeks | Increased at 4 weeks | [27] | |
C3H.Pde6b+ enriched | Mean survival time: 47 days | Present at 4 weeks (dipstick analysis) | Present from 4 weeks (dipstick analysis) | Reduced inflammation markers by 4 weeks in the B6-enriched strain compared to the C3H-enriched strain | 4 weeks: larger-swollen podocytes, thickened foot processes, flattened, and irregular. 7 weeks: podocyte effacement | Increased expression of (Kim-1) by 4 weeks | Increased at 7 weeks | Increased at 7 weeks | ||||
C57BL/6J enriched | Mean survival time: 97 days | Not present at 4 weeks (dipstick analysis) | Present from 7 weeks (dipstick analysis) | No glomerular alterations at 7 weeks | Hyaline casts, mild tubular basophilia at 49 days. Reduced Kim-1 expression | Normal at 7 weeks | Normal at 7 weeks | |||||
FVB/N | Col4Δ3-4 | 10-14 weeks | Present at 2 weeks | Detectable at 2 weeks; 10-fold elevated at 1 month | Interstitial fibrosis by 8 weeks | Thin/focally duplicated at 2 weeks. Thicker/disorganized with basketweaving of the lamina densa later | Hyperplasia of parietal epithelial cells; crescentic glomerulonephritis; increased mesangial or endocapillary cells; BrdU positivity of parietal and endocapillary cells at 5 weeks | Intratubular RBCs; protein casts at 2 weeks. Tubular cells BrdU positive at 4 weeks. Tubular injury and tubular atrophy at 8 weeks | Col4a3, Col4a4, and Col4a5 absent from both GBM and TBM. Col4a1 and Col4a2 are detected in the GBM, TBM, and mesangium | Normal at 6 weeks 10-fold elevated at 12 weeks | Not measured | [28] |
C57BL/6 | Col4a5tm1Yseg | From 6 to 34 weeks; median: 23 weeks (males); From 8 to 45 weeks; median: 39 weeks (female carriers) | Not measured | Present in males after 7 weeks; Proteinuria in female carriers after 9 weeks | Males at 17 weeks: widespread interstitial inflammation and focal sclerosis in glomeruli | Males: lamellation at 4 weeks, lamellation-splitting at 17 weeks, podocyte foot process effacement, vesiculation, and denudation; Females: lamellation at 17 weeks | Males: at 4 weeks, capillary wall thickening, mesangial hypercellularity. At 7 weeks, capillary loop dilation, capillary tuft collapse, capsular adhesions. Females: at 17 weeks, focal abnormalities | Males: at 4 weeks, sparing of tubulointerstitium. Females: at 17 weeks, focal abnormalities | Loss of Col4a3, Col4a5 from GBM and TBM and of Col4a6 from Bowman’s capsule; conserved expression of Col4a1 and Col4a2. Mosaic Col4a5 and Col4a3 in females | Not measured | Increased plasma urea nitrogen levels | [29] |
C57BL/6J | Col4a5em1Keha | Hemizygous males: started dying at 26 weeks; 72.2% died by 30 weeks. Median: 28 weeks | Present after 22 weeks | Present and increasing before 10 weeks | Interstitial fibrosis by 6 weeks | At 6 weeks: focal irregularity of GBM/occasional foot process effacement; at 22 weeks: marked thickening with matrix lamination in GBM | Glomerular tuft collapse thickened Bowman’s capsule. Parietal cell hyperplacia and increased mesangial matrices at 6 weeks. Glomerulosclerosis at 22 weeks | Tubulointerstitial changes associated with glomerulosclerosis initiating at 6 weeks | Loss of Col4a5 from GBM and TBM at 6 weeks | Increased levels after 10 weeks | Increased levels after 10 weeks | [30] |
Model Name | Hearing Loss | Ocular Abnormalities | Reference |
---|---|---|---|
Col4a3tm1Jhm | Increased auditory threshold in 3/12 mutant mice (at P89 and P96) | Not measured | [18] |
Col4a3tm1Dec/J | Structural/biochemical alterations, alterations in cochlear basement membrane, increased thickness of the cochlear basement membrane, increased auditory threshold | Irregular interior layer of basement membrane encasing the anterior lens, reduced anterior capsule apical angle, increased thickness of the basement membrane of retinal capillaries | [19,44,51] |
Col4a3tm1Dec/J-(heterozygous) | Not measured | Not measured | [20] |
Col4a3tm1.1Rk1 | Not measured | Not measured | [21] |
Col4a3p.G1332E (this entry refers to all three models with the glycine substitution to glutamate) | Not measured | Not measured | [22] |
Col4a3em1Bghn (this entry refers to both the homozygous and the heterozygous models) | Not measured | Not measured | [24] |
Col4a4m1Btlr | Elevated thresholds in 2/6 mice aged 5 months old | Not measured | [25] |
Col4a4bwk | No deviations in hearing were found (age not defined) | No ocular histological alterations | [26] |
Col4a4m1H | No hearing loss (examined at 6–7 weeks) | No alterations in optokinetic drum scores, slit lamp, and ophthalmoscopic observations (examined at 6–7 weeks) | [27] |
Col4Δ3-4 | Not measured | Not measured | [28] |
Col4a5tm1Yseg | Not measured | Not measured | [29] |
Col4a5em1Keha | Not measured | Not measured | [30] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikolaou, S.; Deltas, C. A Comparative Presentation of Mouse Models That Recapitulate Most Features of Alport Syndrome. Genes 2022, 13, 1893. https://doi.org/10.3390/genes13101893
Nikolaou S, Deltas C. A Comparative Presentation of Mouse Models That Recapitulate Most Features of Alport Syndrome. Genes. 2022; 13(10):1893. https://doi.org/10.3390/genes13101893
Chicago/Turabian StyleNikolaou, Stavros, and Constantinos Deltas. 2022. "A Comparative Presentation of Mouse Models That Recapitulate Most Features of Alport Syndrome" Genes 13, no. 10: 1893. https://doi.org/10.3390/genes13101893
APA StyleNikolaou, S., & Deltas, C. (2022). A Comparative Presentation of Mouse Models That Recapitulate Most Features of Alport Syndrome. Genes, 13(10), 1893. https://doi.org/10.3390/genes13101893