Development of SNP Markers from GWAS for Selecting Seed Coat and Aleurone Layers in Brown Rice (Oryza sativa L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Phenotypic Analyses Using Oil Red O Staining
2.3. DNA Isolation and Genome Sequencing
2.4. GWAS
2.5. Analysis of the LD Block and Haplotype
2.6. Identification of SNPs and Candidate Genes
2.7. Development of Molecular Markers
3. Results
3.1. Phenotypic Variation for Traits Related to Seed Coat and Aleurone Layers
3.2. Genome-Wide SNPs and Association Analysis
3.3. Identification of Candidate Genes Related to the Thickness of the Seed Coat and Aleurone Layers
3.4. Development of Molecular Markers for Traits of Seed Coat and Aleurone Layer Thickness
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chung, H.S.; Shin, J. Characterization of antioxidant alkaloids and phenolic acids from anthocyanin-pigmented rice (Oryza sativa cv. Heugjinjubyeo). Food Chem. 2007, 104, 1670–1677. [Google Scholar] [CrossRef]
- Kim, D.J.; Oh, S.K.; Yoon, M.R.; Chun, A.R.; Hong, H.C.; Lee, J.S.; Kim, Y.K. Antioxidant compounds and antioxidant activities of the 70% ethanol extracts from brown and milled rice by cultivar. J. Korean Soc. Food. Sci. Nutr. 2010, 39, 467–473. [Google Scholar] [CrossRef]
- Moon, G.S.; Kim, M.; Jin, M.; Kim, S.; Park, S.; Ryu, B. Physicochemical and Sensory Properties of Rice Stored in an Un-used Tunnel. Korean J. Food. Cook. Sci. 2010, 26, 220–228. [Google Scholar]
- Her, Y.M.; Lee, S.Y.; Lee, S.Y. Preparation of functional nutrient enriched rices by coating method. Food Eng. Prog. 2007, 11, 185–197. [Google Scholar]
- Ha, T.Y. Health functional properties of rice. Food Ind. Nutr. 2008, 13, 22–26. [Google Scholar]
- Shobana, S.; Malleshi, N.G.; Sudha, V.; Spiegelman, D.; Hong, B.; Hu, F.; Willett, W.; Krishnaswamy, K.; Mohan, V. Nutritional and sensory profile of two Indian rice varieties with different degrees of polishing. Int. J. Food Sci. Nutr. 2011, 62, 800–810. [Google Scholar] [CrossRef]
- Wang, X.; Jia, M.H.; Ghai, P.; Lee, F.N.; Jia, Y. Genome-Wide Association of Rice Blast Disease Resistance and Yield-Related Components of Rice. Mol. Plant-Microbe Interact. MPMI 2015, 28, 1383–1392. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.; Zhao, H.; Wang, J.; Liu, H.; Zheng, H.; Sun, J.; Yang, L.; Sha, H.; Zou, D. Dissection of QTL alleles for blast resistance based on linkage and linkage disequilibrium mapping in japonica rice seedlings. Australas. Plant Pathol. 2016, 45, 209–218. [Google Scholar] [CrossRef]
- Huang, X.; Wei, X.; Sang, T.; Zhao, Q.; Feng, Q.; Zhao, Y.; Li, C.; Zhu, C.; Lu, T.; Zhang, Z.; et al. Genome-wide association studies of 14 agronomic traits in rice landraces. Nat. Genet. 2010, 42, 961–967. [Google Scholar] [CrossRef]
- Zhao, K.; Tung, C.; Eizenga, G.C.; Wright, M.H.; Ali, M.L.; Price, A.H.; Norton, G.J.; Islam, M.R.; Reynolds, A.; Mezey, J.G.; et al. Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat. Commun. 2011, 2, 467. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Guo, Z.; Huang, C.; Duan, L.; Chen, G.; Jiang, N.; Fang, W.; Feng, H.; Xie, W.; Lian, X.; et al. Combining high-throughput phenotyping and genome-wide association studies to reveal natural genetic variation in rice. Nat. Commun. 2014, 5, 5087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yano, K.; Yamamoto, E.; Aya, K.; Takeuchi, H.; Lo, P.; Hu, L.; Yamasaki, M.; Yoshida, S.; Kitano, H.; Hirano, K.; et al. Genome-wide association study using whole-genome sequencing rapidly identifies new genes influencing agronomic traits in rice. Nat. Genet. 2016, 48, 927–934. [Google Scholar] [CrossRef] [PubMed]
- Korte, A.; Farlow, A. The advantages and limitations of trait analysis with GWAS: A review. Plant Methods 2013, 9, 29. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Han, B. Natural variations and genome-wide association studies in crop plants. Annu. Rev. Plant Biol. 2014, 65, 531–551. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Zhang, J.; Cai, S.; Chen, X.; Quan, X.; Zhang, G. Association mapping for total polyphenol content, total flavonoid content and antioxidant activity in barley. BMC Genom. 2018, 19, 81. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Chen, K.; Zhao, X.; Wang, X.; Shen, C.; Zhu, Y.; Dai, M.; Qiu, X.; Yang, R.; Xing, D.; et al. Identification of genes for salt tolerance and yield-related traits in rice plants grown hydroponically and under saline field conditions by genome-wide association study. Rice 2019, 12, 88. [Google Scholar] [CrossRef] [PubMed]
- Sakai, H.; Kanamori, H.; Arai-Kichise, Y.; Shibata-Hatta, M.; Ebana, K.; Oono, Y.; Kurita, K.; Fujisawa, H.; Katagiri, S.; Mukai, Y.; et al. Construction of Pseudomolecule Sequences of the aus Rice Cultivar Kasalath for Comparative Genomics of Asian Cultivated Rice. DNA Res. Int. J. Rapid Publ. Rep. Genes Genomes 2014, 21, 397–405. [Google Scholar] [CrossRef] [Green Version]
- Schatz, M.C.; Maron, L.G.; Stein, J.C.; Hernandez, W.A.; Gurtowski, J.; Biggers, E.; Lee, H.S.; Kramer, M.; Antoniou, E.; Ghiban, E.; et al. New whole genome de novo assemblies of three divergent strains of rice (O. sativa) documents novel gene space of aus and indica. bioRxiv 2014, 003764. [Google Scholar] [CrossRef] [Green Version]
- Alexandrov, N.N.; Tai, S.; Wang, W.; Mansueto, L.; Palis, K.; Fuentes, R.R.; Ulat, V.J.; Chebotarov, D.; Zhang, G.; Li, Z.; et al. SNP-Seek database of SNPs derived from 3000 rice genomes. Nucleic Acids Res. 2015, 43, D1023–D1027. [Google Scholar] [CrossRef] [PubMed]
- Zuo, S.M.; Kang, H.X.; Li, Q.Q.; Chen, Z.X.; Zhang, Y.F.; Liu, W.D.; Wang, G.L.; Chen, H.Q.; Pan, X.B. Genome-wide association analysis and utilization of gene related to ear traits in introduced rice germplasm. Chin. J. Rice Sci. 2014, 28, 649–658. [Google Scholar]
- Agrama, H.A.; Yan, W.; Lee, F.N.; Fjellstrom, R.G.; Chen, M.; Jia, M.H.; McClung, A.M. Genetic Assessment of a Mini-Core Subset Developed from the USDA Rice Genebank. Crop Sci. 2009, 49, 1336–1346. [Google Scholar] [CrossRef]
- Yan, W.; Rutger, J.N.; Bryant, R.J.; Bockelman, H.E.; Fjellstrom, R.G.; Chen, M.; Tai, T.H.; McClung, A.M. Development and evaluation of a core subset of the USDA rice germplasm collection. Crop Sci. 2007, 47, 869–876. [Google Scholar] [CrossRef]
- Huggins, T.D.; Chen, M.; Fjellstrom, R.G.; Jackson, A.K.; McClung, A.M.; Edwards, J.D. Association Analysis of Three Diverse Rice (Oryza sativa L.) Germplasm Collections for Loci Regulating Grain Quality Traits. Plant Genome 2019, 12, 170085. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Bao, J.; Corke, H.; Sun, M. Association Analysis of Markers Derived from Starch Biosynthesis Related Genes with Starch Physicochemical Properties in the USDA Rice Mini-Core Collection. Front. Plant Sci. 2017, 8, 424. [Google Scholar] [CrossRef]
- Jia, L.; Yan, W.; Agrama, H.A.; Yeater, K.M.; Li, X.; Hu, B.; Moldenhauer, K.A.; McClung, A.M.; Wu, D. Searching for Germplasm Resistant to Sheath Blight from the USDA Rice Core Collection. Crop Sci. 2011, 51, 1507–1517. [Google Scholar] [CrossRef]
- Wang, X.; Kim, K.; Chu, S.; Phitaktansakul, R.; Park, S.; Chung, I.; Lee, Y.; Park, Y. Genome-Wide Association Study for Squalene Contents and Functional Haplotype Analysis in Rice. ACS Omega 2019, 4, 19358–19365. [Google Scholar] [CrossRef] [Green Version]
- Khin, O.; Sato, M.; Li-tao, T.; Matsue, Y.; Yoshimura, A.; Mochizuki, T. Close Association between Aleurone Traits and Lipid Contents of Rice Grains Observed in Widely Different Genetic Resources of Oryza sativa. Plant Prod. Sci. 2013, 16, 41–49. [Google Scholar] [CrossRef] [Green Version]
- Rueden, C.T.; Schindelin, J.E.; Hiner, M.C.; DeZonia, B.E.; Walter, A.E.; Arena, E.T.; Eliceiri, K.W. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinform. 2017, 18, 529. [Google Scholar] [CrossRef] [Green Version]
- Newton Martin, T.; Mon?on Fipke, G.; Minussi Winck, J.E.; Marchese, J.A. ImageJ software as an alternative method for estimating leaf area in oats. Acta Agron. 2021, 69, 162–169. [Google Scholar] [CrossRef]
- Kim, M.-S.; Yu, J.-K.; Ko, S.-R.; Kim, K.-J.; Ji, H.; Kang, K.-K.; Cho, Y.-G. Marker-Assisted Backcrossing (MABc) to Improve Eating Quality with Thin Seed Coat and Aleurone Layer of Non-Glutinous Japonica Variety in Rice. Genes 2022, 13, 210. [Google Scholar]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Del Fabbro, C.; Scalabrin, S.; Morgante, M.; Giorgi, F.M. An Extensive Evaluation of Read Trimming Effects on Illumina NGS Data Analysis. PLoS ONE 2013, 8, e85024. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [Green Version]
- Auwera, G.A.; Carneiro, M.O.; Hartl, C.; Poplin, R.; Angel, G.D.; Levy-Moonshine, A.; Jordan, T.; Shakir, K.; Roazen, D.; Thibault, J.; et al. From FastQ Data to High Confidence Variant Calls: The Genome Analysis Toolkit Best Practices Pipeline. Curr. Protoc. Bioinform. 2013, 43, 11.10.1–11.10.33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lipka, A.E.; Tian, F.; Wang, Q.; Peiffer, J.; Li, M.; Bradbury, P.J.; Gore, M.A.; Buckler, E.S.; Zhang, Z. Gapit: Genome Association and Prediction Integrated Tool. Bioinformatics 2012, 28, 2397–2399. [Google Scholar] [CrossRef]
- Barrett, J.C.; Fry, B.; Maller, J.D.M.J.; Daly, M.J. Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics 2004, 21, 263–265. [Google Scholar] [CrossRef] [Green Version]
- Gabriel, S.B.; Schaffner, S.F.; Nguyen, H.; Moore, J.M.; Roy, J.; Blumenstiel, B.; Higgins, J.; DeFelice, M.; Lochner, A.; Faggart, M.; et al. The structure of haplotype blocks in the human genome. Science 2002, 296, 2225–2229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, L.; Yueying, W.; Jahan, N.; Haitao, H.; Ping, C.; Lianguang, S.; Haiyan, L.; Guojun, D.; Jiang, H.; Zhenyu, G.; et al. Genome-Wide Association Analysis and Allelic Mining of Grain Shape-Related Traits in Rice. Rice Sci. 2019, 26, 384–392. [Google Scholar] [CrossRef]
- Rozen, S.; Skaletsky, H. Primer3 on the WWW for general users and for biologist programmers. Methods Mol. Biol. 2000, 132, 365–386. [Google Scholar] [PubMed] [Green Version]
- Liu, J.; Wu, X.; Yao, X.; Yu, R.; Larkin, P.J.; Liu, C. Mutations in the DNA demethylase OsROS1 result in a thickened aleurone and improved nutritional value in rice grains. Proc. Natl. Acad. Sci. USA 2018, 115, 11327–11332. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Gu, Y.J.; Hirasawa, T.; Ookawa, T.; Yanahara, S. Comparison of Caryopsis Development Between Two Rice Varieties with Remarkable Difference in Grain Weights. J. Integr. Plant Biol. 2004, 46, 698–710. [Google Scholar]
- Brachi, B.; Morris, G.P.; Borevitz, J.O. Genome-wide association studies in plants: The missing heritability is in the field. Genome Biol. 2011, 12, 232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The 3000 Rice Genomes Project. The 3000 rice genomes project. GigaScience 2014, 3, 7. [Google Scholar]
- Tang, L.; Zhang, F.; Liu, A.; Sun, J.; Mei, S.; Wang, X.; Liu, Z.; Liu, W.; Lu, Q.; Chen, S. Genome-Wide Association Analysis Dissects the Genetic Basis of the Grain Carbon and Nitrogen Contents in Milled Rice. Rice 2019, 12, 101. [Google Scholar] [CrossRef] [PubMed]
- Irshad, F.; Li, C.; Wu, H.; Yan, Y.; Xu, J. The Function of DNA Demethylase Gene ROS1a Null Mutant on Seed Development in Rice (Oryza sativa) Using the CRISPR/CAS9 System. Int. J. Mol. Sci. 2022, 23, 6357. [Google Scholar] [CrossRef] [PubMed]
Parameter | Thickest Part of Aleurone Layers | Middle Part of Aleurone Layers | Thinnest Part of Aleurone Layers |
---|---|---|---|
Max | 278.26 | 111.61 | 41.62 |
Min | 6.57 | 18.44 | 4.30 |
Mean | 102.95 | 50.76 | 15.59 |
SD * | 33.58 | 15.90 | 6.20 |
CV | 33.0 | 31.0 | 40.0 |
F-value | 5.80 *** | 5.41 *** | 1.57 ** |
Region of Aleurone Layers | SNP | Chr. * | Position | −log10(p) | MAF | R2 |
---|---|---|---|---|---|---|
Thickest part | S4_34033252 | 4 | 34,033,252 | 5.94 | 0.37 | 0.27 |
S5_22192204 | 5 | 22,192,204 | 5.63 | 0.29 | 0.27 | |
S5_13860270 | 5 | 13,860,270 | 5.45 | 0.25 | 0.26 | |
S10_9474845 | 10 | 9,474,845 | 5.39 | 0.34 | 0.26 | |
S5_576613 | 5 | 576,613 | 5.35 | 0.08 | 0.26 | |
S3_21376842 | 3 | 21,376,842 | 5.27 | 0.22 | 0.26 | |
S1_37703964 | 1 | 37,703,964 | 5.18 | 0.38 | 0.26 | |
S1_23339931 | 1 | 23,339,931 | 5.14 | 0.10 | 0.26 | |
S10_13747884 | 10 | 13,747,884 | 5.13 | 0.20 | 0.26 | |
S7_15563131 | 7 | 15,563,131 | 5.13 | 0.32 | 0.26 | |
Middle part | S3_20312675 | 3 | 20,312,675 | 6.53 | 0.22 | 0.24 |
S7_15626500 | 7 | 15,626,500 | 6.45 | 0.40 | 0.23 | |
S3_20316038 | 3 | 20,316,038 | 5.87 | 0.48 | 0.23 | |
S10_13717536 | 10 | 13,717,536 | 5.58 | 0.32 | 0.22 | |
S3_20362684 | 3 | 20,362,684 | 5.57 | 0.24 | 0.22 | |
S3_20375875 | 3 | 20,375,875 | 5.37 | 0.17 | 0.22 | |
S3_24286249 | 3 | 24,286,249 | 5.37 | 0.27 | 0.22 | |
S10_13483606 | 10 | 13,483,606 | 5.34 | 0.11 | 0.22 | |
S10_13633474 | 10 | 13,633,474 | 5.34 | 0.19 | 0.22 | |
S3_24392449 | 3 | 24,392,449 | 5.34 | 0.18 | 0.22 | |
Thinnest part | S1_6459856 | 1 | 6,459,856 | 6.00 | 0.18 | 0.10 |
S10_13753396 | 10 | 13,753,396 | 5.60 | 0.34 | 0.10 | |
S7_13503023 | 7 | 13,503,023 | 5.49 | 0.34 | 0.09 | |
S3_24411338 | 3 | 24,411,338 | 5.38 | 0.19 | 0.09 | |
S10_13677461 | 10 | 13,677,461 | 5.37 | 0.10 | 0.09 | |
S7_13769864 | 7 | 13,769,864 | 5.22 | 0.14 | 0.09 | |
S7_13614908 | 7 | 13,614,908 | 5.19 | 0.28 | 0.09 | |
S7_13769867 | 7 | 13,769,867 | 5.17 | 0.14 | 0.09 | |
S10_13481587 | 10 | 13,481,587 | 5.17 | 0.15 | 0.09 | |
S3_24326767 | 3 | 24,326,767 | 5.13 | 0.48 | 0.09 |
No. | SNP | Locus ID | Description | Position | Length (bp) | Gene Name |
---|---|---|---|---|---|---|
1 | S1_6459856 | Os01g0218032 | Putative DNA demethylase, Endosperm development | chr01:6444246..6456068 (+ strand) | 11,823 | REPRESSOR OF SILENCING 1a, thick aleurone 2 |
2 | Os01g0218100 | Helix-loop-helix DNA-binding domain containing protein | chr01:6462770..6465035 (+ strand) | 2266 | - | |
3 | Os01g0218200 | Thioredoxin domain 2 containing protein | chr01:6471789..6476664 (+ strand) | 4876 | - | |
4 | Os01g0218500 | FLOWERING LOCUS T (FT)-Like homolog | chr01:6494446..6499766 (+ strand) | 5321 | FT-Like homolog | |
5 | S1_23339931 | Os01g0594300 | Pistil-specific extensin-like protein family protein | chr01:23285238..23287336 (+ strand) | 2099 | - |
6 | S1_37703964 | Os01g0850100 | Similar to Phosphatidic acid phosphatase-like protein | chr01:36540164..36545196 (+ strand) | 5033 | - |
7 | Os01g0851300 | Reticulon family protein | chr01:36652530..36654649 (− strand) | 2120 | - | |
8 | Os01g0851600 | 3-oxo-5-α-steroid 4-dehydrogenase, C-terminal domain containing protein | chr01:36666965..36668075 (+ strand) | 1111 | - | |
9 | Os01g0851700 | Similar to Cytosolic starch phosphorylase (Fragment) | chr01:36670321..36676478 (− strand) | 6158 | - | |
10 | Os01g0852200 | Similar to sialin | chr01:36687545..36695629 (− strand) | 8085 | - | |
11 | Os01g0852650 | FAR1 DNA binding domain domain containing protein | chr01:36727945..36729912 (+ strand) | 1968 | - | |
12 | Os01g0853400 | Component of the SCF E3 ubiquitin ligase complex, Jasmonate-regulated defense responses, Promoting leaf senescence | chr01:36747521..36750925 (+ strand) | 3405 | CORONATINE INSENSITIVE1 | |
13 | S3_20312675 | Os03g0564200 | Protein of unknown function DUF952 family protein | chr03:20313408..20318292 (+ strand) | 727 | - |
14 | Os03g0564350 | Conserved hypothetical protein. | chr03:20321430..20321672 (+ strand) | 243 | - | |
15 | S3_20375875 | Os03g0565100 | OST3/OST6 family protein | chr03:20363579..20370035 (− strand) | 6457 | - |
16 | Os03g0565200 | Haloacid dehalogenase-like hydrolase domain containing protein | chr03:20379625..20387042 (+ strand) | 7418 | - | |
17 | S3_21376842 | Os03g0565500 | Similar to Elongation factor G 1, mitochondrial precursor (mEF-G-1) (EFGM) | chr03:20403051..20417506 (+ strand) | 14,456 | - |
18 | Os03g0565600 | Similar to tobamovirus multiplication-like protein | chr03:20420795..20426307 (− strand) | 5513 | - | |
19 | Os03g0581600 | Similar to DAG protein | chr03:21363967..21368868 (+ strand) | 4902 | - | |
20 | S3_24286249 | Os03g0635100 | Heterotrimeric G protein γ subunit 1, Regulation of abiotic stresses, Salinity stress tolerance | chr03:24252686..24256939 (− strand) | 4,254 | Heterotrimeric G-protein γ subunit 1 |
21 | S3_24326767 | Os03g0636800 | LSTK-1-like kinase | chr03:24351648..24357284 (− strand) | 5637 | - |
22 | S3_24392449 | Os03g0637600 | Leucine-rich repeat, plant specific containing protein | chr03:24401251..24402892 (− strand) | 1642 | - |
23 | Os03g0637800 | Crinkly4 receptor-like kinase, Epidermal cell differentiation, Interlocking of the palea and lemma, Control of grain size and shape | chr03:24415884..24420065 (+ strand) | 4182 | CRINKLY4 | |
24 | S3_24411338 | Os03g0638200 | Similar to Major facilitator superfamily protein, expressed | chr03:24449135..24453890 (+ strand) | 4756 | - |
25 | Os03g0638300 | Tesmin/TSO1-like, CXC domain containing protein | chr03:24454477..24457481 (− strand) | 3005 | - | |
26 | S4_34033252 | Os04g0666500 | Indole-3-acetate O-methyltransferase 1-like | chr04:34022617..34024079 (+ strand) | 1167 | - |
27 | Os04g0666800 | Dirigent protein 2 | chr04:34038375..34039430 (− strand) | 773 | - | |
28 | Os04g0666900 | Similar to H1005F08.22 protein | chr04:34040123..34048308 (− strand) | 8186 | - | |
29 | Os04g0667200 | Similar to H1005F08.24 protein | chr04:34060040..34063474 (+ strand) | 3435 | - | |
30 | Os04g0667400 | Melatonin 2-hydroxylase, Control of the melatonin level in plants | chr04:34067654..34070800 (− strand) | 3147 | Melatonin 2-hydroxylase | |
31 | S5_576613 | Os05g0110000 | Zinc finger, RING/FYVE/PHD-type domain containing protein | chr05:538304..539630 (+ strand) | 1327 | - |
32 | Os05g0110200 | DVL family protein | chr05:548370..548715 (− strand) | 346 | - | |
33 | Os05g0110700 | Chromosome segregation protein Spc25 domain containing protein | chr05:568790..572502 (− strand) | 3713 | - | |
34 | Os05g0110900 | Receptor-like cytoplasmic kinase, Positive regulation of peptidoglycan and chitin triggered immunity | chr05:577182..580396 (− strand) | 3215 | Receptor-like cytoplasmic kinase 176 | |
35 | Os05g0111000 | Similar to Gag polyprotein | chr05:593356..597828 (+ strand) | 4473 | - | |
36 | Os05g0111100 | Zinc finger, Tim10/DDP-type family protein | chr05:599130..599776 (− strand) | 647 | - | |
37 | S5_13860270 | Os05g0306000 | GOLD domain containing protein | chr05:13840559..13848909 (− strand) | 1762 | - |
38 | S5_22192204 | Os05g0451100 | Major facilitator superfamily protein | chr05:22155979..22159703 (+ strand) | 3725 | - |
39 | Os05g0451900 | O-fucosyltransferase 19 | chr05:22184180..22188759 (+ strand) | 2171 | - | |
40 | Os05g0452400 | Conserved hypothetical protein | chr05:22192448..22192819 (+ strand) | 372 | - | |
41 | Os05g0452600 | Similar to 50S ribosomal protein L33 | chr05:22198315..22199542 (+ strand) | 1228 | - | |
42 | Os05g0452900 | Similar to phosphatidic acid phosphatase-related/PAP2-related | chr05:22214698..22219617 (− strand) | 4920 | - | |
43 | S7_13503023 | Os07g0420700 | Similar to α-glucosidase like protein | chr07:13488360..13501017 (+ strand) | 12,658 | - |
44 | Os07g0420900 | F-box protein 368 | chr07:13509977..13510777 (+ strand) | 801 | - | |
45 | Os07g0421000 | Cyclin-like F-box domain containing protein | chr07:13513636..13515776 (− strand) | 1530 | - | |
46 | Os07g0421300 | Similar to α glucosidase-like protein | chr07:13534771..13548698 (+ strand) | 13,928 | - | |
47 | S7_13614908 | Os07g0421600 | Similar to transferase family protein | chr07:13556183..13558261 (+ strand) | 2079 | - |
48 | Os07g0423000 | Mitochodrial transcription termination factor-related family protein | chr07:13654341..13655841 (− strand) | 1501 | - | |
49 | S7_13769864 | Os07g0424400 | Similar to Cellulose synthase-7 | chr07:13741551..13747205 (− strand) | 5655 | - |
50 | Os07g0425000 | Biopterin transport-related protein BT1 family protein | chr07:13776950..13778155 (− strand) | 1206 | - | |
51 | S7_15563131 | Os07g0451300 | Cytochrome P450 family protein | chr07:15560341..15561945 (+ strand) | 1605 | - |
52 | Os07g0452100 | Similar to α-galactosidase | chr07:15580083..15584254 (+ strand) | 4172 | - | |
53 | Os10g0399200 | Similar to Cys/Met metabolism PLP-dependent enzyme family protein | chr10:13449222..13450950 (− strand) | 1729 | - | |
54 | S10_13481587 | Os10g0399700 | Similar to Cys/Met metabolism PLP-dependent enzyme family protein | chr10:13467597..13469366 (+ strand) | 1770 | - |
55 | Os10g0400100 | Methionyl-tRNA synthetase, class Ia domain containing protein | chr10:13492802..13496772 (+ strand) | 3971 | - | |
56 | S10_13483606 | Os10g0400500 | Similar to Pyridoxal-dependent decarboxylase conserved domain containing protein | chr10:13524417..13525925 (− strand) | 1509 | - |
57 | S10_13633474 | Os10g0402200 | Origin recognition complex subunit 3, Lateral root development | chr10:13600900..13606431 (− strand) | 5532 | ORIGIN RECOGNITION COMPLEX 3 |
58 | Os10g0402400 | Transferase family protein | chr10:13611824..13614202 (− strand) | 2379 | - | |
59 | S10_13717536 | Os10g0403000 | Cytochrome P450 protein, CYP78A11, Regulation of leaf initiation rate and vegetative-reproductive phase change | chr10:13658790..13660543 (− strand) | 1754 | PLASTOCHRON 1 |
60 | Os10g0403800 | Basic helix-loop-helix (bHLH) transcriptional factor, Regulation of leaf angle | chr10:13721970..13722965 (− strand) | 996 | Basic helix-loop-helix protein 174 | |
61 | S10_13753396 | Os10g0404000 | Conserved hypothetical protein | chr10:13757771..13762009 (+ strand) | 2046 | - |
Gene | SNP Position (bp) | Allele | Oligo Name | Sequence (5′→3′) | Tm (°C) | Product Size |
---|---|---|---|---|---|---|
TA2 | S1_6444737 | C/T | TA2S1-737-Fw | CACGGAAACCCAAGAAGAAA | 60 | 175 bp |
TA2S1-737-Rv | GCCTGTTCTGCAGGAGGTT | 60 | ||||
S1_6445148 | A/C | TA2S1-148-Fw | TGCACATTTGTTTCCTCCTG | 60 | 225 bp | |
TA2S1-148-Rv | TGCGTCTGACTGATTGAACTG | 60 |
Population | Generation | Marker | Number of Plant | χ2 * | p-Value | |||
---|---|---|---|---|---|---|---|---|
Total | Homo (Samgwang) | Hetero | Homo (Seolgaeng) | |||||
Samgwang X Seolgaeng | BC2F2 | TA2S1-737 | 50 | 12 | 30 | 8 | 2.64 | 0.27 |
TA2S1-148 | 50 | 12 | 26 | 12 | 0.08 | 0.96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.-S.; Ko, S.-R.; Le, V.T.; Jee, M.-G.; Jung, Y.J.; Kang, K.-K.; Cho, Y.-G. Development of SNP Markers from GWAS for Selecting Seed Coat and Aleurone Layers in Brown Rice (Oryza sativa L.). Genes 2022, 13, 1805. https://doi.org/10.3390/genes13101805
Kim M-S, Ko S-R, Le VT, Jee M-G, Jung YJ, Kang K-K, Cho Y-G. Development of SNP Markers from GWAS for Selecting Seed Coat and Aleurone Layers in Brown Rice (Oryza sativa L.). Genes. 2022; 13(10):1805. https://doi.org/10.3390/genes13101805
Chicago/Turabian StyleKim, Me-Sun, Seo-Rin Ko, Van Trang Le, Moo-Gun Jee, Yu Jin Jung, Kwon-Kyoo Kang, and Yong-Gu Cho. 2022. "Development of SNP Markers from GWAS for Selecting Seed Coat and Aleurone Layers in Brown Rice (Oryza sativa L.)" Genes 13, no. 10: 1805. https://doi.org/10.3390/genes13101805
APA StyleKim, M. -S., Ko, S. -R., Le, V. T., Jee, M. -G., Jung, Y. J., Kang, K. -K., & Cho, Y. -G. (2022). Development of SNP Markers from GWAS for Selecting Seed Coat and Aleurone Layers in Brown Rice (Oryza sativa L.). Genes, 13(10), 1805. https://doi.org/10.3390/genes13101805