An Explanation of Exceptions from Chargaff’s Second Parity Rule/Strand Symmetry of DNA Molecules
Abstract
:1. Introduction
2. Materials and Methods
- (1)
- Candidatus_Carsonella_ruddii, GCF_000287255.1_ASM28725v1, (ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/bacteria/Candidatus_Carsonella_ruddii/latest_assembly_versions/GCF_000287255.1_ASM28725v1, accessed on 18 September 2022).
- (2)
- Human DNA sequence- RefSeq assembly accession: GCF_000001405.33., GRCh38.p7.
- (3)
- NBPF family gene.
- (4)
- C. tremblaya princeps (annotation GCF_000219195.1_ASM21919v1, ftp://ftp.ncbi.nih.gov/genomes/refseq/bacteria/Candidatus_Tremblaya_princeps/all_assembly_versions/suppressed/, accessed on 18 September 2022).
- (5)
- F. alocis (annotation GCA_000163895.2 ASM16389v2, https://www.ncbi.nlm.nih.gov/nuccore/NC_016630.1s, accessed on 18 September 2022).
- (6)
- Pseudovibrio_sp.FO-BEG1 (GCA_000236645.1_ASM23664v1, ftp://ftp.ncbi.nlm.nih.gov/genomes/genbank/bacteria/Pseudovibrio_sp._FO-BEG1/latest_assembly_versions/GCA_000236645.1_ASM23664v1, accessed on 18 September 2022).
3. Results and Discussion
3.1. Distinction between DNA “Strand Symmetry” and “Quadruplet Symmetries”
3.2. An Approximate Rule for the Minimal Sequence Length for the Determination of CSPR Symmetry
3.3. Breakdown of CSPR and Quadruplet Symmetries in Coding DNA
3.4. Are Some Rare Symbionts Exceptions to CSPR?
3.5. Possible Connections to the RNA World Hypothesis of DNA Creation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chargaff, E. Structure and function of nucleic acids as cell constituents. Fed. Proc. 1951, 10, 654–659. [Google Scholar] [PubMed]
- Watson, J.D.; Crick, F.H. Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid. Nature 1953, 171, 737–738. [Google Scholar] [CrossRef] [PubMed]
- Rudner, R.; Karkas, J.D.; Chargaff, E. Separation of B. subtilis DNA into complementary strands. III. Direct analysis. Proc. Natl. Acad. Sci. USA 1968, 60, 921–922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baldi, P.; Brunak, S. Bioinformatics: The Machine Learning Approach; MIT Press: Cambridge, MA, USA; London, UK, 2001. [Google Scholar]
- Prabhu, V.V. Symmetry observations in long nucleotide sequences. Nucleic Acids Res. 1993, 21, 2797–2800. [Google Scholar] [CrossRef] [PubMed]
- Qi, D.; Cuticchia, A.J. Compositional symmetries in complete genomes. Bioinformatics 2001, 17, 557–559. [Google Scholar] [CrossRef] [Green Version]
- Baisnee, P.F.; Hampson, S.; Baldi, P. Why are complementary DNA strands symmetric? Bioinformatics 2002, 18, 1021–1033. [Google Scholar] [CrossRef] [Green Version]
- Albrecht-Buehler, G. Asymptotically increasing compliance of genomes with Chargaff´s second parity rules through inversions and inverted transpositions. Proc. Natl. Acad. Sci. USA 2006, 103, 17828–17833. [Google Scholar] [CrossRef] [Green Version]
- Albrecht-Buehler, G. Inversions and inverted transpositions as the basis for an almost universal “format” of genome sequences. Genomics 2007, 90, 297–305. [Google Scholar] [CrossRef]
- Albrecht-Buehler, G. The three classes of triplet profiles of natural genomes. Genomics 2007, 89, 596–601. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.H.; Huang, Y.Z. Characteristics of oligonucleotide frequencies across genomes: Conservation versus variation, strand symmetry, and evolutionary implications. Nature Proc. 2008, 125, 28. [Google Scholar] [CrossRef]
- Poudel, B.R.; Satapathy, S.S.; Kumar, A.; Jha, P.K.; Buragohain, A.K.; Borah, M.; Ray, S.K. A study in entire chromosomes of violations of the intra-strand parity of complementary nucleotides (Chargaff´s second parity rule). DNA Res. 2009, 16, 325–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perez, J.C. Codon populations in single-stranded whole human genome DNA are fractal and fine-tuned by the golden ratio 1.618. Interdisc. Sci.-Comput. Life Sci. 2010, 2, 228–240. [Google Scholar] [CrossRef] [PubMed]
- Hart, A.; Martinez, S. Statistical testing of Chargaff´s second parity rule in bacterial genome sequences. Stoch. Model. 2011, 27, 272–317. [Google Scholar] [CrossRef]
- Mascher, M.; Schubert, I.; Scholz, U.; Friedel, S. Patterns of nucleotide asymmetries in plant and animal genomes. BioSystems 2013, 111, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Rapoport, A.E.; Trifonov, E.N. Compensatory nature of Chargaff´s second parity rule. J. Biomol. Struct. Dyn. 2013, 31, 1324–1336. [Google Scholar] [CrossRef]
- Rosandić, M.; Paar, V.; Glunčić, M. Fundamental role of start/stop regulators in whole DNA and new trinucleotide classification. Gene 2013, 531, 184–190. [Google Scholar] [CrossRef]
- Rosandić, M.; Vlahović, I.; Glunčić, M.; Paar, V. Trinucleotide’s quadruplet symmetries and natural symmetry law of DNA creation ensuing Chargaff’s second parity rule. J. Biomol. Struc. Dyn. 2016, 34, 1383–1394. [Google Scholar] [CrossRef]
- Rosandić, M.; Vlahović, I.; Paar, V. Novel look at DNA and life–symmetry as evolutionary forcing. J. Theor. Biol. 2019, 483, 109985. [Google Scholar] [CrossRef]
- Yamagishi, M.E.B.; Herai, R.H. Chargaff’s “grammar of biology”: New fractal-like rules. arXiv 2011, arXiv:1112.1528. [Google Scholar]
- Zhang, H.; Li, P.; Zhong, H.S.; Zhang, S.H. Conservation vs. variation of dinucleotide frequencies across bacterial and archaeal genomes: Evolutionary implications. Front. Microbiol. 2013, 4, 269. [Google Scholar] [CrossRef] [Green Version]
- Fickett, J.W.; Torney, D.C.; Wolf, D.R. Base compositional structure of genomes. Genomics 1992, 13, 1056–1064. [Google Scholar] [CrossRef]
- Forsdyke, D.R. Relative roles of primary sequence and (G+C)% in determining the hierarchy of frequencies of complementary trinucleotide pairs in DNAs of different species. J. Mol. Evol. 1995, 41, 573–581. [Google Scholar] [CrossRef] [PubMed]
- Sueoka, N. Intrastrand parity rules of DNA base composition and usage biases of synonimous codons. J. Mol. Evol. 1995, 40, 318–325. [Google Scholar] [CrossRef] [PubMed]
- Bell, S.; Forsdyke, D. Deviations from Chargaff´s second parity rule correlate with direction of transcription. J. Theor. Biol. 1999, 197, 63–76. [Google Scholar] [CrossRef] [PubMed]
- Lobry, J.R.; Lobry, C. Evolution of DNA base composition under no-strand-bias conditions when the substitution rates are not constant. Mol. Biol. Evol. 1999, 16, 719–723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lobry, J.R.; Sueoka, N. Asymmetric directional mutation pressures in bacteria. Genome Biol. 2002, 3, 0058. [Google Scholar] [CrossRef] [Green Version]
- Forsdyke, D.R.; Bell, S.J. Purine loading, stem-loops and Chargaff´s second parity rule: A discussion of the application of elementary principles to easy chemical observations. Appl. Bioinform. 2004, 3, 3–8. [Google Scholar] [CrossRef]
- Chen, L.; Zhao, H. Negative correlation between compositional symmetries and local recombination rates. Bioinformatics 2005, 21, 3951–3958. [Google Scholar] [CrossRef] [Green Version]
- Okamura, K.; Wei, J.; Scherer, S.W. Evolutionary implications of inversions that have caused intra-strand parity in DNA. BMC Genom. 2007, 8, 160–166. [Google Scholar] [CrossRef] [Green Version]
- Kong, S.G.; Fan, W.L.; Chen, H.D.; Hsu, Z.T.; Zhou, N.; Zheng, B.; Lee, H.C. Inverse symmetry in complete genomes and whole-genome inverse duplication. PLoS ONE 2009, 4, e7553. [Google Scholar] [CrossRef]
- Hart, A.; Martinez, S.; Olmos, F. A Gibbs approach to Chargaff´s second parity rule. J. Stat. Phys. 2012, 146, 408–422. [Google Scholar] [CrossRef]
- Nikolau, C.; Almirantis, Y. Deviation from Chargaff´s second parity rule in organellar DNA. Insights into the evolution of organellar genomes. Gene 2006, 381, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Tu, J.; Jia, Z.; Lu, Z. High order intra-strand partial symmetry increases with organismal complexity in animal evolution. Sci. Rep. 2014, 4, 6400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, B.; Huang, L.-F.; Zhang, S.-H. Evaluation of the persistence of higher-order strand symmetry in genomic sequences by novel word symmetry distance analysis. Front. Genet. 2019, 10, 148. [Google Scholar] [CrossRef] [Green Version]
- Szybalski, W.; Kubinski, H.; Sheldrick, O. Pyrimidine clusters on the transcribing strand of DNA and their possible role in the initiation of RNA. Cold Spring Harbor Symp. Quant. Biol. 1966, 31, 123–127. [Google Scholar] [CrossRef]
- Koonin, E.V. Are there laws of genome evolution? PLoS Comput. Biol. 2011, 7, 1002173. [Google Scholar] [CrossRef]
- Wigner, E.P. Problems of symmetry in old and new physics. Bull. Amer. Math. Soc. 1969, 75, 891. [Google Scholar]
- Wigner, E.P. Physics and the Explanation of Life. Found. Phys. 1970, 1, 35–45. [Google Scholar] [CrossRef]
- Nöther, E. Invariante Variantionsprobleme. Nachr. Ges. Wiss. Göttingen Math.-Phys. Kl. 1918, 1918, 235–257. [Google Scholar]
- Kosmann-Schwarzbach, Y. The Noether Theorems: Invariance and Conservation Laws in the Twentieth Century; Springer: New York, NY, USA, 2010. [Google Scholar]
- Gross, D.J. The role of symmetry in fundamental physics. Proc. Natl. Acad. Sci. USA 1996, 93, 14256–14259. [Google Scholar] [CrossRef] [Green Version]
- Monod, J. On symmetry and function in biological systems. In Selected Papers in Molecular Biology by Jacques Monod; Ullmann, A., Ed.; Academic Press: New York, NY, USA, 1978; pp. 701–713. [Google Scholar]
- Bashford, J.D.; Tsohantjis, I.; Jarvis, P.D. A supersymmetric model for the evolution of the genetic code. Proc. Natl. Acad. Sci. USA 1998, 95, 987–992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikolajewa, S.; Friedel, M.; Beyer, A.; Wilhelm, T. The new classification scheme of the genetic code, its early evolution, and tRNA usage. J. Bioinform. Comput. Biol. 2006, 4, 609–620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramos, A.F.; Innocentini, G.C.; Forger, F.M.; Hornos, J.E. Symmetry in biology: From genetic code to stochastic gene regulation. IET Syst. Biol. 2010, 4, 311–329. [Google Scholar] [CrossRef]
- Glazebrook, J.F.; Wallace, R. “The frozen accident” as an evolutionary adaptation: A rate distortion theory perspective on the dynamics and symmetries of genetic coding mechanisms. Informatica 2012, 36, 53–73. [Google Scholar] [CrossRef]
- Afreixo, V.; Rodrigues, J.M.; Bastos, C. Analysis of single-strand exceptional word symmetry in the human genome: New measures. Biostatistics 2015, 16, 209–221. [Google Scholar] [CrossRef] [PubMed]
- Rosandić, M.; Paar, V. Codon sextets with leading role of serine create “ideal” symmetry classification scheme of the genetic code. Gene 2014, 543, 45–52. [Google Scholar] [CrossRef]
- Rosandić, M.; Paar, V. The Novel Ideal Symmetry Genetic Code table–common purine-pyrimidine symmetry net for all RNA and DNA species. J. Theor. Biol. 2021, 524, 110748. [Google Scholar] [CrossRef]
- Rosandić, M.; Paar, V. Standard Genetic code vs. Supersymmetry Genetic Code–Alphabetical table vs. physicochemical table. BioSystems 2022, 14, 110748. [Google Scholar] [CrossRef]
- Rosandić, M. Ryugu amino acid samples support genetic code supersymmetry. Sci. eLetters 2022, eabn7850. [Google Scholar] [CrossRef]
- Miga, K.H. Centromere studies in the era of “telomere-to-telomere” genomics. Exp. Cell Res. 2020, 394, 112127. [Google Scholar] [CrossRef]
- Nurk, S.; Koren, S.; Rhie, A.; Rautiainen, M.; Bzikadze, A.V.; Mikheenko, A.; Vollger, M.R.; Altemose, N.; Uralsky, L.; Gershman, A.; et al. The complete sequence of human genome. Science 2022, 376, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Afreixo, V.; Bastos, C.A.; Garcia, S.P.; Rodrigues, J.M.; Pinho, A.J.; Ferreira, P.J. The breakdown of the word symmetry in the human genome. J. Theo. Biol. 2013, 335, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Gauch, H.G. Scientific Method in Practice; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Shporer, S.; Chor, B.; Rosset, S.; Horn, D. Inversion symmetry of DNA k-mer counts: Validity and deviations. BMC Genom. 2016, 17, 696. [Google Scholar] [CrossRef] [PubMed]
- Sikela, J.M.; van Roy, F. Changing the name of the NBPF/DUF 1220 domain to the Olduvai domain. F1000Research 2018, 6, 2185. [Google Scholar] [CrossRef]
- Woese, C.R. The genetic code. In The Molecular Basis for Genetic Expression; Harper & Row: New York, NY, USA, 1967; p. 186. [Google Scholar]
- Crick, F.H. The origin of the genetic code. J. Mol. Biol. 1968, 38, 367–379. [Google Scholar] [CrossRef]
- Orgel, L.E. Evolution of the genetic apparatus. J. Mol. Biol. 1968, 38, 381–393. [Google Scholar] [CrossRef]
- Gilbert, W. The RNA world. Nature 1986, 319, 618. [Google Scholar] [CrossRef]
- Bernhardt, H.S. The RNA world hypothesis: The worst theory of the early evolution of life (except for all the others). Biol. Direct. 2012, 7, 23. [Google Scholar] [CrossRef] [Green Version]
- Schrödinger, E. What Is Life? Cambridge University Press: Cambridge, UK, 1944. [Google Scholar]
- Rosandić, M.; Paar, V. Supersymmetry Genetic Code table and quadruplet symmetries of DNA molecule are unchangeable and synchronized with the codon free energy mapping during evolution. J. Theor. Biol. 2022; submitted. [Google Scholar]
- Breslauer, K.J.; Frank, R.; Blocker, H.; Marky, L.A. Predicting DNA duplex stability from the base sequence. Proc. Natl. Acad. Sci. USA 1986, 83, 3746–3750. [Google Scholar] [CrossRef]
- Klump, H.H.; Volker, J.; Breslauer, K.J. Energy Mapping of the Genetic Code and Genomic Domains: Implications for Code Evolution and Molecular Darwinism; Cambridge University Press: Cambridge, UK, 2020. [Google Scholar]
A+T-Rich Group (I) | C+G-Rich Group (II) | ||||||
---|---|---|---|---|---|---|---|
D | RC(D) | C(D) | R(D) | D | RC(D) | C(D) | R(D) |
TGA 100 |
TCA 110 |
ACT 011 |
AGT 001 | CAG 100 |
CTG 110 |
GTC 011 |
GAC 001 |
TAG 100 |
CTA 110 |
ATC 011 |
GAT 001 | CGA 100 |
TCG 110 |
GCT 011 |
AGC 001 |
TAA 100 |
TTA 110 |
ATT 011 |
AAT 001 | CGG 100 |
CCG 110 |
GCC 011 |
GGC 011 |
CAA 100 |
TTG 110 |
GTT 011 |
AAC 001 | TGG 100 |
CCA 110 |
ACC 011 |
GGT 001 |
ATG 010 |
CAT 101 |
TAC 101 |
GTA 010 | GCA 010 |
TGC 101 |
CGT 101 |
ACG 010 |
ATA 010 |
TAT 101 |
TAT 101 |
ATA 010 | GCG 010 |
CGC 101 |
CGC 101 |
GCG 010 |
ACA 010 |
TGT 101 |
TGT 101 |
ACA 010 | GTG 010 |
CAC 101 |
CAC 101 |
GTG 010 |
AGA 000 |
TCT 111 |
TCT 111 |
AGA 000 | GAG 000 |
CTC 111 |
CTC 111 |
GAG 000 |
AAG 000 |
CTT 111 |
TTC 111 |
GAA 000 | GGA 000 |
TCC 111 |
CCT 111 |
AGG 000 |
AAA 000 |
TTT 111 |
TTT 111 |
AAA 000 | GGG 000 |
CCC 111 |
CCC 111 |
GGG 000 |
Length of Oligonucleotide n | No. of Different Oligonucleotides of Length n | Estimated Lmin bp | Log Lmin |
---|---|---|---|
1 | 4 | 6250 | 3.80 |
2 | 16 | 25,000 | 4.40 |
3 | 64 | 100,000 * | 5.00 |
4 | 256 | 400,000 | 5.60 n |
5 | 1024 | 1,600,000 | 6.20 |
6 | 4096 | 6,400,000 | 6.81 |
7 | 13,384 | 25,600,000 | 7.41 g |
8 | 65,536 | 102,400,000 | 8.01 |
9 | 262,144 | 409,600,000 | 8.61 |
10 | 1,048,576 | 1,638,400,000 | 9.21 |
11 | 4,194,304 | 6,553,600,000 | 9.82 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosandić, M.; Vlahović, I.; Pilaš, I.; Glunčić, M.; Paar, V. An Explanation of Exceptions from Chargaff’s Second Parity Rule/Strand Symmetry of DNA Molecules. Genes 2022, 13, 1929. https://doi.org/10.3390/genes13111929
Rosandić M, Vlahović I, Pilaš I, Glunčić M, Paar V. An Explanation of Exceptions from Chargaff’s Second Parity Rule/Strand Symmetry of DNA Molecules. Genes. 2022; 13(11):1929. https://doi.org/10.3390/genes13111929
Chicago/Turabian StyleRosandić, Marija, Ines Vlahović, Ivan Pilaš, Matko Glunčić, and Vladimir Paar. 2022. "An Explanation of Exceptions from Chargaff’s Second Parity Rule/Strand Symmetry of DNA Molecules" Genes 13, no. 11: 1929. https://doi.org/10.3390/genes13111929
APA StyleRosandić, M., Vlahović, I., Pilaš, I., Glunčić, M., & Paar, V. (2022). An Explanation of Exceptions from Chargaff’s Second Parity Rule/Strand Symmetry of DNA Molecules. Genes, 13(11), 1929. https://doi.org/10.3390/genes13111929