DNA Damage-Induced RNAPII Degradation and Its Consequences in Gene Expression
Abstract
:1. Introduction
2. Nucleotide Excision Repair
3. Transcription-Coupled Recognition of the Damage
4. RNAPII Ubiquitylation
5. RNAPII Degradation: Last Resort Model?
6. Transcriptional Response to UV Treatment
7. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Kornblihtt, A.R. Chromatin, Transcript Elongation and Alternative Splicing. Nat. Struct. Mol. Biol. 2006, 13, 5–7. [Google Scholar] [CrossRef] [PubMed]
- Kornblihtt, A.R.; Schor, I.E.; Alló, M.; Dujardin, G.; Petrillo, E.; Muñoz, M.J. Alternative Splicing: A Pivotal Step between Eukaryotic Transcription and Translation. Nat. Rev. Mol. Cell Biol. 2013, 14, 153–165. [Google Scholar] [CrossRef] [PubMed]
- Bregman, D.B.; Halaban, R.; van Gool, A.J.; Henning, K.A.; Friedberg, E.C.; Warren, S.L. UV-Induced Ubiquitination of RNA Polymerase II: A Novel Modification Deficient in Cockayne Syndrome Cells. Proc. Natl. Acad. Sci. USA 1996, 93, 11586–11590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nouspikel, T. DNA Repair in Mammalian Cells: Nucleotide Excision Repair: Variations on Versatility. Cell. Mol. Life Sci. 2009, 66, 994–1009. [Google Scholar] [CrossRef]
- Apelt, K.; Lans, H.; Schärer, O.D.; Luijsterburg, M.S. Nucleotide Excision Repair Leaves a Mark on Chromatin: DNA Damage Detection in Nucleosomes. Cell. Mol. Life Sci. 2021, 78, 7925–7942. [Google Scholar] [CrossRef]
- Van den Heuvel, D.; van der Weegen, Y.; Boer, D.E.C.; Ogi, T.; Luijsterburg, M.S. Transcription-Coupled DNA Repair: From Mechanism to Human Disorder. Trends Cell Biol. 2021, 31, 359–371. [Google Scholar] [CrossRef]
- Lans, H.; Hoeijmakers, J.H.J.; Vermeulen, W.; Marteijn, J.A. The DNA Damage Response to Transcription Stress. Nat. Rev. Mol. Cell Biol. 2019, 20, 766–784. [Google Scholar] [CrossRef]
- Wilson, M.D.; Harreman, M.; Svejstrup, J.Q. Ubiquitylation and Degradation of Elongating RNA Polymerase II: The Last Resort. Biochim. Biophys. Acta BBA-Gene Regul. Mech. 2013, 1829, 151–157. [Google Scholar] [CrossRef]
- Nakazawa, Y.; Hara, Y.; Oka, Y.; Komine, O.; van den Heuvel, D.; Guo, C.; Daigaku, Y.; Isono, M.; He, Y.; Shimada, M.; et al. Ubiquitination of DNA Damage-Stalled RNAPII Promotes Transcription-Coupled Repair. Cell 2020, 180, 1228–1244.e24. [Google Scholar] [CrossRef]
- Tufegdžić Vidaković, A.; Mitter, R.; Kelly, G.P.; Neumann, M.; Harreman, M.; Rodríguez-Martínez, M.; Herlihy, A.; Weems, J.C.; Boeing, S.; Encheva, V.; et al. Regulation of the RNAPII Pool Is Integral to the DNA Damage Response. Cell 2020, 180, 1245–1261.e21. [Google Scholar] [CrossRef]
- Lindahl, T.; Barnes, D.E. Repair of Endogenous DNA Damage. Cold Spring Harb. Symp. Quant. Biol. 2000, 65, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Hoeijmakers, J.H.J. DNA Damage, Aging, and Cancer. N. Engl. J. Med. 2009, 361, 1475–1485. [Google Scholar] [CrossRef] [PubMed]
- Jackson, S.P.; Bartek, J. The DNA-Damage Response in Human Biology and Disease. Nature 2009, 461, 1071–1078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chatterjee, N.; Walker, G.C. Mechanisms of DNA Damage, Repair and Mutagenesis. Environ. Mol. Mutagen. 2017, 58, 235–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Besaratinia, A.; Yoon, J.; Schroeder, C.; Bradforth, S.E.; Cockburn, M.; Pfeifer, G.P. Wavelength Dependence of Ultraviolet Radiation-Induced DNA Damage as Determined by Laser Irradiation Suggests That Cyclobutane Pyrimidine Dimers Are the Principal DNA Lesions Produced by Terrestrial Sunlight. FASEB J. 2011, 25, 3079–3091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marteijn, J.A.; Lans, H.; Vermeulen, W.; Hoeijmakers, J.H.J. Understanding Nucleotide Excision Repair and Its Roles in Cancer and Ageing. Nat. Rev. Mol. Cell Biol. 2014, 15, 465–481. [Google Scholar] [CrossRef]
- Hu, J.; Adar, S.; Selby, C.P.; Lieb, J.D.; Sancar, A. Genome-Wide Analysis of Human Global and Transcription-Coupled Excision Repair of UV Damage at Single-Nucleotide Resolution. Genes Dev. 2015, 29, 948–960. [Google Scholar] [CrossRef] [Green Version]
- Van den Boom, V.; Citterio, E.; Hoogstraten, D.; Zotter, A.; Egly, J.-M.; van Cappellen, W.A.; Hoeijmakers, J.H.J.; Houtsmuller, A.B.; Vermeulen, W. DNA Damage Stabilizes Interaction of CSB with the Transcription Elongation Machinery. J. Cell Biol. 2004, 166, 27–36. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Lahiri, I.; Wang, W.; Wier, A.; Cianfrocco, M.A.; Chong, J.; Hare, A.A.; Dervan, P.B.; DiMaio, F.; Leschziner, A.E.; et al. Structural Basis for the Initiation of Eukaryotic Transcription-Coupled DNA Repair. Nature 2017, 551, 653–657. [Google Scholar] [CrossRef]
- Van der Weegen, Y.; Golan-Berman, H.; Mevissen, T.E.T.; Apelt, K.; González-Prieto, R.; Goedhart, J.; Heilbrun, E.E.; Vertegaal, A.C.O.; van den Heuvel, D.; Walter, J.C.; et al. The Cooperative Action of CSB, CSA, and UVSSA Target TFIIH to DNA Damage-Stalled RNA Polymerase II. Nat. Commun. 2020, 11, 2104. [Google Scholar] [CrossRef]
- Van der Weegen, Y.; de Lint, K.; van den Heuvel, D.; Nakazawa, Y.; Mevissen, T.E.T.; van Schie, J.J.M.; Alonso, M.S.M.; Boer, D.E.C.; González-Prieto, R.; Narayanan, I.V.; et al. ELOF1 Is a Transcription-Coupled DNA Repair Factor That Directs RNA Polymerase II Ubiquitylation. Nat. Cell Biol. 2021, 23, 595–607. [Google Scholar] [CrossRef] [PubMed]
- Groisman, R.; Kuraoka, I.; Chevallier, O.; Gaye, N.; Magnaldo, T.; Tanaka, K.; Kisselev, A.F.; Harel-Bellan, A.; Nakatani, Y. CSA-Dependent Degradation of CSB by the Ubiquitin–Proteasome Pathway Establishes a Link between Complementation Factors of the Cockayne Syndrome. Genes Dev. 2006, 20, 1429–1434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kokic, G.; Wagner, F.R.; Chernev, A.; Urlaub, H.; Cramer, P. Structural Basis of Human Transcription–DNA Repair Coupling. Nature 2021, 598, 368–372. [Google Scholar] [CrossRef] [PubMed]
- Fischer, E.S.; Scrima, A.; Böhm, K.; Matsumoto, S.; Lingaraju, G.M.; Faty, M.; Yasuda, T.; Cavadini, S.; Wakasugi, M.; Hanaoka, F.; et al. The Molecular Basis of CRL4DDB2/CSA Ubiquitin Ligase Architecture, Targeting, and Activation. Cell 2011, 147, 1024–1039. [Google Scholar] [CrossRef] [Green Version]
- Schwertman, P.; Lagarou, A.; Dekkers, D.H.W.; Raams, A.; van der Hoek, A.C.; Laffeber, C.; Hoeijmakers, J.H.J.; Demmers, J.A.A.; Fousteri, M.; Vermeulen, W.; et al. UV-Sensitive Syndrome Protein UVSSA Recruits USP7 to Regulate Transcription-Coupled Repair. Nat. Genet. 2012, 44, 598–602. [Google Scholar] [CrossRef]
- Zhang, X.; Horibata, K.; Saijo, M.; Ishigami, C.; Ukai, A.; Kanno, S.; Tahara, H.; Neilan, E.G.; Honma, M.; Nohmi, T.; et al. Mutations in UVSSA Cause UV-Sensitive Syndrome and Destabilize ERCC6 in Transcription-Coupled DNA Repair. Nat. Genet. 2012, 44, 593–597. [Google Scholar] [CrossRef]
- Okuda, M.; Nakazawa, Y.; Guo, C.; Ogi, T.; Nishimura, Y. Common TFIIH Recruitment Mechanism in Global Genome and Transcription-Coupled Repair Subpathways. Nucleic Acids Res. 2017, 45, 13043–13055. [Google Scholar] [CrossRef] [Green Version]
- Van Cuijk, L.; Vermeulen, W.; Marteijn, J.A. Ubiquitin at Work: The Ubiquitous Regulation of the Damage Recognition Step of NER. Exp. Cell Res. 2014, 329, 101–109. [Google Scholar] [CrossRef]
- Chauhan, A.K.; Sun, Y.; Zhu, Q.; Wani, A.A. Timely Upstream Events Regulating Nucleotide Excision Repair by Ubiquitin-Proteasome System: Ubiquitin Guides the Way. DNA Repair 2021, 103, 103128. [Google Scholar] [CrossRef]
- Steurer, B.; Janssens, R.C.; Geijer, M.E.; Aprile-Garcia, F.; Geverts, B.; Theil, A.F.; Hummel, B.; van Royen, M.E.; Evers, B.; Bernards, R.; et al. DNA Damage-Induced Transcription Stress Triggers the Genome-Wide Degradation of Promoter-Bound Pol II. Nat. Commun. 2022, 13, 3624. [Google Scholar] [CrossRef]
- Bay, L.T.E.; Syljuåsen, R.G.; Landsverk, H.B. A Novel, Rapid and Sensitive Flow Cytometry Method Reveals Degradation of Promoter Proximal Paused RNAPII in the Presence and Absence of UV. Nucleic Acids Res. 2022, 50, e89. [Google Scholar] [CrossRef] [PubMed]
- Aoi, Y.; Takahashi, Y.-H.; Shah, A.P.; Iwanaszko, M.; Rendleman, E.J.; Khan, N.H.; Cho, B.-K.; Goo, Y.A.; Ganesan, S.; Kelleher, N.L.; et al. SPT5 Stabilization of Promoter-Proximal RNA Polymerase II. Mol. Cell 2021, 81, 4413–4424.e5. [Google Scholar] [CrossRef] [PubMed]
- Olivieri, M.; Cho, T.; Álvarez-Quilón, A.; Li, K.; Schellenberg, M.J.; Zimmermann, M.; Hustedt, N.; Rossi, S.E.; Adam, S.; Melo, H.; et al. A Genetic Map of the Response to DNA Damage in Human Cells. Cell 2020, 182, 481–496.e21. [Google Scholar] [CrossRef]
- Geijer, M.E.; Zhou, D.; Selvam, K.; Steurer, B.; Mukherjee, C.; Evers, B.; Cugusi, S.; van Toorn, M.; van der Woude, M.; Janssens, R.C.; et al. Elongation Factor ELOF1 Drives Transcription-Coupled Repair and Prevents Genome Instability. Nat. Cell Biol. 2021, 23, 608–619. [Google Scholar] [CrossRef]
- Sugasawa, K.; Akagi, J.; Nishi, R.; Iwai, S.; Hanaoka, F. Two-Step Recognition of DNA Damage for Mammalian Nucleotide Excision Repair: Directional Binding of the XPC Complex and DNA Strand Scanning. Mol. Cell 2009, 36, 642–653. [Google Scholar] [CrossRef] [PubMed]
- Nocentini, S.; Coin, F.; Saijo, M.; Tanaka, K.; Egly, J.-M. DNA Damage Recognition by XPA Protein Promotes Efficient Recruitment of Transcription Factor II H. J. Biol. Chem. 1997, 272, 22991–22994. [Google Scholar] [CrossRef] [Green Version]
- Coin, F.; Oksenych, V.; Egly, J.-M. Distinct Roles for the XPB/P52 and XPD/P44 Subcomplexes of TFIIH in Damaged DNA Opening during Nucleotide Excision Repair. Mol. Cell 2007, 26, 245–256. [Google Scholar] [CrossRef]
- Winkler, G.S.; Araújo, S.J.; Fiedler, U.; Vermeulen, W.; Coin, F.; Egly, J.M.; Hoeijmakers, J.H.; Wood, R.D.; Timmers, H.T.; Weeda, G. TFIIH with Inactive XPD Helicase Functions in Transcription Initiation but Is Defective in DNA Repair. J. Biol. Chem. 2000, 275, 4258–4266. [Google Scholar] [CrossRef] [Green Version]
- Ratner, J.N.; Balasubramanian, B.; Corden, J.; Warren, S.L.; Bregman, D.B. Ultraviolet Radiation-Induced Ubiquitination and Proteasomal Degradation of the Large Subunit of RNA Polymerase II: Implications for Transcription-Coupled DNA Repair. J. Biol. Chem. 1998, 273, 5184–5189. [Google Scholar] [CrossRef] [Green Version]
- Anindya, R.; Aygün, O.; Svejstrup, J.Q. Damage-Induced Ubiquitylation of Human RNA Polymerase II by the Ubiquitin Ligase Nedd4, but Not Cockayne Syndrome Proteins or BRCA1. Mol. Cell 2007, 28, 386–397. [Google Scholar] [CrossRef]
- Yasukawa, T.; Kamura, T.; Kitajima, S.; Conaway, R.C.; Conaway, J.W.; Aso, T. Mammalian Elongin A Complex Mediates DNA-Damage-Induced Ubiquitylation and Degradation of Rpb1. EMBO J. 2008, 27, 3256–3266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harreman, M.; Taschner, M.; Sigurdsson, S.; Anindya, R.; Reid, J.; Somesh, B.; Kong, S.E.; Banks, C.A.S.; Conaway, R.C.; Conaway, J.W.; et al. Distinct Ubiquitin Ligases Act Sequentially for RNA Polymerase II Polyubiquitylation. Proc. Natl. Acad. Sci. USA 2009, 106, 20705–20710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Starita, L.M.; Horwitz, A.A.; Keogh, M.-C.; Ishioka, C.; Parvin, J.D.; Chiba, N. BRCA1/BARD1 Ubiquitinate Phosphorylated RNA Polymerase II. J. Biol. Chem. 2005, 280, 24498–24505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lao, L.; Bourdeau, I.; Gagliardi, L.; He, X.; Shi, W.; Hao, B.; Tan, M.; Hu, Y.; Peng, J.; Coulombe, B.; et al. ARMC5 Is Part of an RPB1-Specific Ubiquitin Ligase Implicated in Adrenal Hyperplasia. Nucleic Acids Res. 2022, 50, 6343–6367. [Google Scholar] [CrossRef]
- Chiou, Y.-Y.; Hu, J.; Sancar, A.; Selby, C.P. RNA Polymerase II Is Released from the DNA Template during Transcription-Coupled Repair in Mammalian Cells. J. Biol. Chem. 2018, 293, 2476–2486. [Google Scholar] [CrossRef] [Green Version]
- Jia, N.; Guo, C.; Nakazawa, Y.; van den Heuvel, D.; Luijsterburg, M.S.; Ogi, T. Dealing with Transcription-Blocking DNA Damage: Repair Mechanisms, RNA Polymerase II Processing and Human Disorders. DNA Repair 2021, 106, 103192. [Google Scholar] [CrossRef]
- Andrade-Lima, L.C.; Veloso, A.; Paulsen, M.T.; Menck, C.F.M.; Ljungman, M. DNA Repair and Recovery of RNA Synthesis Following Exposure to Ultraviolet Light Are Delayed in Long Genes. Nucleic Acids Res. 2015, 43, 2744–2756. [Google Scholar] [CrossRef]
- Van den Heuvel, D.; Spruijt, C.G.; González-Prieto, R.; Kragten, A.; Paulsen, M.T.; Zhou, D.; Wu, H.; Apelt, K.; van der Weegen, Y.; Yang, K.; et al. A CSB-PAF1C Axis Restores Processive Transcription Elongation after DNA Damage Repair. Nat. Commun. 2021, 12, 1342. [Google Scholar] [CrossRef]
- Donahue, B.A.; Yin, S.; Taylor, J.S.; Reines, D.; Hanawalt, P.C. Transcript Cleavage by RNA Polymerase II Arrested by a Cyclobutane Pyrimidine Dimer in the DNA Template. Proc. Natl. Acad. Sci. USA 1994, 91, 8502–8506. [Google Scholar] [CrossRef] [Green Version]
- Tornaletti, S.; Reines, D.; Hanawalt, P.C. Structural Characterization of RNA Polymerase II Complexes Arrested by a Cyclobutane Pyrimidine Dimer in the Transcribed Strand of Template DNA. J. Biol. Chem. 1999, 274, 24124–24130. [Google Scholar] [CrossRef]
- He, J.; Zhu, Q.; Wani, G.; Wani, A.A. UV-Induced Proteolysis of RNA Polymerase II Is Mediated by VCP/P97 Segregase and Timely Orchestration by Cockayne Syndrome B Protein. Oncotarget 2016, 8, 11004–11019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verma, R.; Oania, R.; Fang, R.; Smith, G.T.; Deshaies, R.J. Cdc48/P97 Mediates UV-Dependent Turnover of RNA Pol II. Mol. Cell 2011, 41, 82–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kito, Y.; Matsumoto, M.; Hatano, A.; Takami, T.; Oshikawa, K.; Matsumoto, A.; Nakayama, K.I. Cell Cycle–Dependent Localization of the Proteasome to Chromatin. Sci. Rep. 2020, 10, 5801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nojima, T.; Gomes, T.; Grosso, A.R.F.; Kimura, H.; Dye, M.J.; Dhir, S.; Carmo-Fonseca, M.; Proudfoot, N.J. Mammalian NET-Seq Reveals Genome-Wide Nascent Transcription Coupled to RNA Processing. Cell 2015, 161, 526–540. [Google Scholar] [CrossRef] [Green Version]
- Jonkers, I.; Kwak, H.; Lis, J.T. Genome-Wide Dynamics of Pol II Elongation and Its Interplay with Promoter Proximal Pausing, Chromatin, and Exons. eLife 2014, 3, e02407. [Google Scholar] [CrossRef]
- Nieto Moreno, N.; Villafañez, F.; Giono, L.E.; Cuenca, C.; Soria, G.; Muñoz, M.J.; Kornblihtt, A.R. GSK-3 Is an RNA Polymerase II Phospho-CTD Kinase. Nucleic Acids Res. 2020, 48, 6068–6080. [Google Scholar] [CrossRef]
- Decker, T.-M. Mechanisms of Transcription Elongation Factor DSIF (Spt4-Spt5). J. Mol. Biol. 2021, 433, 166657. [Google Scholar] [CrossRef]
- Yamada, T.; Yamaguchi, Y.; Inukai, N.; Okamoto, S.; Mura, T.; Handa, H. P-TEFb-Mediated Phosphorylation of HSpt5 C-Terminal Repeats Is Critical for Processive Transcription Elongation. Mol. Cell 2006, 21, 227–237. [Google Scholar] [CrossRef]
- Li, W.; Giles, C.; Li, S. Insights into How Spt5 Functions in Transcription Elongation and Repressing Transcription Coupled DNA Repair. Nucleic Acids Res. 2014, 42, 7069–7083. [Google Scholar] [CrossRef] [Green Version]
- Mayne, L.V.; Lehmann, A.R. Failure of RNA Synthesis to Recover after UV Irradiation: An Early Defect in Cells from Individuals with Cockayne’s Syndrome and Xeroderma Pigmentosum1. Cancer Res. 1982, 42, 1473–1478. [Google Scholar] [CrossRef]
- Rockx, D.A.; Mason, R.; van Hoffen, A.; Barton, M.C.; Citterio, E.; Bregman, D.B.; van Zeeland, A.A.; Vrieling, H.; Mullenders, L.H. UV-Induced Inhibition of Transcription Involves Repression of Transcription Initiation and Phosphorylation of RNA Polymerase II. Proc. Natl. Acad. Sci. USA 2000, 97, 10503–10508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Epanchintsev, A.; Costanzo, F.; Rauschendorf, M.-A.; Caputo, M.; Ye, T.; Donnio, L.-M.; Proietti-de-Santis, L.; Coin, F.; Laugel, V.; Egly, J.-M. Cockayne’s Syndrome A and B Proteins Regulate Transcription Arrest after Genotoxic Stress by Promoting ATF3 Degradation. Mol. Cell 2017, 68, 1054–1066.e6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williamson, L.; Saponaro, M.; Boeing, S.; East, P.; Mitter, R.; Kantidakis, T.; Kelly, G.P.; Lobley, A.; Walker, J.; Spencer-Dene, B.; et al. UV Irradiation Induces a Non-Coding RNA That Functionally Opposes the Protein Encoded by the Same Gene. Cell 2017, 168, 843–855.e13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKay, B.C.; Stubbert, L.J.; Fowler, C.C.; Smith, J.M.; Cardamore, R.A.; Spronck, J.C. Regulation of Ultraviolet Light-Induced Gene Expression by Gene Size. Proc. Natl. Acad. Sci. USA 2004, 101, 6582–6586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kristensen, U.; Epanchintsev, A.; Rauschendorf, M.-A.; Laugel, V.; Stevnsner, T.; Bohr, V.A.; Coin, F.; Egly, J.-M. Regulatory Interplay of Cockayne Syndrome B ATPase and Stress-Response Gene ATF3 Following Genotoxic Stress. Proc. Natl. Acad. Sci. USA 2013, 110, E2261–E2270. [Google Scholar] [CrossRef] [Green Version]
- Bouvier, D.; Ferrand, J.; Chevallier, O.; Paulsen, M.T.; Ljungman, M.; Polo, S.E. Dissecting Regulatory Pathways for Transcription Recovery Following DNA Damage Reveals a Non-Canonical Function of the Histone Chaperone HIRA. Nat. Commun. 2021, 12, 3835. [Google Scholar] [CrossRef]
- Adam, S.; Polo, S.E.; Almouzni, G. Transcription Recovery after DNA Damage Requires Chromatin Priming by the H3.3 Histone Chaperone HIRA. Cell 2013, 155, 94–106. [Google Scholar] [CrossRef] [Green Version]
- Proietti-De-Santis, L.; Drané, P.; Egly, J.-M. Cockayne Syndrome B Protein Regulates the Transcriptional Program after UV Irradiation. EMBO J. 2006, 25, 1915–1923. [Google Scholar] [CrossRef] [Green Version]
- Muñoz, M.J.; Pérez Santangelo, M.S.; Paronetto, M.P.; de la Mata, M.; Pelisch, F.; Boireau, S.; Glover-Cutter, K.; Ben-Dov, C.; Blaustein, M.; Lozano, J.J.; et al. DNA Damage Regulates Alternative Splicing through Inhibition of RNA Polymerase II Elongation. Cell 2009, 137, 708–720. [Google Scholar] [CrossRef] [Green Version]
- Nakazawa, Y.; Sasaki, K.; Mitsutake, N.; Matsuse, M.; Shimada, M.; Nardo, T.; Takahashi, Y.; Ohyama, K.; Ito, K.; Mishima, H.; et al. Mutations in UVSSA Cause UV-Sensitive Syndrome and Impair RNA Polymerase IIo Processing in Transcription-Coupled Nucleotide-Excision Repair. Nat. Genet. 2012, 44, 586–592. [Google Scholar] [CrossRef]
- Paccosi, E.; Balajee, A.S.; Proietti-De-Santis, L. A Matter of Delicate Balance: Loss and Gain of Cockayne Syndrome Proteins in Premature Aging and Cancer. Front. Aging 2022, 3, 960662. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz, J.C.; Beckerman, I.; Choudhary, R.; Bouvier, L.A.; Muñoz, M.J. DNA Damage-Induced RNAPII Degradation and Its Consequences in Gene Expression. Genes 2022, 13, 1951. https://doi.org/10.3390/genes13111951
Muñoz JC, Beckerman I, Choudhary R, Bouvier LA, Muñoz MJ. DNA Damage-Induced RNAPII Degradation and Its Consequences in Gene Expression. Genes. 2022; 13(11):1951. https://doi.org/10.3390/genes13111951
Chicago/Turabian StyleMuñoz, Juan Cristobal, Inés Beckerman, Ramveer Choudhary, León Alberto Bouvier, and Manuel J. Muñoz. 2022. "DNA Damage-Induced RNAPII Degradation and Its Consequences in Gene Expression" Genes 13, no. 11: 1951. https://doi.org/10.3390/genes13111951
APA StyleMuñoz, J. C., Beckerman, I., Choudhary, R., Bouvier, L. A., & Muñoz, M. J. (2022). DNA Damage-Induced RNAPII Degradation and Its Consequences in Gene Expression. Genes, 13(11), 1951. https://doi.org/10.3390/genes13111951