Short-Term Exposure to Ciprofloxacin Reduces Proteoglycan Loss in Tendon Explants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Used
2.2. Instrumentation and Software Used
2.3. Tendon Explant Cultures
2.4. Measurement of Loss of Newly Synthesised Proteoglycans
2.5. Isolation and Analysis of Endogenous Proteoglycan Fragments
2.6. Quantification of mRNA Expression for Matrix-Degrading Enzymes
2.7. Analysis of Data
3. Results
3.1. Newly Synthesised Proteoglycans
3.2. Endogenous Proteoglycan Fragments
3.3. mRNA Expression of MMPs
3.4. mRNA Expression of ADAMTSs
3.5. mRNA Expression of TIMPs
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bartlett, J.G.; Dowell, S.F.; A Mandell, L.; File, T.M.; Musher, D.M.; Fine, M.J. Practice Guidelines for the Management of Community-Acquired Pneumonia in Adults. Infectious Diseases Society of America. Clin. Infect. Dis. 2000, 31, 347–382. [Google Scholar] [CrossRef] [PubMed]
- Alves, C.; Mendes, D.; Marques, F.B. Fluoroquinolones and the risk of tendon injury: A systematic review and meta-analysis. Eur. J. Clin. Pharmacol. 2019, 75, 1431–1443. [Google Scholar] [CrossRef] [PubMed]
- Khaliq, Y.; Zhanel, G.G. Fluoroquinolone-Associated Tendinopathy: A Critical Review of the Literature. Clin. Infect. Dis. 2003, 36, 1404–1410. [Google Scholar] [CrossRef] [Green Version]
- Akali, A.; Niranjan, N. Management of bilateral Achilles tendon rupture associated with ciprofloxacin: A review and case presentation. J. Plast. Reconstr. Aesthetic Surg. 2008, 61, 830–834. [Google Scholar] [CrossRef]
- Chhajed, P.; Plit, M.; Hopkins, P.; Malouf, M.; Glanville, A. Achilles tendon disease in lung transplant recipients: Association with ciprofloxacin. Eur. Respir. J. 2002, 19, 469–471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morales, D.R.; Slattery, J.; Pacurariu, A.; Pinheiro, L.; McGettigan, P.; Kurz, X. Relative and Absolute Risk of Tendon Rupture with Fluoroquinolone and Concomitant Fluoroquinolone/Corticosteroid Therapy: Population-Based Nested Case–Control Study. Clin. Drug Investig. 2018, 39, 205–213. [Google Scholar] [CrossRef] [Green Version]
- Van der Linden, P.D.; Sturkenboom, M.C.J.M.; Herings, R.M.C.; Leufkens, H.M.G.; Rowlands, S.; Stricker, B.H.C. Increased Risk of Achilles Tendon Rupture with Quinolone Antibacterial Use, Especially in Elderly Patients Taking Oral Corticosteroids. Arch. Intern. Med. 2003, 163, 1801–1807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Humbyrd, C.J.; Bae, S.; Kucirka, L.M.; Segev, D.L. Incidence, Risk Factors, and Treatment of Achilles Tendon Rupture in Patients With End-Stage Renal Disease. Foot Ankle Int. 2018, 39, 821–828. [Google Scholar] [CrossRef] [PubMed]
- Wise, B.L.; Peloquin, C.; Choi, H.; Lane, N.E.; Zhang, Y. Impact of Age, Sex, Obesity, and Steroid Use on Quinolone-associated Tendon Disorders. Am. J. Med. 2012, 125, 1228.e23–1228.e28. [Google Scholar] [CrossRef] [Green Version]
- Lewis, T.; Cook, J. Fluoroquinolones and Tendinopathy: A Guide for Athletes and Sports Clinicians and a Systematic Review of the Literature. J. Athl. Train. 2014, 49, 422–427. [Google Scholar] [CrossRef] [PubMed]
- Corrao, G.; Zambon, A.; Bertù, L.; Mauri, A.; Paleari, V.; Rossi, C.; Venegoni, M. Evidence of Tendinitis Provoked by Fluoroquinolone Treatment: A case-control study. Drug Saf. 2006, 29, 889–896. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Cuadros, M.E.; Casique-Bocanegra, L.O.; Albaladejo-Florin, M.J.; Gomez-Duenas, S.; Ramos-Gonzalez, C.; Perez-Moro, O.S. Bilateral Levofloxacin-Induced Achilles Tendon Rupture: An Uncommon Case Report and Review of the Literature. Clin. Med. Insights Arthritis Musculoskelet Disord. 2019, 12, 1179544119835222. [Google Scholar] [CrossRef] [PubMed]
- Royer, R.J.; Pierfitte, C.; Netter, P. Features of tendon disorders with fluoroquinolones. Therapies 1994, 49, 75–76. [Google Scholar]
- Van Der Linden, P.D.; Van De Lei, J.; Nab, H.W.; Knol, A.; Stricker, B.H.C. Achilles tendinitis associated with fluoroquinolones. Br. J. Clin. Pharmacol. 1999, 48, 433–437. [Google Scholar] [CrossRef] [PubMed]
- Badal, S.; Her, Y.F.; Maher, L.J., 3rd. Nonantibiotic Effects of Fluoroquinolones in Mammalian Cells. J. Biol. Chem. 2015, 290, 22287–22297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, R.J., 3rd; Attia, E.; Wickiewicz, T.L.; Hannafin, J.A. The effect of ciprofloxacin on tendon, paratenon, and capsular fibroblast metabolism. Am. J. Sports Med. 2000, 28, 364–369. [Google Scholar] [CrossRef]
- Corps, A.N.; Harrall, R.L.; Curry, V.A.; Fenwick, S.A.; Hazleman, B.L.; Riley, G.P. Ciprofloxacin enhances the stimulation of matrix metalloproteinase 3 expression by interleukin-1beta in human tendon-derived cells. A potential mechanism of fluoroquinolone-induced tendinopathy. Arthritis Rheum. 2002, 46, 3034–3040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoon, J.; Brooks, R., Jr.; Khan, A.; Pan, H.; Bryan, J.; Zhang, J.; Budsberg, S.; Mueller, P.; Halper, J. The effect of enrofloxacin on cell proliferation and proteoglycans in horse tendon cells. Cell Biol. Toxicol. 2004, 20, 41–54. [Google Scholar] [CrossRef]
- Tsai, W.-C.; Hsu, C.-C.; Chen, C.P.; Chang, H.-N.; Wong, A.M.; Lin, M.-S.; Pang, J.-H.S. Ciprofloxacin up-regulates tendon cells to express matrix metalloproteinase-2 with degradation of type I collagen. J. Orthop. Res. 2010, 29, 67–73. [Google Scholar] [CrossRef]
- Lowes, D.A.; Wallace, C.; Murphy, M.P.; Webster, N.R.; Galley, H.F. The mitochondria targeted antioxidant MitoQ protects against fluoroquinolone-induced oxidative stress and mitochondrial membrane damage in human Achilles tendon cells. Free Radic. Res. 2009, 43, 323–328. [Google Scholar] [CrossRef]
- James, S.; Schuijers, J.; Daffy, J.; Cook, J.; Samiric, T. Ciprofloxacin reduces tenocyte viability and proteoglycan synthesis in short-term explant cultures of equine tendon. PeerJ 2021, 9, e12003. [Google Scholar] [CrossRef]
- Kashida, Y.; Kato, M. Characterization of fluoroquinolone-induced Achilles tendon toxicity in rats: Comparison of toxicities of 10 fluoroquinolones and effects of anti-inflammatory compounds. Antimicrob. Agents Chemother. 1997, 41, 2389–2393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kato, M.; Takada, S.; Ogawara, S.; Takayama, S. Effect of levofloxacin on glycosaminoglycan and DNA synthesis of cultured rabbit chondrocytes at concentrations inducing cartilage lesions in vivo. Antimicrob. Agents Chemother. 1995, 39, 1979–1983. [Google Scholar] [CrossRef] [Green Version]
- Bernard-Beaubois, K.; Hecquet, C.; Hayem, G.; Rat, P.; Adolphe, M. In vitro study of cytotoxicity of quinolones on rabbit tenocytes. Cell Biol. Toxicol. 1998, 14, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Pouzaud, F.; Bernard-Beaubois, K.; Thevenin, M.; Warnet, J.-M.; Hayem, G.; Rat, P. In Vitro Discrimination of Fluoroquinolones Toxicity on Tendon Cells: Involvement of Oxidative Stress. J. Pharmacol. Exp. Ther. 2003, 308, 394–402. [Google Scholar] [CrossRef] [Green Version]
- Simonin, M.-A.; Gegout-Pottie, P.; Minn, A.; Gillet, P.; Netter, P.; Terlain, B. Proteoglycan and Collagen Biochemical Variations during Fluoroquinolone-Induced Chondrotoxicity in Mice. Antimicrob. Agents Chemother. 1999, 43, 2915–2921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoon, J.H.; Brooks, R.L.; Zhao, J.Z.; Isaacs, D.; Halper, J. The effects of enrofloxacin on decorin and glycosaminoglycans in avian tendon cell cultures. Arch. Toxicol. 2004, 78, 599–608. [Google Scholar] [CrossRef] [PubMed]
- Heathfield, T.F.; Önnerfjord, P.; Dahlberg, L.; Heinegård, D. Cleavage of Fibromodulin in Cartilage Explants Involves Removal of the N-terminal Tyrosine Sulfate-rich Region by Proteolysis at a Site That Is Sensitive to Matrix Metalloproteinase-13. J. Biol. Chem. 2004, 279, 6286–6295. [Google Scholar] [CrossRef] [Green Version]
- Kaushal, G.P.; Shah, S.V. The new kids on the block: ADAMTSs, potentially multifunctional metalloproteinases of the ADAM family. J. Clin. Investig. 2000, 105, 1335–1337. [Google Scholar] [CrossRef] [Green Version]
- Melching, L.; Fisher, W.; Lee, E.; Mort, J.; Roughley, P. The cleavage of biglycan by aggrecanases. Osteoarthr. Cartil. 2006, 14, 1147–1154. [Google Scholar] [CrossRef] [Green Version]
- Monfort, J.; Tardif, G.; Reboul, P.; Mineau, F.; Roughley, P.; Pelletier, J.-P.; Martel-Pelletier, J. Degradation of small leucine-rich repeat proteoglycans by matrix metalloprotease-13: Identification of a new biglycan cleavage site. Arthritis Res. Ther. 2006, 8, R26. [Google Scholar] [CrossRef] [PubMed]
- Samiric, T.; Ilic, M.Z.; Handley, C.J. Characterisation of proteoglycans and their catabolic products in tendon and explant cultures of tendon. Matrix Biol. 2004, 23, 127–140. [Google Scholar] [CrossRef] [PubMed]
- Tortorella, M.; Pratta, M.; Liu, R.-Q.; Abbaszade, I.; Ross, H.; Burn, T.; Arner, E. The Thrombospondin Motif of Aggrecanase-1 (ADAMTS-4) Is Critical for Aggrecan Substrate Recognition and Cleavage. J. Biol. Chem. 2000, 275, 25791–25797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tortorella, M.D.; Liu, R.-Q.; Burn, T.; Newton, R.C.; Arner, E. Characterization of human aggrecanase 2 (ADAM-TS5): Substrate specificity studies and comparison with aggrecanase 1 (ADAM-TS4). Matrix Biol. 2002, 21, 499–511. [Google Scholar] [CrossRef] [PubMed]
- Zappia, J.; Joiret, M.; Sanchez, C.; Lambert, C.; Geris, L.; Muller, M.; Henrotin, Y. From Translation to Protein Degradation as Mechanisms for Regulating Biological Functions: A Review on the SLRP Family in Skeletal Tissues. Biomolecules 2020, 10, 80. [Google Scholar] [CrossRef] [Green Version]
- Corps, A.N.; Harrall, R.L.; Curry, V.A.; Hazleman, B.L.; Riley, G.P. Contrasting effects of fluoroquinolone antibiotics on the expression of the collagenases, matrix metalloproteinases (MMP)-1 and -13, in human tendon-derived cells. Rheumatology 2005, 44, 1514–1517. [Google Scholar] [CrossRef] [Green Version]
- Patterson-Kane, J.; Becker, D.; Rich, T. The Pathogenesis of Tendon Microdamage in Athletes: The Horse as a Natural Model for Basic Cellular Research. J. Comp. Pathol. 2012, 147, 227–247. [Google Scholar] [CrossRef] [Green Version]
- Koskinen, S.O.A.; Heinemeier, K.M.; Olesen, J.L.; Langberg, H.; Kjaer, M. Physical exercise can influence local levels of matrix metalloproteinases and their inhibitors in tendon-related connective tissue. J. Appl. Physiol. 2004, 96, 861–864. [Google Scholar] [CrossRef] [Green Version]
- Iozzo, R.V. MATRIX PROTEOGLYCANS: From Molecular Design to Cellular Function. Annu. Rev. Biochem. 1998, 67, 609–652. [Google Scholar] [CrossRef] [Green Version]
- Kannus, P. Structure of the tendon connective tissue. Scand. J. Med. Sci. Sports 2000, 10, 312–320. [Google Scholar] [CrossRef]
- Riley, G. Chronic tendon pathology: Molecular basis and therapeutic implications. Expert Rev. Mol. Med. 2005, 7, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.H.; Halper, J. Tendon proteoglycans: Biochemistry and function. J. Musculoskelet. Neuronal Interact. 2005, 5, 22–34. [Google Scholar] [PubMed]
- Vial, C.; Gutiérrez, J.; Santander, C.; Cabrera, D.; Brandan, E. Decorin Interacts with Connective Tissue Growth Factor (CTGF)/CCN2 by LRR12 Inhibiting Its Biological Activity. J. Biol. Chem. 2011, 286, 24242–24252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iozzo, R.V. The biology of the small leucine-rich proteoglycans. Functional network of interactive proteins. J. Biol. Chem. 1999, 274, 18843–18846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seidler, D.G.; Goldoni, S.; Agnew, C.; Cardi, C.; Thakur, M.L.; Owens, R.T.; McQuillan, D.J.; Iozzo, R.V. Decorin Protein Core Inhibitsin VivoCancer Growth and Metabolism by Hindering Epidermal Growth Factor Receptor Function and Triggering Apoptosis via Caspase-3 Activation. J. Biol. Chem. 2006, 281, 26408–26418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuc, I.M.; Scott, P.G. Increased diameters of collagen fibrils precipitated in vitro in the presence of decorin from various connective tissues. Connect. Tissue Res. 1997, 36, 287–296. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Ezura, Y.; Chervoneva, I.; Robinson, P.S.; Beason, D.P.; Carine, E.T.; Soslowsky, L.J.; Iozzo, R.V.; Birk, D.E. Decorin regulates assembly of collagen fibrils and acquisition of biomechanical properties during tendon development. J. Cell. Biochem. 2006, 98, 1436–1449. [Google Scholar] [CrossRef]
- Ameye, L.; Aria, D.; Jepsen, K.; Oldberg, A.; Xu, T.; Young, M.F. Abnormal collagen fibrils in tendons of biglycan/fibromodulin-deficient mice lead to gait impairment, ectopic ossification, and osteoarthritis. FASEB J. 2002, 16, 673–680. [Google Scholar] [CrossRef] [Green Version]
- Riley, G. The pathogenesis of tendinopathy. A molecular perspective. Rheumatology 2003, 43, 131–142. [Google Scholar] [CrossRef] [Green Version]
- Imai, K.; Hiramatsu, A.; Fukushima, D.; Pierschbacher, M.D.; Okada, Y. Degradation of decorin by matrix metalloproteinases: Identification of the cleavage sites, kinetic analyses and transforming growth factor-β1 release. Biochem. J. 1997, 322, 809–814. [Google Scholar] [CrossRef] [PubMed]
- Fosang, A.J.; Last, K.; Stanton, H.; Weeks, D.B.; Campbell, I.K.; Hardingham, T.; Hembry, R.M. Generation and Novel Distribution of Matrix Metalloproteinase-derived Aggrecan Fragments in Porcine Cartilage Explants. J. Biol. Chem. 2000, 275, 33027–33037. [Google Scholar] [CrossRef] [PubMed]
- Durigova, M.; Nagase, H.; Mort, J.S.; Roughley, P.J. MMPs are less efficient than ADAMTS5 in cleaving aggrecan core protein. Matrix Biol. 2011, 30, 145–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fosang, A.J.; Neame, P.J.; Last, K.; Hardingham, T.E.; Murphy, G.; Hamilton, J.A. The interglobular domain of cartilage aggrecan is cleaved by PUMP, gelatinases, and cathepsin B. J. Biol. Chem. 1992, 267, 19470–19474. [Google Scholar] [CrossRef] [PubMed]
- Passi, A.; Negrini, D.; Albertini, R.; Miserocchi, G.; De Luca, G. The sensitivity of versican from rabbit lung to gelatinase A (MMP-2) and B (MMP-9) and its involvement in the development of hydraulic lung edema. FEBS Lett. 1999, 456, 93–96. [Google Scholar] [CrossRef] [PubMed]
- Genovese, F.; Barascuk, N.; Larsen, L.; Larsen, M.R.; Nawrocki, A.; Li, Y.; Zheng, Q.; Wang, J.; Veidal, S.S.; Leeming, D.J.; et al. Biglycan fragmentation in pathologies associated with extracellular matrix remodeling by matrix metalloproteinases. Fibrogenesis Tissue Repair 2013, 6, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fosang, A.; Last, K.; Knauper, V.; Murphy, G.; Neame, P.J. Degradation of cartilage aggrecan by collagenase-3 (MMP-13). FEBS Lett. 1996, 380, 17–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Little, C.B.; Hughes, C.; Curtis, C.L.; Janusz, M.J.; Bohne, R.; Wang-Weigand, S.; Taiwo, Y.O.; Mitchell, P.G.; Otterness, I.G.; Flannery, C.R.; et al. Matrix metalloproteinases are involved in C-terminal and interglobular domain processing of cartilage aggrecan in late stage cartilage degradation. Matrix Biol. 2002, 21, 271–288. [Google Scholar] [CrossRef]
- Shu, C.C.; Flannery, C.R.; Little, C.B.; Melrose, J. Catabolism of Fibromodulin in Developmental Rudiment and Pathologic Articular Cartilage Demonstrates Novel Roles for MMP-13 and ADAMTS-4 in C-terminal Processing of SLRPs. Int. J. Mol. Sci. 2019, 20, 579. [Google Scholar] [CrossRef] [Green Version]
- Kuno, K.; Okada, Y.; Kawashima, H.; Nakamura, H.; Miyasaka, M.; Ohno, H.; Matsushima, K. ADAMTS-1 cleaves a cartilage proteoglycan, aggrecan. FEBS Lett. 2000, 478, 241–245. [Google Scholar] [CrossRef]
- Sandy, J.; Neame, P.; Boynton, R.; Flannery, C. Catabolism of aggrecan in cartilage explants. Identification of a major cleavage site within the interglobular domain. J. Biol. Chem. 1991, 266, 8683–8685. [Google Scholar] [CrossRef] [PubMed]
- Song, R.H.D.; Tortorella, M.; Malfait, A.M.; Alston, J.T.; Yang, Z.; Arner, E.C.; Griggs, D.W. Aggrecan degradation in human articular cartilage explants is mediated by both ADAMTS-4 and ADAMTS-5. Arthritis Rheum. Off. J. Am. Coll. Rheumatol. 2007, 56, 575–585. [Google Scholar] [CrossRef]
- Sandy, J.D.; Westling, J.; Kenagy, R.D.; Iruela-Arispe, M.L.; Verscharen, C.; Rodriguez-Mazaneque, J.C.; Zimmermann, D.R.; Lemire, J.M.; Fischer, J.W.; Wight, T.N.; et al. Versican V1 Proteolysis in Human Aorta in Vivo Occurs at the Glu441-Ala442 Bond, a Site That Is Cleaved by Recombinant ADAMTS-1 and ADAMTS-4. J. Biol. Chem. 2001, 276, 13372–13378. [Google Scholar] [CrossRef] [Green Version]
- Kashiwagi, M.; Enghild, J.J.; Gendron, C.; Hughes, C.; Caterson, B.; Itoh, Y.; Nagase, H. Altered Proteolytic Activities of ADAMTS-4 Expressed by C-terminal Processing. J. Biol. Chem. 2004, 279, 10109–10119. [Google Scholar] [CrossRef] [Green Version]
- Benjamin, M.; Kaiser, E.; Milz, S. Structure-function relationships in tendons: A review. J. Anat. 2008, 212, 211–228. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.; Hossain, M.A.; Park, J.; Choi, S.H.; Kim, G. The effects of enrofloxacin on canine tendon cells and chondrocytes proliferation in vitro. Veter-Res. Commun. 2007, 32, 243–253. [Google Scholar] [CrossRef] [PubMed]
- Sendzik, J.; Shakibaei, M.; Schafer-Korting, M.; Stahlmann, R. Fluoroquinolones cause changes in extracellular matrix, signalling proteins, metalloproteinases and caspase-3 in cultured human tendon cells. Toxicology 2005, 212, 24–36. [Google Scholar] [CrossRef] [PubMed]
- Oike, Y.; Kimata, K.; Shinomura, T.; Suzuki, S.; A Fransson, L.; Havsmark, B.; Silverberg, I.; Schick, B.P.; Senkowski-Richardson, S.; Gill, P.J.; et al. Proteinase activity in chondroitin lyase (chondroitinase) and endo-β-d-galactosidase (keratanase) preparations and a method to abolish their proteolytic effect on proteoglycan. Biochem. J. 1980, 191, 203–207. [Google Scholar] [CrossRef] [Green Version]
- Gassmann, M.; Grenacher, B.; Rohde, B.; Vogel, J. Quantifying Western blots: Pitfalls of densitometry. Electrophoresis 2009, 30, 1845–1855. [Google Scholar] [CrossRef] [PubMed]
- Pawlak, E.; Wang, L.; Johnson, P.J.; Nuovo, G.; Taye, A.; Belknap, J.K.; Alfandari, D.; Black, S.J. Distribution and processing of a disintegrin and metalloproteinase with thrombospondin motifs-4, aggrecan, versican, and hyaluronan in equine digital laminae. Am. J. Veter-Res. 2012, 73, 1035–1046. [Google Scholar] [CrossRef] [Green Version]
- Burkhardt, J.E.; Hill, M.A.; Carlton, W.W. Morphologic and Biochemical Changes in Articular Cartilages of Immature Beagle Dogs Dosed with Difloxacin. Toxicol. Pathol. 1992, 20, 246–252. [Google Scholar] [CrossRef]
- Burkhardt, J.E.; Hill, M.A.; Lamar, C.H.; Smith, G.N., Jr.; Carlton, W.W. Effects of Difloxacin on the Metabolism of Glycosaminoglycans and Collagen in Organ Cultures of Articular Cartilage. Fundam. Appl. Toxicol. 1993, 20, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Movin, T.; Gad, A.; Güntner, P.; Földhazy, Z.; Rolf, C. Pathology of the Achilles Tendon in Association with Ciprofloxacin Treatment. Foot Ankle Int. 1997, 18, 297–299. [Google Scholar] [CrossRef]
- Simonin, M.-A.; Gegout-Pottie, P.; Minn, A.; Gillet, P.; Netter, P.; Terlain, B. Pefloxacin-Induced Achilles Tendon Toxicity in Rodents: Biochemical Changes in Proteoglycan Synthesis and Oxidative Damage to Collagen. Antimicrob. Agents Chemother. 2000, 44, 867–872. [Google Scholar] [CrossRef] [Green Version]
- Nix, D.E.; Spivey, J.M.; Norman, A.; Schentag, J.J. Dose-Ranging Pharmacokinetic Study of Ciprofloxacin after 200-, 300-, and 400-mg Intravenous Doses. Ann. Pharmacother. 1992, 26, 8–10. [Google Scholar] [CrossRef]
- Rees, S.G.; Flannery, C.R.; Little, C.B.; Hughes, C.E.; Caterson, B.; Dent, C.M. Catabolism of aggrecan, decorin and biglycan in tendon. Biochem. J. 2000, 350, 181–188. [Google Scholar] [CrossRef]
- Vogel, K.G.; Meyers, A.B. Proteins in the Tensile Region of Adult Bovine Deep Flexor Tendon. Clin. Orthop. Relat. Res. 1999, 367, S344–S355. [Google Scholar] [CrossRef] [PubMed]
- Siengdee, P.; Pradit, W.; Chomdej, S.; Nganvongpanit, K. Determination of two fluoroquinolones and their combinations with hyaluronan effect in in vitro canine cartilage explants. PeerJ 2019, 7, e6553. [Google Scholar] [CrossRef] [Green Version]
- Jones, G.C.; Corps, A.N.; Pennington, C.J.; Clark, I.M.; Edwards, D.R.; Bradley, M.M.; Hazleman, B.L.; Riley, G.P. Expression profiling of metalloproteinases and tissue inhibitors of metalloproteinases in normal and degenerate human achilles tendon. Arthritis Rheum. 2006, 54, 832–842. [Google Scholar] [CrossRef] [Green Version]
- Kevorkian, L.; Young, D.A.; Darrah, C.; Donell, S.T.; Shepstone, L.; Porter, S.; Brockbank, S.M.; Edwards, D.R.; Parker, A.E.; Clark, I.M. Expression profiling of metalloproteinases and their inhibitors in cartilage. Arthritis Rheum. Off. J. Am. Coll. Rheumatol. 2004, 50, 131–141. [Google Scholar] [CrossRef]
- Menon, A.; Pettinari, L.; Martinelli, C.; Colombo, G.; Portinaro, N.; Dalle-Donne, I.; D’Agostino, M.C.; Gagliano, N. New insights in extracellular matrix remodeling and collagen turnover related pathways in cultured human tenocytes after ciprofloxacin administration. Muscle Ligaments Tendons J. 2013, 3, 122–131. [Google Scholar]
- Vincenti, M.P.; Brinckerhoff, C.E. Signal transduction and cell-type specific regulation of matrix metalloproteinase gene expression: Can MMPs be good for you? J. Cell. Physiol. 2007, 213, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Gadgul, A.; Patarkar, R.; Niranjane, K.; Deshpande, A.; Walsangikar, S. Quinolones chemistry and its therapeutic activities. Res. J. Pharm. Technol. 2010, 3, 1023–1028. [Google Scholar]
- Pomorska-Mól, M.; Czyżewska-Dors, E.; Kwit, K.; Pejsak, Z. Enrofloxacin decreases IL-6 and TNF-α production by lipopolysaccharide-stimulated porcine peripheral blood mononuclear cells. J. Vet. Res. 2016, 60, 189–193. [Google Scholar] [CrossRef]
- Zakeri, S.M.; Meyer, H.; Meinhardt, G.; Reinisch, W.; Schrattbauer, K.; Knoefler, M.; Block, L.H. Effects of trovafloxacin on the IL-1-dependent activation of E-selectin in human endothelial cells in vitro. Immunopharmacology 2000, 48, 27–34. [Google Scholar] [CrossRef]
- Zhang, J.-Z.; Ward, K.W. Besifloxacin, a novel fluoroquinolone antimicrobial agent, exhibits potent inhibition of pro-inflammatory cytokines in human THP-1 monocytes. J. Antimicrob. Chemother. 2007, 61, 111–116. [Google Scholar] [CrossRef] [Green Version]
- Buckland, J. Positive feedback between ADAMTS-7 and TNF in OA. Nat. Rev. Rheumatol. 2013, 9, 566. [Google Scholar] [CrossRef]
- Kajanne, R.; Miettinen, P.; Mehlem, A.; Leivonen, S.-K.; Birrer, M.; Foschi, M.; Kähäri, V.-M.; Leppä, S. EGF-R regulates MMP function in fibroblasts through MAPK and AP-1 pathways. J. Cell. Physiol. 2007, 212, 489–497. [Google Scholar] [CrossRef]
- Wang, S.; Du, S.; Wu, Q.; Hu, J.; Li, T. Decorin Prevents Retinal Pigment Epithelial Barrier Breakdown Under Diabetic Conditions by Suppressing p38 MAPK Activation. Investig. Opthalmology Vis. Sci. 2015, 56, 2971–2979. [Google Scholar] [CrossRef] [Green Version]
- Brenneisen, P.; Briviba, K.; Wlaschek, M.; Wenk, J.; Scharffetter-Kochanek, K. Hydrogen peroxide (H2O2) Increases the Steady-State mRNA Levels of Collagenase/MMP-1 in Human dermal Fibroblasts. Free Radic. Biol. Med. 1997, 22, 515–524. [Google Scholar] [CrossRef]
- Lee, G.H.; Jin, S.W.; Kim, S.J.; Pham, T.H.; Choi, J.H.; Jeong, H.G. Tetrabromobisphenol A Induces MMP-9 Expression via NADPH Oxidase and the activation of ROS, MAPK, and Akt Pathways in Human Breast Cancer MCF-7 Cells. Toxicol. Res. 2019, 35, 93–101. [Google Scholar] [CrossRef] [Green Version]
- Panday, A.; Sahoo, M.K.; Osorio, D.; Batra, S. NADPH oxidases: An overview from structure to innate immunity-associated pathologies. Cell. Mol. Immunol. 2014, 12, 5–23. [Google Scholar] [CrossRef] [Green Version]
- Parkinson, J.; Samiric, T.; Ilic, M.Z.; Cook, J.; Feller, J.A.; Handley, C.J. Change in proteoglycan metabolism is a characteristic of human patellar tendinopathy. Arthritis Care Res. 2010, 62, 3028–3035. [Google Scholar] [CrossRef] [PubMed]
- Ireland, D.; Harrall, R.; Curry, V.; Holloway, G.; Hackney, R.; Hazleman, B.; Riley, G. Multiple changes in gene expression in chronic human Achilles tendinopathy. Matrix Biol. 2001, 20, 159–169. [Google Scholar] [CrossRef]
- Alfredson, H.; Lorentzon, M.; Bäckman, S.; Bäckman, A.; Lerner, U. cDNA-arrays and real-time quantitative PCR techniques in the investigation of chronic achilles tendinosis. J. Orthop. Res. 2003, 21, 970–975. [Google Scholar] [CrossRef]
- Nomura, M.; Hosaka, Y.; Kasashima, Y.; Ueda, H.; Takehana, K.; Kuwano, A.; Arai, K. Active Expression of Matrix Metalloproteinase-13 mRNA in the Granulation Tissue of Equine Superficial Digital Flexor Tendinitis. J. Veter-Med Sci. 2007, 69, 637–639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cook, J.L.; Purdam, C.R. Is tendon pathology a continuum? A pathology model to explain the clinical presentation of load-induced tendinopathy. Br. J. Sports Med. 2009, 43, 409–416. [Google Scholar] [CrossRef] [Green Version]
- Fu, S.-C.; Chan, K.-M.; Rolf, C.G. Increased Deposition of Sulfated Glycosaminoglycans in Human Patellar Tendinopathy. Clin. J. Sport Med. 2007, 17, 129–134. [Google Scholar] [CrossRef] [Green Version]
- Corps, A.N.; Jones, G.C.; Harrall, R.L.; Curry, V.A.; Hazleman, B.L.; Riley, G.P. The regulation of aggrecanase ADAMTS-4 expression in human Achilles tendon and tendon-derived cells. Matrix Biol. 2008, 27, 393–401. [Google Scholar] [CrossRef] [Green Version]
- Egerbacher, M.; Edinger, J.; Tschulenk, W. Effects of enrofloxacin and ciprofloxacin hydrochloride on canine and equine chondrocytes in culture. Am. J. Veter-Res. 2001, 62, 704–708. [Google Scholar] [CrossRef]
- Yoshida, K.; Yabe, K.; Nishida, S.; Yamamoto, N.; Ohshima, C.; Sekiguchi, M.; Yamada, K.; Furuhama, K. Pharmacokinetic disposition and arthropathic potential of oral ofloxacin in dogs. J. Veter-Pharmacol. Ther. 1998, 21, 128–132. [Google Scholar] [CrossRef] [PubMed]
Gene | Accession Number | Base Pair Length | Sense | Antisense |
---|---|---|---|---|
GAPDH | NM_001163856.1 | 1277 bp | GTGGTGAAGCAGGCATCG | AGGTGGAAGAGTGGGTGTC |
MMP-3 | NM_001082495.2 | 1802 bp | TGATGTCGGTCACTTCACTAC | AACAGCATCTCTTGGCAAATC |
MMP-9 | EU025852.1 | 2151 bp | TTGGTCCTGGCGGTCTTG | CCTGTCAGTGAGGTTAGTTAGC |
MMP-13 | NM_001081804.1 | 2727 bp | CCGTATTGATGCTGCCTATG | AACCTTCCAGAATGTCATAACC |
ADAMTS-4 | NM_001111299.1 | 2514 bp | CCCGAAATGGTGGCAAATAC | CAGTGCGGTGGTTGTAGG |
ADAMTS-5 | XM_023629969.1 | 10,009 bp | TTCCATCCTAACCAGCATTG | TCTGACCTGGGGAGTTCTTC |
TIMP-1 | XM_023633181.1 | 892 bp | GGACAACTATTGGACGAGAAG | GGATGGATGAACAGGGAAAC |
TIMP-2 | XM_023651899.1 | 3696 bp | GAGATGGAGCAGACAAGAC | TTCAGACAAGCCAGACAAG |
TIMP-3 | NM_001081870.2 | 1086 bp | GCAACTTCGTGGAGAGGTG | CGTAGCAAGGCAGGTAGTAG |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
James, S.; Daffy, J.; Cook, J.; Samiric, T. Short-Term Exposure to Ciprofloxacin Reduces Proteoglycan Loss in Tendon Explants. Genes 2022, 13, 2210. https://doi.org/10.3390/genes13122210
James S, Daffy J, Cook J, Samiric T. Short-Term Exposure to Ciprofloxacin Reduces Proteoglycan Loss in Tendon Explants. Genes. 2022; 13(12):2210. https://doi.org/10.3390/genes13122210
Chicago/Turabian StyleJames, Stuart, John Daffy, Jill Cook, and Tom Samiric. 2022. "Short-Term Exposure to Ciprofloxacin Reduces Proteoglycan Loss in Tendon Explants" Genes 13, no. 12: 2210. https://doi.org/10.3390/genes13122210
APA StyleJames, S., Daffy, J., Cook, J., & Samiric, T. (2022). Short-Term Exposure to Ciprofloxacin Reduces Proteoglycan Loss in Tendon Explants. Genes, 13(12), 2210. https://doi.org/10.3390/genes13122210