Whole-Genome Sequence Analysis Reveals the Origin of the Chakouyi Horse
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Datasets
2.2. SNP Calling
2.3. Population Divergence
2.4. LD Decay and Genetic Diversity
2.5. Detection of Migrations
2.6. Identical by Descent Analyses
2.7. Formal Test of Ancestor Admixture
2.8. Selective Signatures in Chakouyi Horses
2.9. SNP Validation of the DMRT3 Gene
3. Results
3.1. Genetic Relationship between the Chakouyi Horse and Foreign Horse Breeds
3.2. Genetic Relationships between the Chakouyi Horse and Other Chinese Horse Breeds
3.3. Identical by Descent Analyses of the Chakouyi Horse
3.4. Estimation of Possible Ancestry with a Formal Test of ADMIXTURE
3.5. Detection for Signatures of Selection
3.6. Genotyping of the DMRT3 Gene
4. Discussion
4.1. The Chakouyi Horse and the Hexi Corridor
4.2. The Genetic Links between the Chakouyi Horse and the Foreign Breeds
4.3. Native Origin of the Chakouyi Horse
4.4. Selective Signature at the Genomic Level of the Chakouyi Horse
4.5. The Conservation of the Chakouyi Horse
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Chang, H. Animal Genetic Resources in China, Horses Donkeys Camels; China Agriculture Press: Beijing, China, 2011; pp. 119–123. [Google Scholar]
- Yang, Y.; Zhu, Q.; Liu, S.; Zhao, C.; Wu, C. The origin of Chinese domestic horses revealed with novel mtDNA variants. Anim. Sci. J. 2017, 88, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Fu, C.; Yang, Y.; Zhang, Y.; Ma, H.; Xiong, Z.; Ling, Y.; Zhao, C. Current genetic conservation of Chinese indigenous horses revealed with Y-chromosomal and mitochondrial DNA polymorphisms. G3 2021, 11, jkab008. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Wang, S.; Zeng, G.; Guo, J.; Guo, M.; Dong, X.; Hua, G.; Liu, Y.; Wang, M.; Ling, Y.; et al. The Origin of a Coastal Indigenous Horse Breed in China Revealed by Genome-Wide SNP Data. Genes 2019, 10, 241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The editorial office. The Chakouyi Horse. S.I. Livest Poul. Genet. Resour. 2021, 51, 80. [Google Scholar]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [Green Version]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [Green Version]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cingolani, P.; Platts, A.; Wang, L.L.; Coon, M.; Nguyen, T.; Wang, L.; Land, S.J.; Lu, X.; Ruden, D.M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 2012, 6, 80–92. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Lee, S.H.; Goddard, M.E.; Visscher, P.M. GCTA: A tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 2011, 88, 76–82. [Google Scholar] [CrossRef] [Green Version]
- Alexander, D.H.; Novembre, J.; Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009, 19, 1655–1664. [Google Scholar] [CrossRef]
- Zhang, C.; Dong, S.S.; Xu, J.Y.; He, W.M.; Yang, T.L. PopLDdecay: A fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bioinformatics 2019, 35, 1786–1788. [Google Scholar] [CrossRef] [PubMed]
- Pickrell, J.K.; Pritchard, J.K. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 2012, 8, e1002967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.; et al. 1000 Genomes Project Analysis Group. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef]
- Regatieri, I.C.; Eberth, J.E.; Sarver, F.; Lear, T.L.; Bailey, E. Comparison of DMRT3 genotypes among American Saddlebred horses with reference to gait. Anim. Genet. 2016, 47, 603–605. [Google Scholar] [CrossRef]
- Andersson, L.S.; Larhammar, M.; Memic, F.; Wootz, H.; Schwochow, D.; Rubin, C.J.; Patra, K.; Arnason, T.; Wellbring, L.; Hjälm, G.; et al. Mutations in DMRT3 affect locomotion in horses and spinal circuit function in mice. Nature 2012, 30, 642–646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, H.; Zeng, L.; Dang, R.; Lan, X.; Chen, H.; Lei, C. The DMRT3 gene mutation in Chinese horse breeds. Anim. Genet. 2015, 46, 341–342. [Google Scholar] [CrossRef]
- Promerova, M.; Andersson, L.S.; Juras, R.; Penedo, M.C.; Reissmann, M.; Tozaki, T.; Bellone, R.; Dunner, S.; Horin, P.; Imsland, F.; et al. Worldwide frequency distribution of the ‘Gait keeper’ mutation in the DMRT3 gene. Anim. Genet. 2014, 45, 274–282. [Google Scholar] [CrossRef]
- Mao, Y.C. A Review on the Historical Status of Hexi Corridor on the Silk Road in Recent Years—A Case Study of Han. J. Hexi Univ. 2020, 36, 45–50. [Google Scholar]
- Xie, C.X. The History of Horse Raising in China; Chinese Agricultural Press: Beijing, China, 1991; pp. 70–71. [Google Scholar]
- Zhang, Y.T. A survey on the genetic resource of the Chakouyi horse. J. Anim. Sci. Vet. Med. 2009, 28, 73–74. [Google Scholar]
- Xie, C.X. The History of Horse Raising in China; Chinese Agricultural Press: Beijing, China, 1991; pp. 75–76. [Google Scholar]
- Luo, W.X. Thinking about the Development of Chakouyi Horse Industry in Tianzhu County. J. Anim. Sci. Vet. Med. 2021, 40, 60–61. [Google Scholar]
A | O | X | C | A | O | B | C | F4 Ratio | Std. err | Z (Null = 0) |
---|---|---|---|---|---|---|---|---|---|---|
THR | PRZ | CKY | HSK | THR | PRZ | MG | HSK | 6.196961 | 6.520517 | 0.95 9d |
THR | PRZ | CKY | HSK | THR | PRZ | BS | HSK | 0.566136 | 0.145556 | 3.889 9d |
THR | PRZ | CKY | HSK | THR | PRZ | TB | HSK | 0.355764 | 0.088371 | 4.026 9d |
THR | PRZ | CKY | HSK | THR | PRZ | DBP | HSK | 0.329154 | 0.084602 | 3.891 9d |
THR | PRZ | CKY | HSK | THR | PRZ | HNV | HSK | −0.03451 | 0.010505 | −3.285 9d |
THR | PRZ | CKY | HSK | THR | PRZ | HST | HSK | −0.03543 | 0.010896 | −3.252 9d |
THR | PRZ | CKY | HSK | THR | PRZ | ARAB | HSK | −0.03688 | 0.011185 | −3.297 9d |
THR | PRZ | CKY | HSK | THR | PRZ | AT | HSK | −0.05201 | 0.016226 | −3.205 9d |
Breed | Sample Number | Genotype Frequency | Allele Frequency | Resource | |||
---|---|---|---|---|---|---|---|
CC | CA | AA | C | A | |||
Chaykouyi horse | 40 | 0.0000 (0) | 0.0750 (3) | 0.9250 (37) | 0.0375 | 0.9625 | The present study |
Datong horse | 27 | 0.1482 (4) | 0.6296 (17) | 0.2222 (6) | 0.4630 | 0.5370 | Han et al. [18] |
Kazak horse | 17 | 0.3750 (6) | 0.5000 (8) | 0.1250 (2) | 0.6250 | 0.3750 | Han et al. [18] |
Baise horse | 33 | 1.0000 (33) | 0.0000 | 0.0000 | 1.0000 | 0.0000 | Han et al. [18] |
Debao pony | 40 | 1.0000 (40) | 0.0000 | 0.0000 | 1.0000 | 0.0000 | Han et al. [18] |
Guizhou horse | 23 | 1.0000 (23) | 0.0000 | 0.0000 | 1.0000 | 0.0000 | Han et al. [18] |
Lichuan horse | 18 | 1.0000 (18) | 0.0000 | 0.0000 | 1.0000 | 0.0000 | Han et al. [18] |
Niqiang horse | 46 | 0.9565 (44) | 0.0435 (2) | 0.0000 | 0.9783 | 0.0217 | Han et al. [18] |
Arabian horse | 69 | 1.0000 (69) | 0.0000 (0) | 0.0000 (0) | 1.0000 | 0.0000 | Promerova et al. [19] |
Akhal-Teke horse | 43 | 1.0000 (43) | 0.0000 (0) | 0.0000 (0) | 1.0000 | 0.0000 | Promerova et al. [19] |
TennesseeWalker | 54 | 0.0000 (0) | 0.0000 (0) | 1.0000 (54) | 0.0000 | 1.0000 | Promerova et al. [19] |
Icelandic horse | 219 | 0.0411 (9) | 0.4247 (93) | 0.5342 (117) | 0.2535 | 0.7465 | Promerova et al. [19] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Liu, Y.; Wang, M.; Lin, X.; Li, Y.; Yang, T.; Feng, M.; Ling, Y.; Zhao, C. Whole-Genome Sequence Analysis Reveals the Origin of the Chakouyi Horse. Genes 2022, 13, 2411. https://doi.org/10.3390/genes13122411
Li Y, Liu Y, Wang M, Lin X, Li Y, Yang T, Feng M, Ling Y, Zhao C. Whole-Genome Sequence Analysis Reveals the Origin of the Chakouyi Horse. Genes. 2022; 13(12):2411. https://doi.org/10.3390/genes13122411
Chicago/Turabian StyleLi, Ying, Yu Liu, Min Wang, Xiaoran Lin, Yuanyuan Li, Tao Yang, Mo Feng, Yao Ling, and Chunjiang Zhao. 2022. "Whole-Genome Sequence Analysis Reveals the Origin of the Chakouyi Horse" Genes 13, no. 12: 2411. https://doi.org/10.3390/genes13122411
APA StyleLi, Y., Liu, Y., Wang, M., Lin, X., Li, Y., Yang, T., Feng, M., Ling, Y., & Zhao, C. (2022). Whole-Genome Sequence Analysis Reveals the Origin of the Chakouyi Horse. Genes, 13(12), 2411. https://doi.org/10.3390/genes13122411