Identification of Novel Gene Variants for Autism Spectrum Disorders in the Lebanese Population Using Whole-Exome Sequencing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and Clinical Characteristics
2.2. DNA Extraction
2.3. Genetic Studies
2.4. Variant Analysis
2.5. Genetic Validation Using Sanger Sequencing
3. Results
3.1. Detected Variants
3.1.1. De Novo Variants
3.1.2. Homozygote Variants
3.1.3. X-Linked Variants
3.2. Oligogenic Model
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Arlington, VA, USA, 2013. [Google Scholar]
- Baio, J.; Wiggins, L.; Christensen, D.L.; Maenner, M.J.; Daniels, J.; Warren, Z.; Kurzius-Spencer, M.; Zahorodny, W.; Robinson Rosenberg, C.; White, T.; et al. Prevalence of Autism Spectrum Disorder among Children Aged 8 Years—Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2014. MMWR Surveill. Summ. 2018, 67, 1–23. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5919599/ (accessed on 7 March 2020). [CrossRef] [PubMed]
- Maenner, M.J. Prevalence of Autism Spectrum Disorder among Children Aged 8 Years—Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2016. MMWR Surveill. Summ. 2020, 69, 1–12. Available online: https://www.cdc.gov/mmwr/volumes/69/ss/ss6904ahtm (accessed on 15 February 2021). [CrossRef] [PubMed]
- Chaaya, M.; Saab, D.; Maalouf, F.T.; Boustany, R. Prevalence of Autism Spectrum Disorder in Nurseries in Lebanon: A Cross Sectional Study. J. Autism Dev. Disord. 2016, 46, 514–522. Available online: https://link.springer.com/article/10.1007%2Fs10803-015-2590-7 (accessed on 11 March 2020). [CrossRef] [PubMed]
- Sandin, S.; Lichtenstein, P.; Kuja-Halkola, R.; Hultman, C.; Larsson, H.; Reichenberg, A. The Heritability of Autism Spectrum Disorder. JAMA 2017, 318, 1182–1184. [Google Scholar] [CrossRef]
- SFARI|Simons Foundation Autism Research Initiative. Available online: https://www.sfari.org/ (accessed on 3 March 2020).
- Satterstrom, F.K.; Kosmicki, J.A.; Wang, J.; Breen, M.S.; De Rubeis, S.; An, J.; Peng, M.; Collins, R.; Grove, J.; Klei, L.; et al. Large-Scale Exome Sequencing Study Implicates Both Developmental and Functional Changes in the Neurobiology of Autism. Cell 2020, 180, 568–584. [Google Scholar] [CrossRef]
- De Rubeis, S.; He, X.; Goldberg, A.P.; Poultney, C.S.; Samocha, K.; Cicek, A.E.; Kou, Y.; Liu, L.; Fromer, M.; Walker, S.; et al. Synaptic, Transcriptional, and Chromatin Genes Disrupted in Autism. Nature 2014, 515, 209–215. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4402723/ (accessed on 12 February 2020). [CrossRef]
- Hnoonual, A.; Thammachote, W.; Tim-Aroon, T.; Rojnueangnit, K.; Hansakunachai, T.; Sombuntham, T.; Roongpraiwan, R.; Worachotekamjorn, J.; Chuthapisith, J.; Fucharoen, S.; et al. Chromosomal Microarray Analysis in a Cohort of Underrepresented Population Identifies SERINC2 as a Novel Candidate Gene for Autism Spectrum Disorder. Sci. Rep. 2017, 7, 12096. Available online: https://www.nature.com/articles/s41598-017-12317-3 (accessed on 27 September 2019). [CrossRef] [Green Version]
- Huguet, G.; Ey, E.; Bourgeron, T. The Genetic Landscapes of Autism Spectrum Disorders. Annu. Rev. Genom. Hum. Genet. 2013, 14, 191–213. Available online: https://www.annualreviews.org/doi/abs/10.1146/annurev-genom-091212-153431 (accessed on 1 October 2019). [CrossRef]
- O’Roak, B.J.; Deriziotis, P.; Lee, C.; Vives, L.; Schwartz, J.J.; Girirajan, S.; Karakoc, E.; Mackenzie, A.P.; Ng, S.B.; Baker, C.; et al. Exome Sequencing in Sporadic Autism Spectrum Disorders Identifies Severe de Novo Mutations. Nat. Genet. 2011, 43, 585–589. Available online: https://www.ncbi.nlm.nih.gov/pubmed/21572417 (accessed on 1 October 2019). [CrossRef]
- Bitar, T.; Hleihel, W.; Marouillat, S.; Vonwill, S.; Vuillaume, M.; Soufia, M.; Vourc’h, P.; Laumonnier, F.; Andres, C.R. Identification of Rare Copy Number Variations Reveals PJA2, APCS, SYNPO, and TAC1 as Novel Candidate Genes in Autism Spectrum Disorders. Mol. Genet. Genom. Med. 2019, 7, e786. Available online: https://onlinelibrary.wiley.com/doi/abs/1002/mgg786 (accessed on 1 October 2019). [CrossRef]
- Iossifov, I.; Ronemus, M.; Levy, D.; Wang, Z.; Hakker, I.; Rosenbaum, J.; Yamrom, B.; Lee, Y.; Narzisi, G.; Leotta, A.; et al. De novo gene disruptions in children on the autistic spectrum. Neuron 2012, 74, 285–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kopanos, C.; Tsiolkas, V.; Kouris, A.; Chapple, C.E.; Albarca Aguilera, M.; Meyer, R.; Massouras, A. VarSome: The Human Genomic Variant Search Engine. Bioinformatics 2019, 35, 1978–1980. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6546127/ (accessed on 13 September 2020). [CrossRef] [PubMed]
- Vaser, R.; Adusumalli, S.; Leng, S.N.; Sikic, M.; Ng, P.C. SIFT missense predictions for genomes. Nat. Protoc. 2016, 11, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Adzhubei, I.A.; Schmidt, S.; Peshkin, L.; Ramensky, V.E.; Gerasimova, A.; Bork, P.; Kondrashov, A.S.; Sunyaev, S.R. A Method and Server for Predicting Damaging Missense Mutations. Nat. Methods 2010, 7, 248–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, J.T.; Thorvaldsdóttir, H.; Wenger, A.M.; Zehir, A.; Mesirov, J.P. Variant Review with the Integrative Genomics Viewer. Cancer Res. 2017, 77, e31–e34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4544753/ (accessed on 30 May 2020). [CrossRef] [Green Version]
- Acuna-Hidalgo, R.; Veltman, J.A.; Hoischen, A. New Insights into the Generation and Role of de Novo Mutations in Health and Disease. Genome Biol. 2016, 17, 241. Available online: https://search.datacite.org/works/1186/s13059-016-1110-1 (accessed on 24 September 2020). [CrossRef] [Green Version]
- Refaat, M.M.; Hassanieh, S.; Ballout, J.A.; Zakka, P.; Hotait, M.; Khalil, A.; Bitar, F.; Arabi, M.; Arnaout, S.; Skouri, H.; et al. Non-familial cardiomyopathies in Lebanon: Exome Sequencing Results for Five Idiopathic Cases. BMC Med. Genom. 2019, 12, 33. Available online: https://search.datacite.org/works/1186/s12920-019-0478-7 (accessed on 24 September 2020). [CrossRef] [Green Version]
- Cuijpers, S.A.G.; Willemstein, E.; Vertegaal, A.C.O. Converging Small Ubiquitin-like Modifier (SUMO) and Ubiquitin Signaling: Improved Methodology Identifies Co-modified Target Proteins. Mol. Cell. Proteom. 2017, 16, 2281–2295. Available online: https://search.datacite.org/works/1074/mcp.tir000152 (accessed on 19 December 2021). [CrossRef] [Green Version]
- Henley, J.M.; Craig, T.J.; Wilkinson, K.A. Neuronal SUMOylation: Mechanisms, Physiology, and Roles in Neuronal Dysfunction. Physiol. Rev. 2014, 94, 1249–1285. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4187031/ (accessed on 23 September 2020). [CrossRef]
- Glessner, J.T.; Wang, K.; Cai, G.; Korvatska, O.; Kim, C.E.; Wood, S.; Zhang, H.; Estes, A.; Brune, C.W.; Bradfield, J.P.; et al. Autism Genome-Wide Copy Number Variation Reveals Ubiquitin and Neuronal Genes. Nature 2009, 459, 569–573. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2925224/ (accessed on 23 September 2020). [CrossRef]
- LaSalle, J.M. Autism Genes Keep Turning Up Chromatin. OA Autism 2013, 1, 14. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3882126/ (accessed on 23 September 2020). [CrossRef] [PubMed] [Green Version]
- Jesus-Ribeiro, J.; Pires, L.M.; Melo, J.D.; Ribeiro, I.P.; Rebelo, O.; Sales, F.; Freire, A.; Melo, J.B. Genomic and Epigenetic Advances in Focal Cortical Dysplasia Types I and II: A Scoping Review. Front. Neurosci. 2020, 14, 580357. [Google Scholar] [CrossRef] [PubMed]
- Conboy, K.; Henshall, D.C.; Brennan, G.P. Epigenetic Principles Underlying Epileptogenesis and Epilepsy Syndromes. Neurobiol. Dis. 2021, 148, 105179. Available online: https://www.sciencedirect.com/science/article/pii/S096999612030454X (accessed on 19 December 2021). [CrossRef] [PubMed]
- Degrassi, F.; Damizia, M.; Lavia, P. The Mitotic Apparatus and Kinetochores in Microcephaly and Neurodevelopmental Diseases. Cells 2019, 9, 49. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7016623/ (accessed on 19 December 2021). [CrossRef] [Green Version]
- Lagana, A.; Dorn, J.F.; Rop, V.D.; Ladouceur, A.; Maddox, A.S.; Maddox, P.S. A Small GTPase Molecular Switch Regulates Epigenetic Centromere Maintenance by Stabilizing Newly Incorporated CENP-A. Nat. Cell Biol. 2010, 12, 1186–1193. Available online: https://www.nature.com/articles/ncb2129 (accessed on 26 September 2020). [CrossRef]
- Huo, Y.; Khatri, N.; Hou, Q.; Gilbert, J.; Wang, G.; Man, H. The Deubiquitinating Enzyme USP46 Regulates AMPA Receptor Ubiquitination and Trafficking. J. Neurochem. 2015, 134, 1067–1080. Available online: https://onlinelibrary.wiley.com/doi/abs/1111/jnc.13194 (accessed on 25 February 2021). [CrossRef]
- Mafalda, M.; Marco, C.D.; Canitano, R.; Buoni, S.; Frullanti, E.; Mencarelli, M.A.; Veronica, B.; Amabile, S.; Radice, L.; Baldassarri, M.; et al. A Genome Wide Copy Number Variations Analysis in Autism Spectrum Disorder (Asd) and Intellectual Disability (Id) in Italian Families. J. Genet. Syndr. Gene Ther. 2016, 7, 2. [Google Scholar] [CrossRef] [Green Version]
- Proenca, C.C.; Gao, K.P.; Shmelkov, S.V.; Rafii, S.; Lee, F.S. Slitrks as Emerging Candidate Genes Involved in Neuropsychiatric Disorders. Trends Neurosci. 2011, 34, 143–153. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051006/ (accessed on 23 September 2020). [CrossRef] [Green Version]
- Brooks, S.P.; Coccia, M.; Tang, H.R.; Kanuga, N.; Machesky, L.M.; Bailly, M.; Cheetham, M.E.; Hardcastle, A.J. The Nance-Horan Syndrome Protein Encodes a Functional WAVE Homology Domain (WHD) and is Important for Co-Ordinating Actin Remodelling and Maintaining Cell Morphology. Hum. Mol. Genet. 2010, 19, 2421–2432. Available online: https://www.ncbi.nlm.nih.gov/pubmed/20332100 (accessed on 23 September 2020). [CrossRef] [Green Version]
- Brooks, S.P.; Ebenezer, N.D.; Poopalasundaram, S.; Lehmann, O.J.; Moore, A.T.; Hardcastle, A.J. Identification of the gene for Nance-Horan syndrome (NHS). J. Med. Genet. 2004, 41, 768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oikonomakis, V.; Kosma, K.; Mitrakos, A.; Sofocleous, C.; Pervanidou, P.; Syrmou, A.; Pampanos, A.; Psoni, S.; Fryssira, H.; Kanavakis, E.; et al. Recurrent copy number variations as risk factors for autism spectrum disorders: Analysis of the clinical implications. Clin. Genet. 2016, 89, 708. [Google Scholar] [CrossRef] [PubMed]
- Ung, D.C.; Iacono, G.; Meziane, H.; Blanchard, E.; Papon, M.A.; Selten, M.; Rhijn, J.R.v.; Montjean, R.; Rucci, J.; Martin, S.; et al. Ptchd1 Deficiency Induces Excitatory Synaptic and Cognitive Dysfunctions in Mouse. Mol. Psychiatry 2018, 23, 1356–1367. Available online: https://www.narcis.nl/publication/RecordID/oai:repository.ubn.ru.nl:2066%2F193089 (accessed on 23 September 2020). [CrossRef] [Green Version]
- Marshall, C.R.; Noor, A.; Vincent, J.B.; Lionel, A.C.; Feuk, L.; Skaug, J.; Shago, M.; Moessner, R.; Pinto, D.; Ren, Y.; et al. Structural Variation of Chromosomes in Autism Spectrum Disorder. Am. J. Hum. Genet. 2008, 82, 477–488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaudhry, A.; Noor, A.; Degagne, B.; Baker, K.; Bok, L.A.; Brady, A.F.; Chitayat, D.; Chung, B.H.; Cytrynbaum, C.; Dyment, D.; et al. Phenotypic Spectrum Associated with PTCHD1 Deletions and Truncating Mutations Includes Intellectual Disability and Autism Spectrum Disorder. Clin. Genet. 2015, 88, 224–233. Available online: https://www.narcis.nl/publication/RecordID/oai:cris.maastrichtuniversity.nl:publications%2F8ce2b8ca-830a-46a3-b59d-1fd464489405 (accessed on 23 September 2020). [CrossRef]
- Boccuto, L.; Chen, C.; Pittman, A.R.; Skinner, C.D.; McCartney, H.J.; Jones, K.; Bochner, B.R.; Stevenson, R.E.; Schwartz, C.E. Decreased Tryptophan Metabolism in Patients with Autism Spectrum Disorders. Mol. Autism 2013, 4, 16. Available online: https://search.datacite.org/works/1186/2040-2392-4-16 (accessed on 3 February 2021). [CrossRef] [Green Version]
- Husson, T.; Lecoquierre, F.; Cassinari, K.; Charbonnier, C.; Quenez, O.; Goldenberg, A.; Guerrot, A.; Richard, A.; Drouin-Garraud, V.; Brehin, A.; et al. Rare Genetic Susceptibility Variants Assessment in Autism Spectrum Disorder: Detection Rate and Practical Use. Transl. Psychiatry 2020, 10, 77. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7039996/ (accessed on 3 February 2021). [CrossRef]
Subject Number | Gender | Age | Region | Parents Availability | Parents Consanguinity | Family History | CARS | Associated Comorbidities |
---|---|---|---|---|---|---|---|---|
23 | Male | 9 | Beirut | Yes | No | Diabetes, cancer, and renal disease on both the paternal and maternal sides | Moderate autism | Hyperactivity, anxiety |
45 | Female | 9 | South Lebanon | Yes | No | NA | Moderate autism | Epilepsy, speech delay |
64 | Male | 10 | Mount Lebanon | No | No | Hypertension and high cholesterol on the maternal side | Moderate autism | Anxiety |
70 | Male | 27 | Bekaa | No | Father unknown | Diabetes, hypertension, high cholesterol, and triglycerides on both the maternal and paternal family sides. | Moderate autism | Anxiety, depression, hyperactivity, self-injurious behavior |
73 | Male | 9 | Bekaa | Yes | No | Diabetes, hypertension on both family sides. Intellectual disability in paternal side | Moderate autism | Anxiety, depression, hyperactivity, self-injurious behavior |
Identified Variant | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Subject | Gene | Chromosome | Mode of Inheritance | Type | Base Change | Protein Change | Consequence | SIFT | Polyphen2 | CADD | ACMG Classification |
23 | USP46 | 4 | AD | snv | c.293C>T | p.Pro98Leu | missense | deleterious (0.03) | benign (0.009) | 23.8 | Uncertain significance (PS2, PM2) |
45 | MIS18BP1 | 14 | AD | deletion | c.471delA | p.Lys157AsnfsTer24 | frameshift | 16.6 | Uncertain significance (PVS1, PP3) | ||
KRT2 | 12 | AD | snv | c.1022G>A | p.Arg341His | missense | deleterious (0) | probably damaging (1) | 27.7 | Likely pathogenic (PM1, PM2, PP2, PP3) | |
73 | LSMEM2 | 3 | AD | snv | c.97G>T | p.Gly33Trp | missense | deleterious (0.02) | possibly damaging (0.688) | 22.1 | Uncertain significance (PM2, BP4) |
Identified Variant | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Subject | Gene | Chromosome | Mode of Inheritance | Type | Base Change | Protein Change | Consequence | SIFT | Polyphen2 | CADD | ACMG Classification |
45 | HAAO | 2 | AR | snv | c.371T>C | p.Met124Thr | missense | tolerated (1) | benign (0) | 0.05 | Uncertain significance (PM1, PM2, BP4) |
70 | ASXL3 | 18 | AR | snv | c.5560G>A | p.Val1854Ile | missense | Damaging (0.09) | Benign (0.05) | 16.5 | Uncertain significance (PM2, BP4) |
73 | KRTAP5-5 | 11 | AR | insertion | c.157_158insGAGG | p.Ala53GlyfsTer129 | frameshift | 32 | Uncertain significance (PVS1, BS1) |
Identified Variant | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Subject | Gene | Chromosome | Mode of Inheritance | Type | Base Change | Protein Change | Consequence | SIFT | Polyphen2 | CADD | ACMG Classification |
23 | SLITRK4 | X | XR | snv | c.1860A>C | p.Leu620Phe | missense | deleterious (0) | benign (0.441) | 23.7 | Uncertain significance (PM2, PP3) |
FLNA | X | XR | snv | c.1954G>A | p.Glu652Lys | missense | tolerated (0.09) | probably damaging (0.929) | 25.3 | Uncertain significance (PM2, PP3, BP1) | |
64 | PTCHD1 | X | XR | snv | c.1804A>G | p.Thr602Ala | missense | tolerated (0.32) | probably damaging (0.996) | 20.9 | Uncertain significance (PM2, PP3, BP1) |
FLNA | X | XR | snv | c.2590G>T | p.Val864Phe | missense | deleterious (0) | possibly damaging (0.745) | 22.7 | Uncertain significance (PM2, PP3, BP1) | |
73 | NHSL2 | X | XR | snv | c.2773C>T | p.Arg925Trp | missense | deleterious (0) | possibly damaging (0.847) | 19.8 | Uncertain significance (PM5, PP2, BP1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerges, P.; Bitar, T.; Laumonnier, F.; Marouillat, S.; Nemer, G.; Andres, C.R.; Hleihel, W. Identification of Novel Gene Variants for Autism Spectrum Disorders in the Lebanese Population Using Whole-Exome Sequencing. Genes 2022, 13, 186. https://doi.org/10.3390/genes13020186
Gerges P, Bitar T, Laumonnier F, Marouillat S, Nemer G, Andres CR, Hleihel W. Identification of Novel Gene Variants for Autism Spectrum Disorders in the Lebanese Population Using Whole-Exome Sequencing. Genes. 2022; 13(2):186. https://doi.org/10.3390/genes13020186
Chicago/Turabian StyleGerges, Perla, Tania Bitar, Frederic Laumonnier, Sylviane Marouillat, Georges Nemer, Christian R. Andres, and Walid Hleihel. 2022. "Identification of Novel Gene Variants for Autism Spectrum Disorders in the Lebanese Population Using Whole-Exome Sequencing" Genes 13, no. 2: 186. https://doi.org/10.3390/genes13020186
APA StyleGerges, P., Bitar, T., Laumonnier, F., Marouillat, S., Nemer, G., Andres, C. R., & Hleihel, W. (2022). Identification of Novel Gene Variants for Autism Spectrum Disorders in the Lebanese Population Using Whole-Exome Sequencing. Genes, 13(2), 186. https://doi.org/10.3390/genes13020186