A Gain-of-Function Mutation on BCKDK Gene and Its Possible Pathogenic Role in Branched-Chain Amino Acid Metabolism
Abstract
:1. Introduction
2. Methods
2.1. Clinical Data
2.2. Genetic Analysis
2.3. Computational Methods
2.3.1. Structure Preparation
2.3.2. Molecular Dynamic Simulations
3. Results
3.1. Genetic and In Silico Analysis
3.2. Computational Analysis of the Mutation
3.3. Follow-Up Data
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BCAAs | branched-chain amino acids |
BCAT | branched-chain aminotransferase |
BCKDH | branched-chain ketoacid dehydrogenases |
BCKDC | branched-chain ketoacid dehydrogenase complex |
BCKAs | branched-chain α ketoacids |
MSUD | maple syrup urine disease |
BCKDK | branched-chain ketoacid dehydrogenase kinase |
BCKDP | branched-chain ketoacid dehydrogenase phosphatase |
NBS | newborn screening |
LC–MS/MS | liquid chromatography–tandem mass spectrometry |
DBS | dried blood spot |
Rr | reference range |
Leu | leucine |
Ile | isoleucine |
Alloile | alloisoleucine |
Val | valine |
Phe | phenylalanine |
WES | whole-exome sequencing |
NGS | next-generation sequencing technology |
KIC | α-ketoisocaproate |
References
- Harper, A.E.; Miller, R.H.; Block, K.P. Branched-Chain Amino Acid Metabolism. Annu. Rev. Nutr. 1984, 4, 409–454. [Google Scholar] [CrossRef] [PubMed]
- Brosnan, J.T.; Brosnan, M.E. Branched-Chain Amino Acids: Enzyme and Substrate Regulation. J. Nutr. 2006, 136, 207S–211S. [Google Scholar] [CrossRef] [PubMed]
- Chuang, D.T.; Chuang, J.L.; Wynn, R.M. Lessons from genetic disorders of branched-chain amino acid metabolism. J. Nutr. 2006, 136, 243S–249S. [Google Scholar] [CrossRef] [PubMed]
- Pettit, F.H.; Yeaman, S.J.; Reed, L.J. Purification and characterization of branched chain α-keto acid dehydrogenase complex of bovine kidney. Proc. Natl. Acad. Sci. USA 1978, 75, 4881–4885. [Google Scholar] [CrossRef] [Green Version]
- Chuang, J.L.; Wynn, R.M.; Moss, C.C.; Song, J.L.; Li, J.; Awad, N.; Mandel, H.; Chuang, D.T. Structural and biochemical basis for novel mutations in homozygous Israeli maple syrup urine disease patients: A proposed mechanism for the thiamin-responsive phenotype. J. Biol. Chem. 2004, 279, 17792–17800. [Google Scholar] [CrossRef] [Green Version]
- Harris, R.A.; Kobayashi, R.; Murakami, T.; Shimomura, Y. Symposium: Leucine as a Nutritional Signal Regulation of Branched-Chain-Keto Acid Dehydrogenase Kinase Expression in Rat Liver. 2001. Available online: https://academic.oup.com/jn/article/131/3/841S/4687141 (accessed on 25 August 2021).
- Silberman, J.; Dancis, J.; Feigin, I. Neuropathological Observations in Maple Syrup Urine Disease: Branched-Chain Ketoaciduria. Arch. Neurol. 1961, 5, 351–363. [Google Scholar] [CrossRef]
- Menkes, J.H.; Hurst, P.L.; Craig, J.M. A new syndrome: Progressive familial infantile cerebral dysfunction associated with an unusual urinary substance. Pediatrics 1954, 14, 462–467. [Google Scholar] [CrossRef]
- Chuang DT, S.V. Maple Syrup Urine Disease (Branched Chain Ketoaciduria); McGraw-Hil: New York, NY, USA, 2001. [Google Scholar]
- Stauss, K.; Puffenberger, E.; Morton, D. Maple Syrup Urine Disease. In Gene Reviews; Pagon, R., Adam, M., Ardinger, H., Eds.; University of Washington: Seattle, WA, USA, 2020. Available online: http://www.ncbi.nlm.nih.gov/books/NBK1319/ (accessed on 10 June 2021).
- Frazier, D.M.; Allgeier, C.; Homer, C.; Marriage, B.J.; Ogata, B.; Rohr, F.; Splett, P.L.; Stembridge, A.; Singh, R.H. Nutrition management guideline for maple syrup urine disease: An evidence- and consensus-based approach. Mol. Genet. Metab. 2014, 112, 210–217. [Google Scholar] [CrossRef]
- Strauss, K.A.; Carson, V.J.; Soltys, K.; Young, M.E.; Bowser, L.E.; Puffenberger, E.G.; Brigatti, K.W.; Williams, K.B.; Robinson, D.L.; Hendrickson, C.; et al. Branched-chain α-ketoacid dehydrogenase deficiency (maple syrup urine disease): Treatment, biomarkers, and outcomes. Mol. Genet. Metab. 2020, 129, 193–206. [Google Scholar] [CrossRef]
- Therrell, B.L.; Lloyd-Puryear, M.A.; Camp, K.M.; Mann, M.Y. Inborn errors of metabolism identified via newborn screening: Ten-year incidence data and costs of nutritional interventions for research agenda planning. Mol. Genet. Metab. 2014, 113, 14–26. [Google Scholar] [CrossRef] [Green Version]
- Chuang, J.L.; Davie, J.R.; Wynn, R.M.; Chuang, D.T. Production of recombinant mammalian holo-E2 and E3 and reconstitution of functional branched-chain α-keto acid dehydrogenase complex with recombinant E1. Methods Enzymol. 2000, 324, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Tso, S.-C.; Qi, X.; Gui, W.-J.; Chuang, J.L.; Morlock, L.K.; Wallace, A.L.; Ahmed, K.; Laxman, S.; Campeau, P.M.; Lee, B.H.; et al. Structure-based design and mechanisms of allosteric inhibitors for mitochondrial branched-chain α-ketoacid dehydrogenase kinase. Proc. Natl. Acad. Sci. USA 2013, 110, 9728–9733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; De Beer, T.A.P.; Rempfer, C.; Bordoli, L.; et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018, 46, W296–W303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [Green Version]
- Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J.C. GROMACS: Fast, flexible, and free. J. Comput. Chem. 2005, 26, 1701–1718. [Google Scholar] [CrossRef]
- Sousa Da Silva, A.W.; Vranken, W.F. ACPYPE—AnteChamber PYthon Parser interfacE. BMC Res. Notes 2012, 5, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Lemak, A.S.; Balabaev, N.K. On The Berendsen Thermostat. Mol. Simul. 1994, 13, 177–187. [Google Scholar] [CrossRef]
- Parrinello, M.; Rahman, A. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 1998, 52, 7182. [Google Scholar] [CrossRef]
- Hess, B.; Bekker, H.; Berendsen, H.J.C.; Fraaije, J.G.E.M. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 1997, 18, 1463–1472. [Google Scholar] [CrossRef]
- Lahiry, P.; Torkamani, A.; Schork, N.J.; Hegele, R.A. Kinase mutations in human disease: Interpreting genotype-phenotype relationships. Nat. Rev. Genet. 2010, 11, 60–74. [Google Scholar] [CrossRef]
- Pitteloud, N.; Acierno, J.S.; Meysing, A.; Eliseenkova, A.V.; Ma, J.; Ibrahimi, O.A.; Metzger, D.L.; Hayes, F.J.; Dwyer, A.A.; Hughes, V.A.; et al. Mutations in fibroblast growth factor receptor 1 cause both Kallmann syndrome and normosmic idiopathic hypogonadotropic hypogonadism. Proc. Natl. Acad. Sci. USA 2006, 103, 6281–6286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Zhu, Y.; Huang, F.; Jiang, G.; Chang, J.; Li, R. Novel missense mutations of WNK1 in patients with hypokalemic salt-losing tubulopathies. Clin. Genet. 2013, 83, 545–552. [Google Scholar] [CrossRef] [PubMed]
- Harris, R.A.; Joshi, M.; Jeoung, N.H. Mechanisms responsible for regulation of branched-chain amino acid catabolism. In Biochemical and Biophysical Research Communications; Academic Press Inc.: Cambridge, MA, USA, 2004; Volume 313, pp. 391–396. [Google Scholar]
- Shimomura, Y.; Obayashi, M.; Murakami, T.; Harris, R.A. Regulation of branched-chain amino acid catabolism: Nutritional and hormonal regulation of activity and expression of the branched-chain α-keto acid dehydrogenase kinase. Curr. Opin. Clin. Nutr. Metab. Care 2001, 4, 419–423. [Google Scholar] [CrossRef] [PubMed]
- Novarino, G.; El-Fishawy, P.; Kayserili, H.; Meguid, N.A.; Scott, E.M.; Schroth, J.; Silhavy, J.L.; Kara, M.; Khalil, R.O.; Ben-Omran, T.; et al. Mutations in BCKD-kinase lead to a potentially treatable form of autism with epilepsy. Science 2012, 338, 394–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lynch, C.J.; Halle, B.; Fujii, H.; Vary, T.C.; Wallin, R.; Damuni, Z.; Hutson, S.M. Potential role of leucine metabolism in the leucine-signaling pathway involving mTOR. Am. J. Physiol.-Endocrinol. Metab. 2003, 285, E854–E863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Cazorla, A.; Oyarzabal, A.; Fort, J.; Robles, C.; Castejón, E.; Ruiz-Sala, P.; Bodoy, S.; Merinero, B.; Lopez-Sala, A.; Dopazo, J.; et al. Two Novel Mutations in the BCKDK (Branched-Chain Keto-Acid Dehydrogenase Kinase) Gene Are Responsible for a Neurobehavioral Deficit in Two Pediatric Unrelated Patients. Hum. Mutat. 2014, 35, 470–477. [Google Scholar] [CrossRef]
- Joshi, M.A.; Jeoung, N.H.; Obayashi, M.; Hattab, E.M.; Brocken, E.G.; Liechty, E.A.; Kubek, M.J.; Vahem, K.M.; Wek, R.C.; Harris, R.A. Impaired growth and neurological abnormalities in branched-chain α-keto acid dehydrogenase kinase-deficient mice. Biochem. J. 2006, 400, 153–162. [Google Scholar] [CrossRef] [Green Version]
- Samuel Zigler, J.; Hodgkinson, C.A.; Wright, M.; Klise, A.; Sundin, O.; Broman, K.W.; Hejtmancik, F.; Huang, H.; Patek, B.; Sergeev, Y.; et al. A spontaneous missense mutation in branched chain keto acid dehydrogenase kinase in the rat affects both the central and peripheral nervous systems. PLoS ONE 2016, 11, e0160447. [Google Scholar] [CrossRef]
- OMIM Entry—# 248600—MAPLE SYRUP URINE DISEASE; MSUD. Available online: https://www.omim.org/entry/248600 (accessed on 10 June 2021).
- Oyarzabal, A.; Martínez-Pardo, M.; Merinero, B.; Navarrete, R.; Desviat, L.R.; Ugarte, M.; Rodríguez-Pombo, P. A Novel Regulatory Defect in the Branched-Chain α-Keto Acid Dehydrogenase Complex Due to a Mutation in the PPM1K Gene Causes a Mild Variant Phenotype of Maple Syrup Urine Disease. Hum. Mutat. 2013, 34, 355–362. [Google Scholar] [CrossRef] [Green Version]
- Joshi, M.; Jeoung, N.H.; Popov, K.M.; Harris, R.A. Identification of a novel PP2C-type mitochondrial phosphatase. Biochem. Biophys. Res. Commun. 2007, 356, 38–44. [Google Scholar] [CrossRef] [Green Version]
- Lu, G.; Sun, H.; Korge, P.; Koehler, C.M.; Weiss, J.N.; Wang, Y. Chapter 14 Functional Characterization of a Mitochondrial Ser/Thr Protein Phosphatase in Cell Death Regulation. Methods Enzymol. 2009, 457, 255–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wynn, R.M.; Li, J.; Brautigam, C.A.; Chuang, J.L.; Chuang, D.T. Structural and biochemical characterization of human mitochondrial branched-chain α-ketoacid dehydrogenase phosphatase. J. Biol. Chem. 2012, 287, 9178–9192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, M.; Lu, G.; Gao, C.; Wang, Y.; Sun, H. Tissue-specific and nutrient regulation of the branched-chain α-keto acid dehydrogenase phosphatase, protein phosphatase 2Cm (PP2Cm). J. Biol. Chem. 2012, 287, 23397–23406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Couteur, D.G.; Solon-Biet, S.M.; Cogger, V.C.; Ribeiro, R.; de Cabo, R.; Raubenheimer, D.; Cooney, G.J.; Simpson, S.J. Branched chain amino acids, aging and age-related health. Ageing Res. Rev. 2020, 64, 101198. [Google Scholar] [CrossRef]
BCAAs | LEU | ILE | VAL | ALLOILE |
---|---|---|---|---|
Neonatal DBS (reference range values) | – | – | <250 µmol/L | <2.0 µmol/L |
– | – | 214 | 8.2 | |
DBS (reference range values) at follow-up * | <200 µmol/L | <100 µmol/L | 70–267 µmol/L | <2.0 µmol/L |
44–324 | 4–157 | 62–514 | 0–14 | |
Plasma (reference range values) at diagnosis | 77–195 µmol/L | 38–99 µmol/L | 130–335 µmol/L | <2.0 µmol/L |
At diagnosis | 428 | 207 | 418 | 17.0 |
Plasma (reference range values) at follow-up | 75–127 µmol/L | 39–65 µmol/L | 158–291 µmol/L | <2.0 µmol/L |
At follow-up | 121–193 | 63–99 | 145–323 | 4–11 |
Plasma BCAAs (Reference Range Values) | LEU (77–195 μmol/L) | ILE (38–99 μmol/L) | VAL (130–335 μmol/L) | ALLOILE (<2.0 μmol/L) |
---|---|---|---|---|
Patient | 428 | 207 | 418 | 17.0 |
Father | 384 | 156 | 403 | 14.0 |
Paternal grandfather | 234 | 111 | 315 | 3.6 |
Plasma BCAAs (Reference Range Values) | LEU (77–195 μmol/L) | ILE (38–99 μmol/L) | VAL (130–335 μmol/L) | ALLOILE (<2 μmol/L) |
---|---|---|---|---|
Paternal grandfather | 109 | 74 | 193 | 1 |
Father | 242 | 181 | 425 | 14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maguolo, A.; Rodella, G.; Giorgetti, A.; Nicolodi, M.; Ribeiro, R.; Dianin, A.; Cantalupo, G.; Monge, I.; Carcereri, S.; De Bernardi, M.L.; et al. A Gain-of-Function Mutation on BCKDK Gene and Its Possible Pathogenic Role in Branched-Chain Amino Acid Metabolism. Genes 2022, 13, 233. https://doi.org/10.3390/genes13020233
Maguolo A, Rodella G, Giorgetti A, Nicolodi M, Ribeiro R, Dianin A, Cantalupo G, Monge I, Carcereri S, De Bernardi ML, et al. A Gain-of-Function Mutation on BCKDK Gene and Its Possible Pathogenic Role in Branched-Chain Amino Acid Metabolism. Genes. 2022; 13(2):233. https://doi.org/10.3390/genes13020233
Chicago/Turabian StyleMaguolo, Alice, Giulia Rodella, Alejandro Giorgetti, Marion Nicolodi, Rui Ribeiro, Alice Dianin, Gaetano Cantalupo, Irene Monge, Sarah Carcereri, Margherita Lucia De Bernardi, and et al. 2022. "A Gain-of-Function Mutation on BCKDK Gene and Its Possible Pathogenic Role in Branched-Chain Amino Acid Metabolism" Genes 13, no. 2: 233. https://doi.org/10.3390/genes13020233
APA StyleMaguolo, A., Rodella, G., Giorgetti, A., Nicolodi, M., Ribeiro, R., Dianin, A., Cantalupo, G., Monge, I., Carcereri, S., De Bernardi, M. L., Delledonne, M., Pasini, A., Campostrini, N., Ion Popa, F., Piacentini, G., Teofoli, F., Vincenzi, M., Camilot, M., & Bordugo, A. (2022). A Gain-of-Function Mutation on BCKDK Gene and Its Possible Pathogenic Role in Branched-Chain Amino Acid Metabolism. Genes, 13(2), 233. https://doi.org/10.3390/genes13020233