CRL4Cdt2 Ubiquitin Ligase, A Genome Caretaker Controlled by Cdt2 Binding to PCNA and DNA
Abstract
:1. Introduction
2. Cdt2- DDB1-CUL4-Rbx1 Complex, CRL4Cdt2
2.1. Cullin4 RING Ubiquitin Ligase, CRL4
2.2. Cdc10-Dependent Transcript-2, Cdt2
2.3. Overview of Substrate Recognition by CRL4Cdt2 (PCNADNA-Dependent)
3. Substrate Recognition by the N-Terminal Region of Cdt2
4. Essential Features in the C-Terminus of Cdt2 That Regulate CRL4Cdt2 Activity
4.1. PIP Box at the C-Terminal End of Cdt2
4.2. Phosphorylation of the C-Terminal of Cdt2
4.3. DNA Binding Domain in the C-Terminal Region
5. Intrinsically Disordered Region in the C-Terminal Half of Cdt2
6. Conclusions and Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Müller-Wille, S. Cell Theory, Specificity, and Reproduction, 1837–1870. Stud. Hist. Philos. Biol. Biomed. Sci. 2010, 41, 225–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ingham, M.; Schwartz, G.K. Cell-Cycle Therapeutics Come of Age. J. Clin. Oncol. 2017, 35, 2949–2959. [Google Scholar] [CrossRef] [PubMed]
- Niu, N.; Zhang, J.; Zhang, N.; Mercado-Uribe, I.; Tao, F.; Han, Z.; Pathak, S.; Multani, A.S.; Kuang, J.; Yao, J.; et al. Linking Genomic Reorganization to Tumor Initiation via the Giant Cell Cycle. Oncogenesis 2016, 5, e281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rageul, J.; Weinheimer, A.S.; Park, J.J.; Kim, H. Proteolytic Control of Genome Integrity at the Replication Fork. DNA Repair 2019, 81, 102657. [Google Scholar] [CrossRef] [PubMed]
- Jang, S.M.; Redon, C.E.; Thakur, B.L.; Bahta, M.K.; Aladjem, M.I. Regulation of Cell Cycle Drivers by Cullin-RING Ubiquitin Ligases. Exp. Mol. Med. 2020, 52, 1637–1651. [Google Scholar] [CrossRef]
- Cortez, D. Replication-Coupled DNA Repair. Mol. Cell 2019, 74, 866–876. [Google Scholar] [CrossRef] [Green Version]
- Havens, C.G.; Walter, J.C. Mechanism of CRL4Cdt2, a PCNA-Dependent E3 Ubiquitin Ligase. Genes Dev. 2011, 25, 1568–1582. [Google Scholar] [CrossRef] [Green Version]
- Nishitani, H.; Lygerou, Z.; Nishimoto, T.; Nurse, P. The Cdt1 Protein Is Required to License DNA for Replication in Fission Yeast. Nature 2000, 404, 625–628. [Google Scholar] [CrossRef]
- Nishitani, H.; Lygerou, Z. Control of DNA Replication Licensing in a Cell Cycle. Genes Cells 2002, 7, 523–534. [Google Scholar] [CrossRef]
- Kanellou, A.; Giakoumakis, N.N.; Panagopoulos, A.; Tsaniras, S.C.; Lygerou, Z. The Licensing Factor Cdt1 Links Cell Cycle Progression to the DNA Damage Response. Anticancer Res. 2020, 40, 2449–2456. [Google Scholar] [CrossRef]
- Nishitani, H.; Taraviras, S.; Lygerou, Z.; Nishimoto, T. The Human Licensing Factor for DNA Replication Cdt1 Accumulates in G1 and Is Destabilized after Initiation of S-Phase. J. Biol. Chem. 2001, 276, 44905–44911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pozo, P.; Cook, J. Regulation and Function of Cdt1; A Key Factor in Cell Proliferation and Genome Stability. Genes 2016, 8, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panagopoulos, A.; Taraviras, S.; Nishitani, H.; Lygerou, Z. CRL4Cdt2: Coupling Genome Stability to Ubiquitination. Trends Cell Biol. 2020, 30, 290–302. [Google Scholar] [CrossRef] [PubMed]
- Jang, S.M.; Redon, C.E.; Aladjem, M.I. Chromatin-Bound Cullin-Ring Ligases: Regulatory Roles in DNA Replication and Potential Targeting for Cancer Therapy. Front. Mol. Biosci. 2018, 5, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackson, S.; Xiong, Y. CRL4s: The CUL4-RING E3 Ubiquitin Ligases. Trends Biochem. Sci. 2009, 34, 562–570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romero, P.; Obradovic, Z.; Li, X.; Garner, E.C.; Brown, C.J.; Dunker, A.K. Sequence Complexity of Disordered Protein. Proteins 2001, 42, 38–48. [Google Scholar] [CrossRef]
- Sansam, C.L.; Shepard, J.L.; Lai, K.; Ianari, A.; Danielian, P.S.; Amsterdam, A.; Hopkins, N.; Lees, J.A. DTL/CDT2 Is Essential for Both CDT1 Regulation and the Early G2/M Checkpoint. Genes Dev. 2006, 20, 3117–3129. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, S.H.; Al-Amodi, H.; Nakamura, T.; McInerny, C.J.; Shimoda, C. The Schizosaccharomyces pombe Cdt2+ Gene, a Target of G1-S Phase-Specific Transcription Factor Complex DSC1, Is Required for Mitotic and Premeiotic DNA Replication. Genetics 2003, 164, 881–893. [Google Scholar] [CrossRef]
- Mazian, M.A.; Suenaga, N.; Ishii, T.; Hayashi, A.; Shiomi, Y.; Nishitani, H. A DNA-Binding Domain in the C-Terminal Region of Cdt2 Enhances the DNA Synthesis-Coupled CRL4Cdt2 Ubiquitin Ligase Activity for Cdt1. J. Biochem. 2019, 165, 505–516. [Google Scholar] [CrossRef]
- Jin, J.; Arias, E.E.; Chen, J.; Harper, J.W.; Walter, J.C. A Family of Diverse Cul4-Ddb1-Interacting Proteins Includes Cdt2, Which Is Required for S Phase Destruction of the Replication Factor Cdt1. Mol. Cell 2006, 23, 709–721. [Google Scholar] [CrossRef]
- Kim, D.H.; Budhavarapu, V.N.; Herrera, C.R.; Nam, H.W.; Kim, Y.S.; Yew, P.R. The CRL4Cdt2 Ubiquitin Ligase Mediates the Proteolysis of Cyclin-Dependent Kinase Inhibitor Xic1 through a Direct Association with PCNA. Mol. Cell. Biol. 2010, 30, 4120–4133. [Google Scholar] [CrossRef] [Green Version]
- Havens, C.G.; Shobnam, N.; Guarino, E.; Centore, R.C.; Zou, L.; Kearsey, S.E.; Walter, J.C. Direct Role for Proliferating Cell Nuclear Antigen in Substrate Recognition by the E3 Ubiquitin Ligase CRL4Cdt2. J. Biol. Chem. 2012, 287, 11410–11421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shiomi, Y.; Nishitani, H. Control of Genome Integrity by RFC Complexes; Conductors of PCNA Loading onto and Unloading from Chromatin during DNA Replication. Genes 2017, 8, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Havens, C.G.; Walter, J.C. Docking of a Specialized PIP Box onto Chromatin-Bound PCNA Creates a Degron for the Ubiquitin Ligase CRL4Cdt2. Mol. Cell 2009, 35, 93–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michishita, M.; Morimoto, A.; Ishii, T.; Komori, H.; Shiomi, Y.; Higuchi, Y.; Nishitani, H. Positively Charged Residues Located Downstream of PIP Box, Together with TD Amino Acids within PIP Box, Are Important for CRL4Cdt2-Mediated Proteolysis. Genes Cells 2011, 16, 12–22. [Google Scholar] [CrossRef]
- Slenn, T.J.; Morris, B.; Havens, C.G.; Freeman, R.M., Jr.; Takahashi, T.S.; Walter, J.C. Thymine DNA Glycosylase Is a CRL4Cdt2 Substrate. J. Biol. Chem. 2014, 289, 23043–23055. [Google Scholar] [CrossRef] [Green Version]
- Sugasawa, K.; Okuda, Y.; Saijo, M.; Nishi, R.; Matsuda, N.; Chu, G.; Mori, T.; Iwai, S.; Tanaka, K.; Tanaka, K.; et al. UV-Induced Ubiquitylation of XPC Protein Mediated by UV-DDB-Ubiquitin Ligase Complex. Cell 2005, 121, 387–400. [Google Scholar] [CrossRef] [Green Version]
- Fischer, E.S.; Scrima, A.; Böhm, K.; Matsumoto, S.; Lingaraju, G.M.; Faty, M.; Yasuda, T.; Cavadini, S.; Wakasugi, M.; Hanaoka, F.; et al. The Molecular Basis of CRL4DDB2/CSA Ubiquitin Ligase Architecture, Targeting, and Activation. Cell 2011, 147, 1024–1039. [Google Scholar] [CrossRef] [Green Version]
- Pierce, B.G.; Wiehe, K.; Hwang, H.; Kim, B.H.; Vreven, T.; Weng, Z. ZDOCK Server: Interactive Docking Prediction of Protein-Protein Complexes and Symmetric Multimers. Bioinformatics 2014, 30, 1771–1773. [Google Scholar] [CrossRef]
- Gulbis, J.M.; Kelman, Z.; Hurwitz, J.; O’Donnell, M.; Kuriyan, J. Structure of the C-Terminal Region of P21(WAF1/CIP1) Complexed with Human PCNA. Cell 1996, 87, 297–306. [Google Scholar] [CrossRef] [Green Version]
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; De Beer, T.A.P.; Rempfer, C.; Bordoli, L.; et al. SWISS-MODEL: Homology Modelling of Protein Structures and Complexes. Nucleic Acids Res. 2018, 46, W296–W303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Hu, X.J.; Zou, X.D.; Wu, X.H.; Ye, Z.Q.; Wu, Y.D. WDSPdb: A Database for WD40-Repeat Proteins. Nucleic Acids Res. 2015, 43, D339–D344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayashi, A.; Giakoumakis, N.N.; Heidebrecht, T.; Ishii, T.; Panagopoulos, A.; Caillat, C.; Takahara, M.; Hibbert, R.G.; Suenaga, N.; Stadnik-Spiewak, M.; et al. Direct Binding of Cdt2 to PCNA Is Important for Targeting the CRL4Cdt2 E3 Ligase Activity to Cdt1. Life Sci. Alliance 2018, 1, e201800238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Centore, R.C.; Havens, C.G.; Manning, A.L.; Li, J.M.; Flynn, R.L.; Tse, A.; Jin, J.; Dyson, N.J.; Walter, J.C.; Zou, L. CRL4Cdt2-Mediated Destruction of the Histone Methyltransferase Set8 Prevents Premature Chromatin Compaction in S Phase. Mol. Cell 2010, 40, 22–33. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Starostina, N.G.; Kipreos, E.T. The CRL4Cdt2 Ubiquitin Ligase Targets the Degradation of P21Cip1 to Control Replication Licensing. Genes Dev. 2008, 22, 2507–2519. [Google Scholar] [CrossRef] [Green Version]
- Nukina, K.; Hayashi, A.; Shiomi, Y.; Sugasawa, K.; Ohtsubo, M.; Nishitani, H. Mutations at Multiple CDK Phosphorylation Consensus Sites on Cdt2 Increase the Affinity of CRL4Cdt2 for PCNA and Its Ubiquitination Activity in S Phase. Genes Cells 2018, 23, 200–213. [Google Scholar] [CrossRef] [Green Version]
- Abbas, T.; Dutta, A. CRL4Cdt2: Master Coordinator of Cell Cycle Progression and Genome Stability. Cell Cycle 2011, 10, 241–249. [Google Scholar] [CrossRef] [Green Version]
- Leng, F.; Saxena, L.; Hoang, N.; Zhang, C.; Lee, L.; Li, W.; Gong, X.; Lu, F.; Sun, H.; Zhang, H. Proliferating Cell Nuclear Antigen Interacts with the CRL4 Ubiquitin Ligase Subunit CDT2 in DNA Synthesis–Induced Degradation of CDT1. J. Biol. Chem. 2018, 293, 18879–18889. [Google Scholar] [CrossRef] [Green Version]
- Roukos, V.; Kinkhabwala, A.; Colombelli, J.; Kotsantis, P.; Taraviras, S.; Nishitani, H.; Stelzer, E.; Bastiaens, P.; Lygerou, Z. Dynamic Recruitment of Licensing Factor Cdt1 to Sites of DNA Damage. J. Cell Sci. 2011, 124, 422–434. [Google Scholar] [CrossRef] [Green Version]
- Nurse, P. Ordering S Phase and M Phase in the Cell Cycle. Cell 1994, 79, 547–550. [Google Scholar] [CrossRef]
- Ardito, F.; Giuliani, M.; Perrone, D.; Troiano, G.; Lo Muzio, L. The Crucial Role of Protein Phosphorylation in Cell Signaling and Its Use as Targeted Therapy (Review). Int. J. Mol. Med. 2017, 40, 271–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, E.J.; Begum, R.; Chait, B.T.; Gaasterland, T. Prediction of Cyclin-Dependent Kinase Phosphorylation Substrates. PLoS ONE 2007, 2, e656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moses, A.M.; Hériché, J.K.; Durbin, R. Clustering of Phosphorylation Site Recognition Motifs Can Be Exploited to Predict the Targets of Cyclin-Dependent Kinase. Genome Biol. 2007, 8, R23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, P.D.; Sellers, W.R.; Sharma, S.K.; Wu, A.D.; Nalin, C.M.; Kaelin, W.G., Jr. Identification of a Cyclin-Cdk2 Recognition Motif Present in Substrates and P21-like Cyclin-Dependent Kinase Inhibitors. Mol. Cell. Biol. 1996, 16, 6623–6633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizzardi, L.F.; Coleman, K.E.; Varma, D.; Matson, J.P.; Oh, S.; Cook, J.G. CDK1-Dependent Inhibition of the E3 Ubiquitin Ligase CRL4CDT2 Ensures Robust Transition from S Phase to Mitosis. J. Biol. Chem. 2015, 290, 556–567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishii, T.; Shiomi, Y.; Takami, T.; Murakami, Y.; Ohnishi, N.; Nishitani, H. Proliferating Cell Nuclear Antigen-Dependent Rapid Recruitment of Cdt1 and CRL4Cdt2 at DNA-Damaged Sites after UV Irradiation in HeLa Cells. J. Biol. Chem. 2010, 285, 41993–42000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morino, M.; Nukina, K.; Sakaguchi, H.; Maeda, T.; Takahara, M.; Shiomi, Y.; Nishitani, H. Mitotic UV Irradiation Induces a DNA Replication-Licensing Defect That Potentiates G1 Arrest Response. PLoS ONE 2015, 10, e0120553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henneke, G.; Koundrioukoff, S.; Hübscher, U. Phosphorylation of Human Fen1 by Cyclin-Dependent Kinase Modulates Its Role in Replication Fork Regulation. Oncogene 2003, 22, 4301–4313. [Google Scholar] [CrossRef] [Green Version]
- Rahmeh, A.A.; Zhou, Y.; Xie, B.; Li, H.; Lee, E.Y.C.; Lee, M.Y.W.T. Phosphorylation of the P68 Subunit of Pol δ Acts as a Molecular Switch to Regulate Its Interaction with PCNA. Biochemistry 2012, 51, 416–424. [Google Scholar] [CrossRef]
- Rossi, R.; Villa, A.; Negri, C.; Scovassi, I.; Ciarrocchi, G.; Biamonti, G.; Montecucco, A. The Replication Factory Targeting Sequence/PCNA-Binding Site Is Required in G(1) to Control the Phosphorylation Status of DNA Ligase I. EMBO J. 1999, 18, 5745–5754. [Google Scholar] [CrossRef] [Green Version]
- Salles-Passador, I.; Munshi, A.; Cannella, D.; Pennaneach, V.; Koundrioukoff, S.; Jacquinod, M.; Forest, E.; Podust, V.; Fotedar, A.; Fotedar, R. Phosphorylation of the PCNA Binding Domain of the Large Subunit of Replication Factor C on Thr506 by Cyclin-Dependent Kinases Regulates Binding to PCNA. Nucleic Acids Res. 2003, 31, 5202–5211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirata, Y.; Kiuchi, K.; Chen, H.C.; Milbrandt, J.; Guroff, G. The Phosphorylation and DNA Binding of the DNA-Binding Domain of the Orphan Nuclear Receptor NGFI-B. J. Biol. Chem. 1993, 268, 24808–24812. [Google Scholar] [CrossRef]
- Smykowski, A.; Fischer, S.M.; Zentgraf, U. Phosphorylation Affects DNA-Binding of the Senescence-Regulating bZIP Transcription Factor GBF1. Plants 2015, 4, 691–709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexander, K.E.; Rizkallah, R. Aurora A Phosphorylation of YY1 during Mitosis Inactivates Its DNA Binding Activity. Sci. Rep. 2017, 7, 10084. [Google Scholar] [CrossRef] [Green Version]
- Cortese, M.S.; Uversky, V.N.; Dunker, A.K. Intrinsic Disorder in Scaffold Proteins: Getting More from Less. Prog. Biophys. Mol. Biol. 2008, 98, 85–106. [Google Scholar] [CrossRef] [Green Version]
- Galea, C.A.; Wang, Y.; Sivakolundu, S.G.; Kriwacki, R.W. Regulation of Cell Division by Intrinsically Unstructured Proteins: Intrinsic Flexibility, Modularity, and Signaling Conduits. Biochemistry 2008, 47, 7598–7609. [Google Scholar] [CrossRef] [Green Version]
- Van Roey, K.; Uyar, B.; Weatheritt, R.J.; Dinkel, H.; Seiler, M.; Budd, A.; Gibson, T.J.; Davey, N.E. Short Linear Motifs: Ubiquitous and Functionally Diverse Protein Interaction Modules Directing Cell Regulation. Chem. Rev. 2014, 114, 6733–6778. [Google Scholar] [CrossRef]
- Davey, N.E.; Seo, M.H.; Yadav, V.K.; Jeon, J.; Nim, S.; Krystkowiak, I.; Blikstad, C.; Dong, D.; Markova, N.; Kim, P.M.; et al. Discovery of Short Linear Motif-Mediated Interactions through Phage Display of Intrinsically Disordered Regions of the Human Proteome. FEBS J. 2017, 284, 485–498. [Google Scholar] [CrossRef]
- Wright, P.E.; Dyson, H.J. Linking Folding and Binding. Curr. Opin. Struct. Biol. 2009, 19, 31–38. [Google Scholar] [CrossRef] [Green Version]
- Vuzman, D.; Levy, Y. Intrinsically Disordered Regions as Affinity Tuners in Protein-DNA Interactions. Mol. Biosyst. 2012, 8, 47–57. [Google Scholar] [CrossRef]
- Parker, M.W.; Bell, M.; Mir, M.; Kao, J.A.; Darzacq, X.; Botchan, M.R.; Berger, J.M. A New Class of Disordered Elements Controls DNA Replication through Initiator Self-Assembly. Elife 2019, 8, e48562. [Google Scholar] [CrossRef] [PubMed]
- Yoon, M.K.; Mitrea, D.M.; Ou, L.; Kriwacki, R.W. Cell Cycle Regulation by the Intrinsically Disordered Proteins P21 and P27. Biochem. Soc. Trans. 2012, 40, 981–988. [Google Scholar] [CrossRef] [PubMed]
- Prestel, A.; Wichmann, N.; Martins, J.M.; Marabini, R.; Kassem, N.; Broendum, S.S.; Otterlei, M.; Nielsen, O.; Willemoës, M.; Ploug, M.; et al. The PCNA Interaction Motifs Revisited: Thinking Outside the PIP-Box. Cell. Mol. Life Sci. 2019, 76, 4923–4943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yanagi, K.; Mizuno, T.; You, Z.; Hanaoka, F. Mouse Geminin Inhibits Not Only Cdt1-MCM6 Interactions but Also a Novel Intrinsic Cdt1 DNA Binding Activity. J. Biol. Chem. 2002, 277, 40871–40880. [Google Scholar] [CrossRef] [Green Version]
- Mórocz, M.; Zsigmond, E.; Tóth, R.; Enyedi, M.Z.; Pintér, L.; Haracska, L. DNA-Dependent Protease Activity of Human Spartan Facilitates Replication of DNA-Protein Crosslink-Containing DNA. Nucleic Acids Res. 2017, 45, 3172–3188. [Google Scholar] [CrossRef] [Green Version]
- Shell, S.S.; Putnam, C.D.; Kolodner, R.D. The N Terminus of Saccharomyces cerevisiae Msh6 Is an Unstructured Tether to PCNA. Mol. Cell 2007, 26, 565–578. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Gao, Y.; Li, J.; Burgess, R.; Han, J.; Liang, H.; Zhang, Z.; Liu, Y. A DNA Binding Winged Helix Domain in CAF-1 Functions with PCNA to Stabilize CAF-1 at Replication Forks. Nucleic Acids Res. 2016, 44, 5083–5094. [Google Scholar] [CrossRef] [Green Version]
- Kato, M.; Han, T.W.; Xie, S.; Shi, K.; Du, X.; Wu, L.C.; Mirzaei, H.; Goldsmith, E.J.; Longgood, J.; Pei, J.; et al. Cell-Free Formation of RNA Granules: Low Complexity Sequence Domains Form Dynamic Fibers within Hydrogels. Cell 2012, 149, 753–767. [Google Scholar] [CrossRef] [Green Version]
- Mitrea, D.M.; Kriwacki, R.W. Phase Separation in Biology; Functional Organization of a Higher Order. Cell Commun. Signal. 2016, 14, 1. [Google Scholar] [CrossRef] [Green Version]
- Alberti, S.; Gladfelter, A.; Mittag, T. Considerations and Challenges in Studying Liquid-Liquid Phase Separation and Biomolecular Condensates. Cell 2019, 176, 419–434. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.; Bhalla, K.; Stillman, B. Multiple, Short Protein Binding Motifs in ORC1 and CDC6 Control the Initiation of DNA Replication. Mol. Cell 2021, 81, 1951–1969. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekaran, S.; Tan, T.X.; Hall, J.R.; Cook, J.G. Stress-Stimulated Mitogen-Activated Protein Kinases Control the Stability and Activity of the Cdt1 DNA Replication Licensing Factor. Mol. Cell. Biol. 2011, 31, 4405–4416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soucy, T.A.; Smith, P.G.; Milhollen, M.A.; Berger, A.J.; Gavin, J.M.; Adhikari, S.; Brownell, J.E.; Burke, K.E.; Cardin, D.P.; Critchley, S.; et al. An Inhibitor of NEDD8-Activating Enzyme as a New Approach to Treat Cancer. Nature 2009, 458, 732–736. [Google Scholar] [CrossRef]
- Benamar, M.; Guessous, F.; Du, K.; Corbett, P.; Obeid, J.; Gioeli, D.; Slingluff, C.L., Jr.; Abbas, T. Inactivation of the CRL4-CDT2-SET8/P21 Ubiquitylation and Degradation Axis Underlies the Therapeutic Efficacy of Pevonedistat in Melanoma. EBioMedicine 2016, 10, 85–100. [Google Scholar] [CrossRef] [Green Version]
- Pan, W.W.; Zhou, J.J.; Yu, C.; Xu, Y.; Guo, L.J.; Zhang, H.Y.; Zhou, D.; Song, F.Z.; Fan, H.Y. Ubiquitin E3 Ligase CRL4CDT2/DCAF2 as a Potential Chemotherapeutic Target for Ovarian Surface Epithelial Cancer. J. Biol. Chem. 2013, 288, 29680–29691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazian, M.A.; Yamanishi, K.; Rahman, M.Z.A.; Ganasen, M.; Nishitani, H. CRL4Cdt2 Ubiquitin Ligase, A Genome Caretaker Controlled by Cdt2 Binding to PCNA and DNA. Genes 2022, 13, 266. https://doi.org/10.3390/genes13020266
Mazian MA, Yamanishi K, Rahman MZA, Ganasen M, Nishitani H. CRL4Cdt2 Ubiquitin Ligase, A Genome Caretaker Controlled by Cdt2 Binding to PCNA and DNA. Genes. 2022; 13(2):266. https://doi.org/10.3390/genes13020266
Chicago/Turabian StyleMazian, Muadz Ahmad, Kumpei Yamanishi, Mohd Zulhilmi Abdul Rahman, Menega Ganasen, and Hideo Nishitani. 2022. "CRL4Cdt2 Ubiquitin Ligase, A Genome Caretaker Controlled by Cdt2 Binding to PCNA and DNA" Genes 13, no. 2: 266. https://doi.org/10.3390/genes13020266
APA StyleMazian, M. A., Yamanishi, K., Rahman, M. Z. A., Ganasen, M., & Nishitani, H. (2022). CRL4Cdt2 Ubiquitin Ligase, A Genome Caretaker Controlled by Cdt2 Binding to PCNA and DNA. Genes, 13(2), 266. https://doi.org/10.3390/genes13020266