Identification of Candidate Genes for Meat Color of Chicken by Combing Selection Signature Analyses and Differentially Expressed Genes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Animals
2.3. Meat Color Measurements
2.4. RNA-Seq
2.5. Genome Sequencing and Selection Signature Analysis
2.6. Pathway Analysis
2.7. RT-qPCR Validation of Candidate Genes
2.8. Statistical Analyses
3. Results
3.1. Differences in Meat Quality between Jingxing Yellow and Line B Chickens
3.2. Screening of DEGs Based on RNA Sequencing Data
3.3. Genes Associated with Selection Signatures
3.4. Candidate Genes for Meat Color of Breast Muscle in Chickens
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wen, Y.; Liu, H.; Liu, K.; Cao, H.; Mao, H.; Dong, X.; Yin, Z. Analysis of the physical meat quality in partridge (Alectoris chukar) and its relationship with intramuscular fat. Poult. Sci. 2020, 99, 1225–1231. [Google Scholar] [CrossRef] [PubMed]
- Pannier, L.; Gardner, G.E.; O’Reilly, R.A.; Pethick, D.W. Factors affecting lamb eating quality and the potential for their integration into an MSA sheepmeat grading model. Meat Sci. 2018, 144, 43–52. [Google Scholar] [CrossRef] [Green Version]
- Santos, T.C.; Gates, R.; Souza, C.; Tinôco, I.; Cândido, M.; Freitas, L. Meat Quality Parameters and the Effects of Stress: A Review. J. Agric. Sci. Technol. B 2019, 9. [Google Scholar] [CrossRef]
- Purslow, P.P.; Gagaoua, M.; Warner, R.D. Insights on meat quality from combining traditional studies and proteomics. Meat Sci. 2021, 174, 108423. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.H.; Chen, F.M.; Xiao, J.; Li, H.B. Effects of glucose oxidase on growth performance, nutrient digestibility, and intestianl microflora and morphlogy of weaned piglets. Anim. Nutr. 2015, 27, 3218–3224. [Google Scholar]
- Praud, C.; Al, A.S.; Voldoire, E.; Le Vern, Y.; Godet, E.; Couroussé, N.; Graulet, B.; Le Bihan, D.E.; Berri, C.; Duclos, M.J. Beta-carotene preferentially regulates chicken myoblast proliferation withdrawal and differentiation commitment via BCO1 activity and retinoic acid production. Exp. Cell Res. 2017, 358, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.X.; Liu, R.R.; Zhao, G.P.; Zheng, M.Q.; Chen, J.L.; Wen, J. Identification of differentially expressed genes and pathways for intramuscular fat deposition in pectoralis major tissues of fast-and slow-growing chickens. BMC Genom. 2012, 13, 213. [Google Scholar] [CrossRef] [Green Version]
- Estévez, M. Chapter 5—What’s New in Meat Oxidation. In New Aspects of Meat Quality; Purslow, P.P., Ed.; Woodhead Publishing: Sawston, UK, 2017; pp. 91–109. ISBN 9780081005934. [Google Scholar]
- Sayre, R.N.; Kiernat, B.; Briskey, E.J. Processing characteristics of porcine muscle related to pH and temperature during rigor mortis development and to gross morphology 24 hr post-mortem. J. Food Sci. 1964, 29, 175–181. [Google Scholar] [CrossRef]
- Hughes, J.M.; Clarke, F.M.; Purslow, P.P.; Warner, R.D. Meat color is determined not only by chromatic heme pigments but also by the physical structure and achromatic light scattering properties of the muscle. Compr. Rev. Food Sci. Food Saf. 2020, 19, 44–63. [Google Scholar] [CrossRef] [Green Version]
- Chartrin, P.; Méteau, K.; Juin, H.; Bernadet, M.D.; Guy, G.; Larzul, C.; Rémignon, H.; Mourot, J.; Duclos, M.J.; Baéza, E. Effects of intramuscular fat levels on sensory characteristics of duck breast meat. Poult. Sci. 2006, 85, 914–922. [Google Scholar] [CrossRef]
- Taniguchi, M.; Hayashi, T.; Nii, M.; Yamaguchi, T.; Fujishima-Kanaya, N.; Awata, T.; Mikawa, S. Overexpression of NUDT7, a candidate quantitative trait locus for pork color, downregulates heme biosynthesis in L6 myoblasts. Meat Sci. 2010, 86, 728–732. [Google Scholar] [CrossRef] [PubMed]
- Le Bihan-Duval, E.; Nadaf, J.; Berri, C.; Pitel, F.; Graulet, B.; Godet, E.; Leroux, S.Y.; Demeure, O.; Lagarrigue, S.; Duby, C.; et al. Detection of a Cis [corrected] eQTL controlling BCMO1 gene expression leads to the identification of a QTG for chicken breast meat color. PLoS ONE 2011, 6, e14825. [Google Scholar] [CrossRef]
- Li, W.; Liu, R.; Zheng, M.; Feng, F.; Liu, D.; Guo, Y.; Zhao, G.; Wen, J. New insights into the associations among feed efficiency, metabolizable efficiency traits and related QTL regions in broiler chickens. J. Anim. Sci. Biotechnol. 2020, 11, 65. [Google Scholar] [CrossRef]
- Liu, L.; Liu, X.; Cui, H.; Liu, R.; Zhao, G.; Wen, J. Transcriptional insights into key genes and pathways controlling muscle lipid metabolism in broiler chickens. BMC Genom. 2019, 20, 863. [Google Scholar] [CrossRef]
- Li, W.J.; Zhao, G.P.; Chen, J.L.; Zheng, M.Q.; Wen, J. Influence of dietary vitamin E supplementation on meat quality traits and gene expression related to lipid metabolism in the Beijing-you chicken. Br. Poult. Sci. 2009, 50, 188–198. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Polo, C.; Montero, J.; Gómez-Polo, M.; Martin, C.A. Comparison of the CIELab and CIEDE 2000 Color Difference Formulas on Gingival Color Space. J. Prosthodont. 2020, 29, 401–408. [Google Scholar] [CrossRef]
- Sun, Y.; Zhao, G.; Liu, R.; Zheng, M.; Hu, Y.; Wu, D.; Zhang, L.; Li, P.; Wen, J. The identification of 14 new genes for meat quality traits in chicken using a genome-wide association study. BMC Genom. 2013, 14, 458. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Liu, L.; Wang, J.; Cui, H.; Chu, H.; Bi, H.; Zhao, G.; Wen, J. Genome-Wide Association Study of Muscle Glycogen in Jingxing Yellow Chicken. Genes 2020, 11, 497. [Google Scholar] [CrossRef]
- Vasimuddin, M.; Misra, S.; Li, H.; Aluru, S. Efficient Architecture-Aware Acceleration of BWA-MEM for Multicore Systems. In Proceedings of the 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS), Rio de Janeiro, Brazil, 20–24 May 2019; pp. 314–324. [Google Scholar]
- Mckenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [Green Version]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; Depristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.; et al. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef]
- Xie, C.; Mao, X.; Huang, J.; Ding, Y.; Wu, J.; Dong, S.; Kong, L.; Gao, G.; Li, C.Y.; Wei, L. KOBAS 2.0: A web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 2011, 39, W316–W322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Grashorn, M.A. Fattening Performance, Carcass and Meat Quality of Slow and Fast Growing Broiler Strains under Intensive and Extensive Feeding Conditions; ID—20093210208; World’s Poultry Science Association (WPSA): Beekbergen, The Netherlands, 2006; p. 66. [Google Scholar]
- Wideman, N.; Bryan, C.O.; Crandall, P. Factors affecting poultry meat colour and consumer preferences—A review. World’s Poult. Sci. J. 2016, 1, 1–14. [Google Scholar] [CrossRef]
- Czerwonka, M.; Tokarz, A. Iron in red meat-friend or foe. Meat Sci. 2017, 123, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Shen, R.F.; Tai, H.H. Thromboxanes: Synthase and receptors. J. Biomed. Sci. 1998, 5, 153–172. [Google Scholar] [CrossRef] [PubMed]
- Minami, D.; Takigawa, N.; Kato, Y.; Kudo, K.; Isozaki, H.; Hashida, S.; Harada, D.; Ochi, N.; Fujii, M.; Kubo, T.; et al. Downregulation of TBXAS1 in an iron-induced malignant mesothelioma model. Cancer Sci. 2015, 106, 1296–1302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Symeon, G.K.; Mantis, F.; Bizelis, I.; Kominakis, A.; Rogdakis, E. Effects of caponization on growth performance, carcass composition and meat quality of males of a layer line. Animal 2012, 6, 2023–2030. [Google Scholar] [CrossRef] [Green Version]
- Thomas, E.M.; Roden, J.A.; Haresign, W.; Richardson, R.I.; Lambe, N.R.; Clelland, N.; Gardner, G.E.; Scollan, N.D. Meat eating and nutritional quality of lambs sired by high and low muscle density rams. Animal 2021, 15, 100136. [Google Scholar] [CrossRef]
- Li, Y.; Xu, Z.; Li, H.; Xiong, Y.; Zuo, B. Differential transcriptional analysis between red and white skeletal muscle of Chinese Meishan pigs. Int. J. Biol. Sci. 2010, 6, 350–360. [Google Scholar] [CrossRef]
- Hausman, G.J.; Dodson, M.V.; Ajuwon, K.; Azain, M.; Barnes, K.M.; Guan, L.L.; Jiang, Z.; Poulos, S.P.; Sainz, R.D.; Smith, S.; et al. Board-invited review: The biology and regulation of preadipocytes and adipocytes in meat animals. J. Anim. Sci. 2009, 87, 1218–1246. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.J.; Jang, M.; Kim, H.; Kwak, W.; Park, W.; Hwang, J.Y.; Lee, C.K.; Jang, G.W.; Park, M.N.; Kim, H.C.; et al. Comparative Transcriptome Analysis of Adipose Tissues Reveals that ECM-Receptor Interaction Is Involved in the Depot-Specific Adipogenesis in Cattle. PLoS ONE 2013, 8, e66267. [Google Scholar] [CrossRef] [Green Version]
- Lan, Y.; Shang, Y.; Song, Y.; Dong, Q. Changes in the quality of superchilled rabbit meat stored at different temperatures. Meat Sci. 2016, 117, 173–181. [Google Scholar] [CrossRef]
- Lang, Q.; Zhang, H.; Li, J.; Yin, H.; Zhang, Y.; Tang, W.; Wan, B.; Yu, L. Cloning and characterization of a human GDPD domain-containing protein GDPD5. Mol. Biol. Rep. 2008, 35, 351–359. [Google Scholar] [CrossRef] [PubMed]
- Maedera, S.; Mizuno, T.; Ishiguro, H.; Ito, T.; Soga, T.; Kusuhara, H. GLUT6 is a lysosomal transporter that is regulated by inflammatory stimuli and modulates glycolysis in macrophages. FEBS Lett. 2019, 593, 195–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Te, P.M.; Keuning, E.; Hulsegge, B.; Hoving-Bolink, A.H.; Evans, G.; Mulder, H.A. Longissimus muscle transcriptome profiles related to carcass and meat quality traits in fresh meat Pietrain carcasses. J. Anim. Sci. 2010, 88, 4044–4055. [Google Scholar] [CrossRef]
Gene Name | Forward Primers (5′-3′) | Reverse Primers (5′-3′) |
---|---|---|
SLC2A6 | TTCCTTGGGGTTGTGGAGTT | AAGACATTCCCAGCGCAGAT |
MMP27 | CCAACCGTCCCTACATCACC | ACTCGCCACAAGTGTCTTCC |
TBXAS1 | GCTGTGCTGGGAGAAGATGT | CACTGTGCCAGCTTTCAGTG |
GDPD5 | TTTTTATATTCCAGAAGTGGCGCT | TCTTGACATCCCGACTGGAC |
RPL32 | AGTTCATCCGCCACCAGTCTGAT | GCTTCGTCTTCTTGTTGCTCCCATA |
Parameter | 15 min | 24 h | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
L* | a* | b* | pH | L* | a* | b* | pH | |||
Breed and age | 98 days | Jingxing Yellow | 55.28 ± 3.55 a | 8.57 ± 1.67 b | 14.53 ± 2.32 a | 5.55 ± 0.57 b | 54.09 ± 3.8 b | 7.39 ± 2.07 b | 15.51 ± 2.48 a | 5.68 ± 0.6 b |
42 days | Line B | 51.98 ± 1.99 b | 10.8 ± 1.17 a | 12.64 ± 1.95 b | 6.31 ± 0.2 a | 58.76 ± 3.11 a | 11.52 ± 1.32 a | 14.04 ± 1.88 b | 5.82 ± 0.19 a | |
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.032 | ||
Breed and age | 42 days | Beijing-you | 53.51 ± 2.37 a | 11.79 ± 1.75 | 18.01 ± 2.05 a | 5.75 ± 0.2 b | 50.74 ± 9.30 b | 9.56 ± 1.92 | 16.98 ± 1.87 a | 5.88 ± 0.1 b |
42 days | Arbor Acres | 52.29 ± 2.93 b | 12.41 ± 14.06 | 11.65 ± 1.87 b | 6.00 ± 0.19 a | 55.03 ± 2.19 a | 10.65 ± 1.89 | 13.41 ± 1.7 b | 6.00 ± 0.14 a | |
p-value | 0.016 | 0.800 | <0.0001 | <0.0001 | 0.021 | 0.080 | <0.0001 | <0.0001 |
GO Entries/KEGG Pathways | Gene Name | |
---|---|---|
GO:0006110 | Regulation of glycolytic process | SLC2A6 (Solute Carrier Family 2 Member 6) |
gga04142 | Lysosome | ADAMTSL2 (ADAMTS-Like 2) |
GO:0006508 | Proteolysis | TLL2 (Tolloid-Like Protein 2) |
THSD4 (Thrombospondin Type 1 Domain Containing 4) | ||
MMP7 (Matrix Metallopeptidase 7) | ||
MMP27 (Matrix Metallopeptidase 27) | ||
PHEX (Phosphate-Regulating Endopeptidase Homolog X-Linked) | ||
PAPPA2 (Pappalysin 2) | ||
XPNPEP2 (X-Prolyl Aminopeptidase 2) | ||
DNASE2B (Deoxyribonuclease 2 Beta) | ||
gga04150 | mTOR signaling pathway | COL1A2 (Collagen Type I Alpha 2 Chain) |
GO:0005506 | Iron ion binding | TBXAS1 (Thromboxane A Synthase 1) |
GO:0020037 | Heme binding | XDH (Xanthine Dehydrogenase) |
gga04310 | Wnt signaling pathway | NFATC2 (Nuclear Factor Of Activated T Cells 2) |
DAAM2 (Disheveled-Associated Activator Of Morphogenesis 2) | ||
MMP7 (Matrix Metallopeptidase 7) | ||
gga04510 | Focal adhesion | FGF2 (Fibroblast Growth Factor 2) |
GO:0006629 | Lipid metabolic process | GDPD5 (Glycerophosphodiester Phosphodiesterase Domain Containing 5) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, J.; Tan, X.; Yang, X.; Bai, L.; Kong, F.; Zhao, G.; Wen, J.; Liu, R. Identification of Candidate Genes for Meat Color of Chicken by Combing Selection Signature Analyses and Differentially Expressed Genes. Genes 2022, 13, 307. https://doi.org/10.3390/genes13020307
Sun J, Tan X, Yang X, Bai L, Kong F, Zhao G, Wen J, Liu R. Identification of Candidate Genes for Meat Color of Chicken by Combing Selection Signature Analyses and Differentially Expressed Genes. Genes. 2022; 13(2):307. https://doi.org/10.3390/genes13020307
Chicago/Turabian StyleSun, Jiahong, Xiaodong Tan, Xinting Yang, Lu Bai, Fuli Kong, Guiping Zhao, Jie Wen, and Ranran Liu. 2022. "Identification of Candidate Genes for Meat Color of Chicken by Combing Selection Signature Analyses and Differentially Expressed Genes" Genes 13, no. 2: 307. https://doi.org/10.3390/genes13020307
APA StyleSun, J., Tan, X., Yang, X., Bai, L., Kong, F., Zhao, G., Wen, J., & Liu, R. (2022). Identification of Candidate Genes for Meat Color of Chicken by Combing Selection Signature Analyses and Differentially Expressed Genes. Genes, 13(2), 307. https://doi.org/10.3390/genes13020307