Analysis of a Multi-Environment Trial for Black Raspberry (Rubus occidentalis L.) Quality Traits
Abstract
:1. Introduction
2. Materials and Methods
2.1. Germplasm
2.2. Phenotypic Data
2.3. Genotyping and Relatedness Analysis
2.4. Phenotypic Analysis and Determination of Variance–Covariance Structure
2.5. Linkage Mapping and QTL Analysis
2.5.1. Linkage Map Construction
2.5.2. QTL Mapping
3. Results
3.1. Marker Data and Relatedness Analysis
3.2. Phenotypic Analysis and Determination of Variance–Covariance Structure
3.2.1. Fruit Size Traits
3.2.2. Fruit Chemistry Traits
3.3. Genotyping and Linkage Map Construction
3.4. QTL Mapping
3.4.1. Fruit Size Traits
3.4.2. Fruit Chemistry
4. Discussion
4.1. Relatedness Analysis
4.2. Fruit Size Traits
4.3. Fruit Chemistry Traits
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bradish, C.M.; Fernandez, G.E.; Bushakra, J.M.; Perkins-Veazie, P.; Dossett, M.; Bassil, N.V.; Finn, C.E. Evaluation of Vigor and Winter Hardiness of Black Raspberry Breeding Populations (Rubus occidentalis) Grown in the Southeastern US. Acta Hortic. 2016, 1133, 129–134. [Google Scholar] [CrossRef]
- Jennings, D.L. Raspberries and Blackberries: Their Breeding, Diseases and Growth; Academic Press: San Diego, CA, USA, 1988. [Google Scholar]
- Daubeny, H.A. Brambles. In Fruit Breeding; Janick, J., Moore, J.N., Eds.; Wiley: New York, NY, USA, 1996; Volume 2, pp. 109–190. [Google Scholar]
- Slate, G.L.; Klein, L.G. Black Raspberry Breeding. Proc. Am. Soc. Hort. Sci. 1952, 59, 266–268. [Google Scholar]
- Drain, B.D. Some Inheritance Data with Black Raspberries. Proc. Am. Soc. Hort. Sci. 1953, 61, 231–234. [Google Scholar]
- Drain, B.D. Inheritance in Black Raspberry Species. Proc. Am. Soc. Hort. Sci. 1956, 68, 169–170. [Google Scholar]
- Weber, C.A. Genetic Diversity in Black Raspberry Detected by RAPD Markers. HortScience 2003, 38, 269–272. [Google Scholar] [CrossRef] [Green Version]
- Dossett, M.; Bassil, N.V.; Lewers, K.S.; Finn, C.E. Genetic Diversity in Wild and Cultivated Black Raspberry (Rubus occidentalis L.) Evaluated by Simple Sequence Repeat Markers. Genet. Resour. Crop Evol. 2012, 59, 1849–1865. [Google Scholar] [CrossRef] [Green Version]
- Amiot, M.J.; Riva, C.; Vinet, A. Effects of Dietary Polyphenols on Metabolic Syndrome Features in Humans: A Systematic Review. Obes. Rev. 2016, 17, 573–586. [Google Scholar] [CrossRef]
- Kresty, L.A.; Mallery, S.R.; Stoner, G.D. Black Raspberries in Cancer Clinical Trials: Past, Present and Future. J. Berry Res. 2016, 6, 251–261. [Google Scholar] [CrossRef] [Green Version]
- USDA. National Statistics for Raspberries; National Agricultural Statistics Service: Washington DC, USA, 2017.
- Dossett, M.; Lee, J.; Finn, C.E. Inheritance of Phenological, Vegetative, and Fruit Chemistry Traits in Black Raspberry. J. Am. Soc. Hortic. Sci. 2008, 133, 408–417. [Google Scholar] [CrossRef] [Green Version]
- Fang, J. Classification of Fruits Based on Anthocyanin Types and Relevance to Their Health Effects. Nutrition 2015, 31, 1301–1306. [Google Scholar] [CrossRef]
- Dossett, M.; Lee, J.; Finn, C.E. Variation in Anthocyanins and Total Phenolics of Black Raspberry Populations. J. Funct. Foods 2010, 2, 292–297. [Google Scholar] [CrossRef]
- Dossett, M.; Lee, J.; Finn, C.E. Anthocyanin Content of Wild Black Raspberry Germplasm. Acta Hortic. 2012, 946, 43–47. [Google Scholar] [CrossRef]
- Dossett, M. Evaluation of Genetic Diversity of Wild Populations of Black Raspberry (Rubus occidentalis L.). Ph.D. Dissertation, Oregon State University, Corvallis, OR, USA, 2011. Available online: https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/nz8062723 (accessed on 20 February 2022).
- Ozgen, M.; Wyzgoski, F.J.; Tulio, A.Z.; Gazula, A.; Miller, A.R.; Scheerens, J.C.; Reese, R.N.; Wright, S.R. Antioxidant Capacity and Phenolic Antioxidants of Midwestern Black Raspberries Grown for Direct Markets Are Influenced by Production Site. HortScience 2008, 43, 2039–2047. [Google Scholar] [CrossRef] [Green Version]
- Perkins-Veazie, P.; Ma, G.; Fernandez, G.E.; Bradish, C.M.; Bushakra, J.M.; Bassil, N.V.; Weber, C.A.; Scheerens, J.C.; Robbins, L.; Finn, C.E.; et al. Black Raspberry Fruit Composition over Two Years from Seedling Populations Grown at Four US Geographic Locations. Acta Hortic. 2016, 335–338. [Google Scholar] [CrossRef]
- Bushakra, J.M.; Bradish, C.M.; Weber, C.A.; Dossett, M.; Fernandez, G.; Weiland, J.; Peterson, M.; Scheerens, J.C.; Robbins, L.; Serçe, S.; et al. Toward Understanding Genotype × Environment Interactions in Black Raspberry (Rubus occidentalis L.). In Proceedings of the XXIX International Horticultural Congress on Horticulture: Sustaining Lives, Livelihoods and Landscapes (IHC2014): II International Berry Fruit Symposium: Interactions! Local and Global Berry Research and Innovation, Brisbane, Australia, 17–22 August 2014; 2016; pp. 25–30. [Google Scholar] [CrossRef]
- Dossett, M.; Finn, C.E. Identification of Resistance to the Large Raspberry Aphid in Black Raspberry. J. Am. Soc. Hortic. Sci. 2010, 135, 438–444. [Google Scholar] [CrossRef] [Green Version]
- Finn, C.; Knight, V.H. What’s Going on in the World of Rubus Breeding? Acta Hortic. 2002, 585, 31–38. [Google Scholar] [CrossRef]
- Bushakra, J.M.; Bryant, D.W.; Dossett, M.; Vining, K.J.; VanBuren, R.; Gilmore, B.S.; Lee, J.; Mockler, T.C.; Finn, C.E.; Bassil, N.V. A Genetic Linkage Map of Black Raspberry (Rubus occidentalis) and the Mapping of Ag 4 Conferring Resistance to the Aphid Amphorophora agathonica. Theor. Appl. Genet. 2015, 128, 1631–1646. [Google Scholar] [CrossRef] [Green Version]
- Bushakra, J.M.; Dossett, M.; Carter, K.A.; Vining, K.J.; Lee, J.C.; Bryant, D.W.; VanBuren, R.; Lee, J.; Mockler, T.C.; Finn, C.E.; et al. Characterization of Aphid Resistance Loci in Black Raspberry (Rubus occidentalis L.). Mol. Breed. 2018, 38, 83. [Google Scholar] [CrossRef]
- Byrne, D.H. Trends in Fruit Breeding. In Fruit Breeding, Handbook of Plant Breeding; Springer: New York, NY, USA; London, UK, 2012; pp. 3–36. [Google Scholar]
- van Eeuwijk, F.A. Linear and Bilinear Models for the Analysis of Multi-Environment Trials: I. An Inventory of Models. Euphytica 1995, 84, 1–7. [Google Scholar] [CrossRef]
- Smith, A.B.; Cullis, B.R.; Thompson, R. The Analysis of Crop Cultivar Breeding and Evaluation Trials: An Overview of Current Mixed Model Approaches. J. Agric. Sci. 2005, 143, 449–462. [Google Scholar] [CrossRef] [Green Version]
- Hardner, C.; Winks, C.; Stephenson, R.; Gallagher, E. Genetic Parameters for Nut and Kernel Traits in Macadamia. Euphytica 2001, 117, 151–161. [Google Scholar] [CrossRef]
- Hardner, C.M.; Hayes, B.J.; Kumar, S.; Vanderzande, S.; Cai, L.; Piaskowski, J.; Quero-Garcia, J.; Campoy, J.A.; Barreneche, T.; Giovannini, D.; et al. Prediction of Genetic Value for Sweet Cherry Fruit Maturity among Environments Using a 6K SNP Array. Hortic. Res. 2019, 6, 6. [Google Scholar] [CrossRef] [PubMed]
- Hardner, C. Exploring Opportunities for Reducing Complexity of Genotype-by-Environment Interaction Models. Euphytica 2017, 213, 248. [Google Scholar] [CrossRef]
- Smith, A.B.; Cullis, B.R. Plant Breeding Selection Tools Built on Factor Analytic Mixed Models for Multi-Environment Trial Data. Euphytica 2018, 214, 143. [Google Scholar] [CrossRef] [Green Version]
- Boer, M.P.; Wright, D.; Feng, L.; Podlich, D.W.; Luo, L.; Cooper, M.; van Eeuwijk, F.A. A Mixed-Model Quantitative Trait Loci (QTL) Analysis for Multiple-Environment Trial Data Using Environmental Covariables for QTL-by-Environment Interactions, with an Example in Maize. Genetics 2007, 177, 1801–1813. [Google Scholar] [CrossRef] [Green Version]
- Malosetti, M.; Ribaut, J.M.; Vargas, M.; Crossa, J.; van Eeuwijk, F.A. A Multi-Trait Multi-Environment QTL Mixed Model with an Application to Drought and Nitrogen Stress Trials in Maize (Zea mays L.). Euphytica 2008, 161, 241–257. [Google Scholar] [CrossRef] [Green Version]
- Ourecky, D.K.; Slate, G.L. Jewel Black Raspberry. N. Y. Food Life Sci. Bull. 1973, 35. Available online: https://ecommons.cornell.edu/handle/1813/4819 (accessed on 10 January 2022).
- Lodhi, M.A.; Ye, G.-N.; Weeden, N.F.; Reisch, B.I. A Simple and Efficient Method for DNA Extraction from Grapevine Cultivars and Vitis Species. Plant Mol. Biol. Rep. 1994, 12, 6–13. [Google Scholar] [CrossRef]
- Elshire, R.J.; Glaubitz, J.C.; Sun, Q.; Poland, J.A.; Kawamoto, K.; Buckler, E.S.; Mitchell, S.E. A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for High Diversity Species. PLoS ONE 2011, 6, e19379. [Google Scholar] [CrossRef] [Green Version]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. 2010. Available online: http://www.Bioinformatics.Babraham.Ac.Uk/Projects/Fastqc (accessed on 28 December 2021).
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Glaubitz, J.C.; Casstevens, T.M.; Lu, F.; Harriman, J.; Elshire, R.J.; Sun, Q.; Buckler, E.S. TASSEL-GBS: A High Capacity Genotyping by Sequencing Analysis Pipeline. PLoS ONE 2014, 9, 2. [Google Scholar] [CrossRef]
- VanBuren, R.; Wai, C.M.; Colle, M.; Wang, J.; Sullivan, S.; Bushakra, J.M.; Liachko, I.; Vining, K.J.; Dossett, M.; Finn, C.E.; et al. A near Complete, Chromosome-Scale Assembly of the Black Raspberry (Rubus occidentalis) Genome. GigaScience 2018, 7, giy094. [Google Scholar] [CrossRef]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.; et al. The Variant Call Format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef]
- Yang, J.; Benyamin, B.; McEvoy, B.P.; Gordon, S.; Henders, A.K.; Nyholt, D.R.; Madden, P.A.; Heath, A.C.; Martin, N.G.; Montgomery, G.W.; et al. Common SNPs Explain a Large Proportion of the Heritability for Human Height. Nat. Genet. 2010, 42, 565–569. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Gilmour, A.R.; Gogel, B.; Cullis, B.R.; Thompson, R.; Welham, S.J. ASReml User Guide Release 4.1; VSN International Ltd.: Hemel Hempstead, UK, 2015. [Google Scholar]
- Wimmer, V.; Albrecht, T.; Auinger, H.-J.; Schön, C.-C. Synbreed: A Framework for the Analysis of Genomic Prediction Data Using R. Bioinformatics 2012, 28, 2086–2087. [Google Scholar] [CrossRef] [Green Version]
- VanRaden, P.M. Efficient Methods to Compute Genomic Predictions. J. Dairy Sci. 2008, 91, 4414–4423. [Google Scholar] [CrossRef] [Green Version]
- Isik, F.; Holland, J.; Maltecca, C. Multienvironmental Trials. In Genetic Data Analysis for Plant and Animal Breeding; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar]
- Van Ooijen, J.W.; Jansen, J. Genetic Mapping in Experimental Populations; Cambridge University Press: New York, NY, USA, 2013. [Google Scholar]
- Van Ooijen, J.W. JoinMap® 4.0: Software for the Calculation of Genetic Linkage Maps in Experimental Populations; Kyazma B.V.: Wageningen, The Netherlands, 2006. [Google Scholar]
- Van Ooijen, J.W. Multipoint Maximum Likelihood Mapping in a Full-Sib Family of an Outbreeding Species. Genet. Res. 2011, 93, 343–349. [Google Scholar] [CrossRef]
- VSN International. GenStat for Windows, 19th ed.; VSN International Ltd.: Hemel Hempstead, UK, 2018. [Google Scholar]
- Li, J.; Ji, L. Adjusting Multiple Testing in Multilocus Analyses Using the Eigenvalues of a Correlation Matrix. Heredity 2005, 95, 221–227. [Google Scholar] [CrossRef] [Green Version]
- Broman, K.W.; Wu, H.; Sen, S.; Churchill, G.A. R/Qtl: QTL Mapping in Experimental Crosses. Bioinformatics 2003, 19, 889–890. [Google Scholar] [CrossRef] [Green Version]
- Voorrips, R.E. MapChart: Software for the Graphical Presentation of Linkage Maps and QTLs. J. Hered. 2002, 93, 77–78. [Google Scholar] [CrossRef] [Green Version]
- Sanford, J.C.; Ourecky, D.K.; Reich, J.E. “Titan” Red Raspberry. HortScience 1985, 20, 1133–1134. [Google Scholar]
- Frary, A. Fw2.2: A Quantitative Trait Locus Key to the Evolution of Tomato Fruit Size. Science 2000, 289, 85–88. [Google Scholar] [CrossRef] [Green Version]
- Guo, M.; Rupe, M.A.; Dieter, J.A.; Zou, J.; Spielbauer, D.; Duncan, K.E.; Howard, R.J.; Hou, Z.; Simmons, C.R. Cell Number Regulator1 Affects Plant and Organ Size in Maize: Implications for Crop Yield Enhancement and Heterosis. Plant Cell 2010, 22, 1057–1073. [Google Scholar] [CrossRef] [Green Version]
- De Franceschi, P.; Stegmeir, T.; Cabrera, A.; van der Knaap, E.; Rosyara, U.R.; Sebolt, A.M.; Dondini, L.; Dirlewanger, E.; Quero-Garcia, J.; Campoy, J.A.; et al. Cell Number Regulator Genes in Prunus Provide Candidate Genes for the Control of Fruit Size in Sweet and Sour Cherry. Mol. Breed. 2013, 32, 311–326. [Google Scholar] [CrossRef] [Green Version]
- Karaagac, E.; Vargas, A.; Andrés, M.; Carreño, I.; Ibáñez, J.; Carreño, J.; Martínez-Zapater, J.; Cabezas, J. Marker Assisted Selection for Seedlessness in Table Grape Breeding. Tree Genet. Genomes 2012, 8, 1003–1015. [Google Scholar] [CrossRef] [Green Version]
- Royo, C.; Torres-Pérez, R.; Mauri, N.; Diestro, N.; Cabezas, J.A.; Marchal, C.; Lacombe, T.; Ibáñez, J.; Tornel, M.; Carreño, J.; et al. The Major Origin of Seedless Grapes Is Associated with a Missense Mutation in the MADS-Box Gene VviAGL11. Plant Physiol. 2018, 177, 1234–1253. [Google Scholar] [CrossRef] [Green Version]
- Vardi, A.; Levin, I.; Carmi, N. Induction of Seedlessness in Citrus: From Classical Techniques to Emerging Biotechnological Approaches. J. Am. Soc. Hortic. Sci. 2008, 133, 117–126. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Gao, M.; Liang, X.; Xu, M.; Liu, X.; Zhang, Y.; Liu, X.; Liu, J.; Gao, Y.; Qu, S.; et al. Quantitative Trait Loci for Seed Size Variation in Cucurbits—A Review. Front. Plant Sci. 2020, 11, 304. [Google Scholar] [CrossRef]
- Card, F.W. Bush-Fruits; MacMillan: New York, NY, USA, 1898. [Google Scholar]
- Darrow, G.M.; Sherwood, H. Seed and Berry Size of Cane Fruits. Proc. Am. Soc. Hort. Sci. 1931, 28, 194–199. [Google Scholar]
- Sebesta, B.; Clark, J.R.; Threlfall, R.T.; Howard, L.R. Characterization of Seediness Attributes of Blackberry Genotypes. Discov. Stud. J. Dale Bump. Coll. Agric. Food Life Sci. 2013, 14, 72–79. [Google Scholar]
- Hummer, K.E.; Peacock, D.N. Seed Dimension and Weight of Selected Rubus Species. HortScience 1994, 29, 1034–1036. [Google Scholar] [CrossRef] [Green Version]
- Hancock, R.D.; Petridis, A.; McDougall, G.J. Raspberry Fruit Chemistry in Relation to Fruit Quality and Human Nutrition. In Raspberries: Breeding, Challenges, and Advances; Springer Nature: Cham, Switzerland, 2018; pp. 89–120. [Google Scholar]
- Mazur, S.P.; Nes, A.; Wold, A.-B.; Remberg, S.F.; Aaby, K. Quality and Chemical Composition of Ten Red Raspberry (Rubus idaeus L.) Genotypes during Three Harvest Seasons. Food Chem. 2014, 160, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Mazur, S.P.; Sønsteby, A.; Wold, A.-B.; Foito, A.; Freitag, S.; Verrall, S.; Conner, S.; Stewart, D.; Heide, O.M. Post-Flowering Photoperiod Has Marked Effects on Fruit Chemical Composition in Red Raspberry (Rubus idaeus). Ann. Appl. Biol. 2014, 165, 454–465. [Google Scholar] [CrossRef]
- Graham, J.; Brennan, R. (Eds.) Raspberries: Breeding, Challenges, and Advances; Springer Science + Business Media: New York, NY, USA, 2018; ISBN 978-3-319-99030-9. [Google Scholar]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of Total Phenolics and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. Methods Enzymol. 1999, 299, 152–177. [Google Scholar]
- Klee, H.J. Improving the Flavor of Fresh Fruits: Genomics, Biochemistry, and Biotechnology: Tansley Review. New Phytol. 2010, 187, 44–56. [Google Scholar] [CrossRef]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and Anthocyanins: Colored Pigments as Food, Pharmaceutical Ingredients, and the Potential Health Benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef] [Green Version]
- Etienne, A.; Génard, M.; Lobit, P.; Mbeguié-A-Mbéguié, D.; Bugaud, C. What Controls Fleshy Fruit Acidity? A Review of Malate and Citrate Accumulation in Fruit Cells. J. Exp. Biol. 2013, 64, 1451–1469. [Google Scholar] [CrossRef] [Green Version]
- Malowicki, S.M.M.; Martin, R.; Qian, M.C. Comparison of Sugar, Acids, and Volatile Composition in Raspberry Bushy Dwarf Virus-Resistant Transgenic Raspberries and the Wild Type ‘Meeker’ (Rubus idaeus L.). J. Agric. Food Chem. 2008, 56, 6648–6655. [Google Scholar] [CrossRef]
- Vool, E.; Karp, K.; Noormets, M.; Moor, U.; Starast, M. The Productivity and Fruit Quality of the Arctic Bramble (Rubus Arcticus Ssp. Arcticus) and Hybrid Arctic Bramble (Rubus arcticus asp. arcticus × Rubus arcticus ssp. stellatus). Acta Agric. Scand. Sect. B Soil Plant Sci. 2009, 59, 217–224. [Google Scholar] [CrossRef]
- Etienne, C.; Rothan, C.; Moing, A.; Plomion, C.; Bodénès, C.; Svanella-Dumas, L.; Cosson, P.; Pronier, V.; Monet, R.; Dirlewanger, E. Candidate Genes and QTLs for Sugar and Organic Acid Content in Peach [Prunus Persica (L.) Batsch]. Theor. Appl. Genet. 2002, 105, 145–159. [Google Scholar] [CrossRef]
- Krüger, E.; Dietrich, H.; Schöpplein, E.; Rasim, S.; Kürbel, P. Cultivar, Storage Conditions and Ripening Effects on Physical and Chemical Qualities of Red Raspberry Fruit. Postharvest Biol. Technol. 2011, 60, 31–37. [Google Scholar] [CrossRef]
- Lee, J.; Dossett, M.; Finn, C.E. Rubus Fruit Phenolic Research: The Good, the Bad, and the Confusing. Food Chem. 2012, 130, 785–796. [Google Scholar] [CrossRef]
- Mazzoni, L.; Perez-Lopez, P.; Giampieri, F.; Alvarez-Suarez, J.M.; Gasparrini, M.; Forbes-Hernandez, T.Y.; Quiles, J.L.; Mezzetti, B.; Battino, M. The Genetic Aspects of Berries: From Field to Health: The Genetic Aspects of Berries. J. Sci. Food Agric. 2016, 96, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Chaves-Silva, S.; dos Santos, A.L.; Chalfun-Júnior, A.; Zhao, J.; Peres, L.E.P.; Benedito, V.A. Understanding the Genetic Regulation of Anthocyanin Biosynthesis in Plants—Tools for Breeding Purple Varieties of Fruits and Vegetables. Phytochemistry 2018, 153, 11–27. [Google Scholar] [CrossRef]
- Scalzo, J.; Battino, M.; Costantini, E.; Mezzetti, B. Breeding and Biotechnology for Improving Berry Nutritional Quality. Biofactors 2005, 23, 213–220. [Google Scholar] [CrossRef]
- Allan, A.C.; Hellens, R.P.; Laing, W.A. MYB Transcription Factors That Colour Our Fruit. Trends Plant Sci. 2008, 13, 99–102. [Google Scholar] [CrossRef]
- Griesser, M.; Hoffmann, T.; Bellido, M.L.; Rosati, C.; Fink, B.; Kurtzer, R.; Aharoni, A.; Munoz-Blanco, J.; Schwab, W. Redirection of Flavonoid Biosynthesis through the Down-Regulation of an Anthocyanidin Glucosyltransferase in Ripening Strawberry Fruit. Plant Physiol. 2008, 146, 1528–1539. [Google Scholar] [CrossRef] [Green Version]
- Zorrilla-Fontanesi, Y.; Cabeza, A.; Domínguez, P.; Medina, J.J.; Valpuesta, V.; Denoyes-Rothan, B.; Sánchez-Sevilla, J.F.; Amaya, I. Quantitative Trait Loci and Underlying Candidate Genes Controlling Agronomical and Fruit Quality Traits in Octoploid Strawberry (Fragaria × Ananassa). Theor. Appl. Genet. 2011, 123, 755–778. [Google Scholar] [CrossRef]
- Shulaev, V.; Sargent, D.J.; Crowhurst, R.N.; Mockler, T.C.; Folkerts, O.; Delcher, A.L.; Jaiswal, P.; Mockaitis, K.; Liston, A.; Mane, S.P.; et al. The Genome of Woodland Strawberry (Fragaria vesca). Nat. Genet. 2011, 43, 109–116. [Google Scholar] [CrossRef]
- Teng, H.; Fang, T.; Lin, Q.; Song, H.; Liu, B.; Chen, L. Red Raspberry and Its Anthocyanins: Bioactivity beyond Antioxidant Capacity. Trends Food Sci. Technol. 2017, 66, 153–165. [Google Scholar] [CrossRef]
- Hyun, T.K.; Lee, S.; Rim, Y.; Kumar, R.; Han, X.; Lee, S.Y.; Lee, C.H.; Kim, J.-Y. De-Novo RNA Sequencing and Metabolite Profiling to Identify Genes Involved in Anthocyanin Biosynthesis in Korean Black Raspberry (Rubus coreanus Miquel). PLoS ONE 2014, 9, e88292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kassim, A.; Poette, J.; Paterson, A.; Zait, D.; McCallum, S.; Woodhead, M.; Smith, K.; Hackett, C.; Graham, J. Environmental and Seasonal Influences on Red Raspberry Anthocyanin Antioxidant Contents and Identification of Quantitative Traits Loci (QTL). Mol. Nutr. Food Res. 2009, 53, 625–634. [Google Scholar] [CrossRef] [PubMed]
- Paudel, L.; Wyzgoski, F.J.; Giusti, M.M.; Johnson, J.L.; Rinaldi, P.L.; Scheerens, J.C.; Chanon, A.M.; Bomser, J.A.; Miller, A.R.; Hardy, J.K.; et al. NMR-Based Metabolomic Investigation of Bioactivity of Chemical Constituents in Black Raspberry (Rubus occidentalis L.) Fruit Extracts. J. Agric. Food Chem. 2014, 62, 1989–1998. [Google Scholar] [CrossRef] [PubMed]
Matrices | Models a | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
GA×E | CS | CS | CHS | FA(1) |
R | IDV | DIAG | DIAG | DIAG |
Trait | Model | Number of Parameters Fit | Log Likelihood | p-Value | |
---|---|---|---|---|---|
DrC | 1 | 3 | −5481.25 | ||
DrC | 2 | 12 | −5414.73 | 3.65 × 10−11 | *** |
DrC | 3 | 21 | −5397.96 | 0.026 | * |
DrC | 4 | 30 | −5371.33 | 0.001 | ** |
DrM | 1 | 3 | −3560.17 | ||
DrM | 2 | 12 | −3425.37 | 6.10 × 10−25 | *** |
DrM | 3 | 21 | −3408.32 | 0.024 | * |
DrM | 4 | 30 | −3403.04 | 0.405 | |
FrM | 1 | 3 | 1045.82 | ||
FrM | 2 | 12 | 1117.22 | 4.04 × 10−12 | *** |
FrM | 3 | 21 | 1138.97 | 0.005 | ** |
FrM | 4 | 30 | 1143.91 | 0.420 | |
SdF | 1 | 3 | −1587.19 | ||
SdF | 2 | 12 | −1193.4 | 1.45 × 10−79 | *** |
SdF | 3 | 21 | −1177.5 | 0.034 | * |
SdF | 4 | 30 | −1171.41 | 0.365 | |
SdM | 1 | 3 | 1824.57 | ||
SdM | 2 | 12 | 1930.45 | 5.06 × 10−19 | *** |
SdM | 3 | 21 | 1948.16 | 0.019 | * |
SdM | 4 | 30 | 1952.53 | 0.443 | |
TAc | 1 | 3 | 2075.38 | ||
TAc | 2 | 13 | 2143.88 | 4.32 × 10−11 | *** |
TAc | 3 | 23 | 2158.62 | 0.071 | |
TAc | 4 | 33 | 2163.23 | 0.458 | |
AnC | 1 | 3 | −3177.79 | ||
AnC | 2 | 13 | −3091.47 | 1.43 × 10−14 | *** |
AnC | 3 | 23 | −3075.18 | 0.046 | * |
AnC | 4 | 33 | −3063.74 | 0.162 | |
pH | 1 | 3 | 1981.96 | ||
pH | 2 | 13 | 2018.33 | 3.63 × 10−5 | *** |
pH | 3 | 23 | 2024.84 | 0.385 | |
pH | 4 | 33 | 2031.25 | 0.390 | |
PhC | 1 | 3 | −2444.53 | ||
PhC | 2 | 13 | −2185.54 | 3.49 × 10−50 | *** |
PhC | 3 | 23 | −2168.21 | 0.034 | * |
PhC | 4 | 33 | −2147.16 | 0.010 | * |
SSC | 1 | 3 | −1723.52 | ||
SSC | 2 | 13 | −1484.68 | 6.00 × 10−46 | *** |
SSC | 3 | 23 | −1458.17 | 0.002 | ** |
SSC | 4 | 33 | −1451.76 | 0.390 |
Trait | Model | ρ | SE | ρ/SE |
---|---|---|---|---|
Drupelet mass | 3 | 0.85 | 0.040 | 21.0 |
Fruit mass | 3 | 0.89 | 0.036 | 25.0 |
Seed fraction | 3 | 0.79 | 0.065 | 12.0 |
Seed mass | 3 | 0.85 | 0.034 | 25.0 |
Drupelet count | 4 | 0.88 to 1 | ||
pH | 2 | 0.69 | 0.062 | 11.0 |
Titratable acidity | 2 | 0.79 | 0.046 | 17.0 |
Soluble solid content | 3 | 0.46 | 0.097 | 4.8 |
Total anthocyanin content | 3 | 0.73 | 0.066 | 11.0 |
Total phenolics content | 4 | −1 to 1 |
Environment | Fruit Mass | Drupelet Count | Drupelet Mass | Seed Mass | Seed Fraction | Soluble Solid Content | Titratable Acidity | pH | Anthocyanin Content | Phenolics Content |
---|---|---|---|---|---|---|---|---|---|---|
NC 2013 | 0.50 | 0.67 | 0.34 | 0.54 | 0.17 | 0.03 | 0.30 | 0.43 | 0.27 | 0.23 |
NC 2014 | 0.28 | 0.38 | 0.43 | 0.39 | 0.46 | 0.13 | 0.33 | 0.37 | 0.37 | 0.01 |
NY 2013 | 0.48 | 0.85 | 0.28 | 0.57 | 0.03 | 0.20 | 0.54 | 0.33 | 0.33 | 0.04 |
NY 2014 | 0.41 | 0.66 | 0.34 | 0.61 | 0.02 | 0.23 | 0.41 | 0.42 | 0.42 | 0.49 |
NY 2015 | 0.45 | 0.79 | 0.47 | 0.50 | 0.10 | 0.18 | 0.45 | 0.24 | 0.11 | 0.11 |
OH 2013 | 0.70 | 0.83 | 0.73 | 0.70 | 0.45 | 0.29 | 0.53 | 0.49 | 0.46 | 0.26 |
OH 2014 | 0.60 | 0.89 | 0.59 | 0.57 | 0.54 | 0.31 | 0.71 | 0.38 | 0.29 | 0.55 |
OH 2015 | 0.54 | 0.84 | 0.69 | 0.60 | 0.43 | 0.21 | 0.55 | 0.39 | 0.28 | 0.12 |
OR 2013 | na | na | na | na | na | 0.02 | 0.46 | 0.34 | 0.20 | 0.04 |
OR 2014 | 0.63 | 0.81 | 0.44 | 0.58 | 0.37 | 0.11 | 0.50 | 0.28 | 0.56 | 0.33 |
OR 2015 | 0.49 | 0.81 | 0.55 | 0.69 | 0.63 | 0.05 | 0.50 | 0.28 | 0.35 | 0.43 |
range | 0.28–0.70 | 0.38–0.89 | 0.28–0.73 | 0.39–0.70 | 0.02–0.63 | 0.02–0.31 | 0.30–0.71 | 0.24–0.49 | 0.11–0.56 | 0.01–0.55 |
Trait | Number of QTL | QTL Name | LG | Position | Marker Name | −log10(p) | QTL × E |
---|---|---|---|---|---|---|---|
FrM | 4 | qRoc-FrM1.1 | 1 | 41.7 | SRO01_5349433 | 9.17 | N |
qRoc-FrM1.2 | 1 | 106.5 | SRO01_23458156 | 14.00 | Y | ||
qRoc-FrM2.1 | 2 | 0 | SRO02_329222 | 3.45 | Y | ||
qRoc-FrM6.1 | 6 | 34.4 | SRO06_21156325 | 8.64 | N | ||
SdM | 0 | ||||||
DrC | 3 | qRoc-DrC1.1 | 1 | 41.7 | SRO01_5349433 | 42.94 | N |
qRoc-DrC1.2 | 1 | 104.6 | SRO01_23058326 | 16.24 | Y | ||
qRoc-DrC4.1 | 4 | 3.2 | SRO04_451654 | 7.93 | Y | ||
DrM | 3 | qRoc-DrM1.1 | 1 | 43.2 | SRO01_6243993 | 10.73 | N |
qRoc-DrM1.2 | 1 | 93.31 | SRO01_23565201 | 1.40 | N | ||
qRoc-DrM6.1 | 6 | 15.38 | SRO06_185350 | 7.58 | Y | ||
SdF | 3 | qRoc-SdF2.1 | 2 | 46.6 | SRO02_3650689 | 11.59 | Y |
qRoc-SdF6.1 | 6 | 16.0 | SRO06_251781 | 11.67 | N | ||
qRoc-SdF7.1 | 7 | 120.4 | SRO07_28298811 | 6.96 | Y | ||
SSC | 0 | ||||||
TAc | 3 | qRoc-TAc3.1 | 3 | 6.6 | Ri11795_SSR | 6.06 | Y |
qRoc-TAc4.1 | 4 | 70.6 | Ro_CBEa0004G23 | 3.78 | Y | ||
qRoc-TAc6.1 | 6 | 78.3 | SRO06_13350974 | 3.93 | Y | ||
AnC | 1 | qRoc-AnC3.1 | 3 | 163.5 | Ro17045_SSR | 6.02 | Y |
PhC | 0 |
Env | Model | QTL | Chr | Pos | LOD |
---|---|---|---|---|---|
NC 2013 | null | ||||
NC 2014 | y~Q1 | Q1 | 1 | 104.6 | 3.9 |
NY 2013 | y~Q1 | Q1 | 3 | 9.3 | 4.5 |
NY 2014 | null | ||||
NY 2015 | null | ||||
OH 2013 | y~Q1+Q2+Q3 | Q1 | 1 | 106.0 | 6.5 |
y~Q1+Q2+Q3 | Q2 | 4 | 114.0 | 3.8 | |
y~Q1+Q2+Q3 | Q3 | 4 | 121.3 | 7.3 | |
OH 2014 | null | ||||
OH 2015 | y~Q1+Q2+Q3 | Q1 | 3 | 19.8 | 4.0 |
y~Q1+Q2+Q3 | Q2 | 4 | 56.8 | 5.9 | |
y~Q1+Q2+Q3 | Q3 | 6 | 51.2 | 5.2 | |
OR 2013 | y~Q1 | Q1 | 6 | 55.4 | 5.3 |
OR 2014 | null | ||||
OR 2015 | y~Q1 | Q1 | 4 | 119.2 | 6.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Willman, M.R.; Bushakra, J.M.; Bassil, N.; Finn, C.E.; Dossett, M.; Perkins-Veazie, P.; Bradish, C.M.; Fernandez, G.E.; Weber, C.A.; Scheerens, J.C.; et al. Analysis of a Multi-Environment Trial for Black Raspberry (Rubus occidentalis L.) Quality Traits. Genes 2022, 13, 418. https://doi.org/10.3390/genes13030418
Willman MR, Bushakra JM, Bassil N, Finn CE, Dossett M, Perkins-Veazie P, Bradish CM, Fernandez GE, Weber CA, Scheerens JC, et al. Analysis of a Multi-Environment Trial for Black Raspberry (Rubus occidentalis L.) Quality Traits. Genes. 2022; 13(3):418. https://doi.org/10.3390/genes13030418
Chicago/Turabian StyleWillman, Matthew R., Jill M. Bushakra, Nahla Bassil, Chad E. Finn, Michael Dossett, Penelope Perkins-Veazie, Christine M. Bradish, Gina E. Fernandez, Courtney A. Weber, Joseph C. Scheerens, and et al. 2022. "Analysis of a Multi-Environment Trial for Black Raspberry (Rubus occidentalis L.) Quality Traits" Genes 13, no. 3: 418. https://doi.org/10.3390/genes13030418
APA StyleWillman, M. R., Bushakra, J. M., Bassil, N., Finn, C. E., Dossett, M., Perkins-Veazie, P., Bradish, C. M., Fernandez, G. E., Weber, C. A., Scheerens, J. C., Dunlap, L., & Fresnedo-Ramírez, J. (2022). Analysis of a Multi-Environment Trial for Black Raspberry (Rubus occidentalis L.) Quality Traits. Genes, 13(3), 418. https://doi.org/10.3390/genes13030418