Development of an HRMA-Based Marker Assisted Selection (MAS) Approach for Cost-Effective Genotyping of S and M Loci Controlling Self-Compatibility in Apricot (Prunus armeniaca L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material, Phenotyping and DNA Extraction
2.2. Primer Design
2.3. PCR Amplification and HRMA Analysis
3. Results
3.1. HRMA Assay for SFBC Allele at S-Locus
3.2. HRMA Assay for MDO-m Allele at M-Locus
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Herrera, S.; Rodrigo, J.; Hormaza, J.I.; Lora, J. Identification of Self-Incompatibility Alleles by Specific PCR Analysis and S-RNase Sequencing in Apricot. Int. J. Mol. Sci. 2018, 19, 3612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Nettancourt, D. Incompatibility and Incongruity in Wild and Cultivated Plants; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Ma, C.; Qu, H. Gametophytic self-incompatibility in Rosaceae fruit trees. Acta Sci. Pol. Hortorum Cultus 2019, 18, 149–156. [Google Scholar] [CrossRef]
- Sassa, H. Molecular mechanism of the S-RNase-based gametophytic self-incompatibility in fruit trees of Rosaceae. Breed. Sci. 2016, 66, 116–121. [Google Scholar] [CrossRef] [Green Version]
- De Franceschi, P.; Dondini, L.; Sanzol, J. Molecular bases and evolutionary dynamics of self-incompatibility in the Pyrinae (Rosaceae). J. Exp. Bot. 2012, 63, 4015–4032. [Google Scholar] [CrossRef] [Green Version]
- Zhebentyayeva, T.; Ledbetter, C.; Burgos, L.; Llácer, G. Apricots. In Fruit Breeding; Springer: Berlin/Heidelberg, Germany, 2012; pp. 415–458. [Google Scholar]
- Goldway, M.; Sapir, G.; Stern, R. Molecular Basis and Horticultural Application of the Gametophytic Self-incompatibility System in Rosaceous Tree Fruits. Plant Breed. Rev. 2007, 28, 215–237. [Google Scholar]
- Rodrigo, J.; Herrero, M.; Hormaza, J. Pistil traits and flower fate in apricot (Prunus armeniaca). Ann. Appl. Biol. 2014, 154, 365–375. [Google Scholar] [CrossRef] [Green Version]
- Julian, C.; Herrero, M.; Rodrigo, J. Flower bud differentiation and development in fruiting and non-fruiting shoots in relation to fruit set in apricot (Prunus armeniaca L.). Trees 2010, 24, 833–841. [Google Scholar] [CrossRef] [Green Version]
- Egea, J.; Burgos, L. Detecting Cross-incompatibility of Three North American Apricot Cultivars and Establishing the First Incompatibility Group in Apricot. J. Am. Soc. Hortic. Sci. 1996, 121, 1002–1005. [Google Scholar] [CrossRef] [Green Version]
- Romero, C.; Vilanova, S.; Burgos, L.; Martínez-Calvo, J.; Vicente, M.; Llácer, G.; Badenes, M.L. Analysis of the S-locus structure in Prunus armeniaca L. Identification of S-haplotype specific S-RNase and F-box genes. Plant Mol. Biol. 2004, 56, 145–157. [Google Scholar] [CrossRef]
- Vilanova, S.; Romero, C.; Llácer, G.; Badenes, M.; Burgos, L. Identification of Self-(in)compatibility Alleles in Apricot by PCR and Sequence Analysis. J. Am. Soc. Hortic. Sci. 2005, 130, 893–898. [Google Scholar] [CrossRef] [Green Version]
- Halasz, J.; Pedryc, A.; Ercisli, S.; Yilmaz, K.; Hegedus, A. S-genotyping Supports the Genetic Relationships between Turkish and Hungarian Apricot Germplasm. J. Am. Soc. Hortic. Sci. 2010, 135, 410–417. [Google Scholar] [CrossRef] [Green Version]
- Herrera, S.; Lora, J.; Hormaza, J.I.; Herrero, M.; Rodrigo, J. Optimizing Production in the New Generation of Apricot Cultivars: Self-incompatibility, S-RNase Allele Identification, and Incompatibility Group Assignment. Front. Plant Sci. 2018, 9, 527. Available online: https://www.frontiersin.org/articles/10.3389/fpls.2018.00527/full (accessed on 2 February 2021). [CrossRef] [PubMed] [Green Version]
- Halász, J.; Pedryc, A.; Hegedűs, A. Origin and dissemination of the pollen-part mutated SC haplotype which confers self-compatibility in apricot (Prunus armeniaca). New Phytol. 2007, 176, 792–803. [Google Scholar] [CrossRef]
- Muñoz-Sanz, J.V.; Zuriaga, E.; López, I.; Badenes, M.L.; Romero, C. Self-(in)compatibility in apricot germplasm is controlled by two major loci, S and M. BMC Plant Biol. 2017, 17, 82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vilanova, S.; Badenes, M.L.; Burgos, L.; Martínez-Calvo, J.; Llácer, G.; Romero, C. Self-Compatibility of Two Apricot Selections Is Associated with Two Pollen-Part Mutations of Different Nature. Plant Physiol. 2006, 142, 629–641. [Google Scholar] [CrossRef] [Green Version]
- Zuriaga, E.; Muñoz-Sanz, J.V.; Molina, L.; Gisbert, A.D.; Badenes, M.L.; Romero, C. An S-Locus Independent Pollen Factor Confers Self-Compatibility in ‘Katy’ Apricot. PLoS ONE 2013, 8, e53947. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3544744/ (accessed on 16 March 2021). [CrossRef] [Green Version]
- Muñoz-Sanz, J.V.; Zuriaga, E.; Badenes, M.L.; Romero, C. A disulfide bond A-like oxidoreductase is a strong candidate gene for self-incompatibility in apricot (Prunus armeniaca) pollen. J. Exp. Bot. 2017, 68, 5069–5078. [Google Scholar] [CrossRef] [Green Version]
- Passaro, M.; Geuna, F.; Bassi, D.; Cirilli, M. Development of a high-resolution melting approach for reliable and cost-effective genotyping of PPVres locus in apricot (P. armeniaca). Mol. Breed. 2017, 37, 74. [Google Scholar] [CrossRef]
- Simko, I. High-Resolution DNA Melting Analysis in Plant Research. Trends Plant Sci. 2016, 21, 528–537. [Google Scholar] [CrossRef]
- Muleo, R.; Colao, M.C.; Miano, D.; Cirilli, M.; Intrieri, M.C.; Baldoni, L.; Rugini, E. Mutation scanning and genotyping by high-resolution DNA melting analysis in olive germplasm. Genome 2009, 52, 252–260. [Google Scholar] [CrossRef] [Green Version]
- Cirilli, M.; Delfino, I.; Caboni, E.; Muleo, R. EpiHRMAssay, in tube and in silico combined approach for the scanning and epityping of heterogeneous DNA methylation. Biol. Methods Protoc. 2017, 2, bpw008. [Google Scholar] [CrossRef]
- Gharesheikhbayat, R. Self-Incompatibility in Apricot (Prunus armeniaca); New Achievements and Molecular Aspects of s-Locus Allele Segregation. Master Thesis, Alma Mater Studiorum Università di Bologna, Bologna, Italy, 2010. [Google Scholar] [CrossRef]
- Badenes, M.L.; Martínez-Calvo, J.; Gómez, H.; Zuriaga, E. ‘Dama Taronja’ and ‘Dama Rosa’ Apricot Cultivars that are Resistant to Sharka (Plum pox virus). HortScience 2018, 53, 1228–1229. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Calvo, J.; Llácer, G.; Badenes, M.L. ‘Moixent’, an Apricot Resistant to Sharka. HortScience 2011, 46, 655–656. [Google Scholar] [CrossRef] [Green Version]
- Batnini, M.A.; Krichen, L.; Bourguiba, H.; Trifi-Farah, N.; González, D.R.; Gómez, P.M.; Rubio, M. Comparative analysis of traditional and modern apricot breeding programs: A case of study with Spanish and Tunisian apricot breeding germplasm. Span. J. Agric. Res. 2016, 14, 14. [Google Scholar] [CrossRef] [Green Version]
- Donoso, J.M.; Aros, D.; Meneses, C.; Infante, R. Identification of S-alleles associated with self-incompatibility in apricots (Prunus armeniaca L.) using molecular markers. J. Food Agric. Environ. 2009, 7, 270–273. [Google Scholar]
- Layne, R.E.; Hunter, D.M. ‘AC Harostar’ Apricot. Hortscience 2003, 38, 140–141. [Google Scholar] [CrossRef] [Green Version]
- Milatović, D.; Nikolić, D. Analysis of self-(in)compatibility in apricot cultivars using fluorescence microscopy. J. Hortic. Sci. Biotechnol. 2007, 82, 170–174. [Google Scholar] [CrossRef]
- Burgos, L.; Egea, J.; Guerriero, R.; Viti, R.; Monteleone, P.; Audergon, J.M. The self-compatibility trait of the main apricot cultivars and new selections from breeding programmes. J. Hortic. Sci. 1997, 72, 147–154. [Google Scholar] [CrossRef]
- Audergon, J.M.; Blanc, A.; Gilles, F.; Gouble, B.; Grotte, M.; Reich, M.; Bureau, S.; Clauzel, G.; Pitiot, C.; Lafond, S.; et al. New Recent Selections Issued From INRA’s Apricot Breeding Program. Acta Hortic. 2009, 814, 221–226. [Google Scholar] [CrossRef]
- Russell, D. The Stonefruit Cultivar System (A Database of Worldwide Stonefruit Cultivars and Rootstocks); Department of Primary Industries: Queensland, Australia, 1998.
- Doyle, J.J.; Doyle, J.L. A rapid isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull 1987, 19, 11–15. [Google Scholar]
- Milatović, D.; Nikolić, D.; Krška, B. Testing of self-(in)compatibility in apricot cultivars from European breeding programmes. Hort. Sci. 2013, 40, 65–71. [Google Scholar] [CrossRef] [Green Version]
# | Accession | Floral Compatibility | Locus S SRNAse | Locus S SFB | Locus M ParMDO | References |
---|---|---|---|---|---|---|
1 | Yamagata | SI | S8/S- | SI/SI | M/M | [24] |
4 | Dorada * | SC | Sc/Sc | SC/SI | M/M | [1] |
5 | Dama Rosa | SC | SC/SI | m/M | [25] | |
11 | Moixent | SC | Sc/SI | M/M | [26] | |
13 | Estrella | SI | SI/SI | M/M | [27] | |
17 | Mediabell | SC | S6/Sc | SC/SI | M/M | [14] |
19 | San Castrese | SC | Sc/S- | SC/SI | M/M | [24] |
20 | Gilgat | SI | SI/SI | M/M | ||
22 | Dama Taronja | SC | SI/SI | m/M | [25] | |
24 | Toni | SC | SC/SI | M/M | [27] | |
25 | Congat | SI | SI/SI | M/M | ||
28 | Pricia * | SC | Sc/S3 | SI/SI | m/M | [14] |
31 | Pelese di Giovaniello | SC | S1/S2 | SI/SI | m/M | [28] |
38 | Mirlo Naranja * | SC | Sc/Sc | SC/SI | M/M | [14] |
42 | Harostar | SI | SI/SI | M/M | [29] | |
43 | Bella di Imola | SC | SC/SC | M/M | [30] | |
44 | Harval | SC | SC/SI | M/M | [31] | |
48 | Pieve | SC | Sc/S1 | SC/SI | M/M | [24] |
55 | Murciana * | SC | Sc/Sc | SC/SI | m/M | [1,14] |
59 | Frisson | SC | SC/SC | M/M | [32] | |
61 | Dama Vermella | SC | SC/SI | m/M | [25] | |
68 | Farfia | SC | Sc/Sc | SC/SC | m/M | [14] |
69 | Spring Blush | SI | S3/S8 | SI/SI | M/M | [14] |
71 | Pisana | SC | S2/Sc | SC/SI | M/M | [28] |
74 | Fiamma | SC | Sc/Sc | SC/SC | M/M | |
78 | Aurora | SI | S1/S17 | SI/SI | M/M | [16] |
79 | Faralia | SC | Sc/S6 | SC/SI | M/M | [14] |
85 | SEO | SI | S6/S9 | SI/SI | M/M | [16] |
86 | Goldrich | SI | S1/S2 | SI/SI | M/M | [10] |
90 | Farbaly | SC | Sc/Sc | SC/SC | m/M | [14] |
92 | Ninfa | SC | Sc/S7 | SC/SI | M/M | [16] |
93 | Amabile Vecchioni | SC | SC/SI | M/M | [31] | |
95 | Tondina di Tossignano | SC | SC/SC | M/M | ||
96 | Cegledi | SI | S8/S9 | SI/SI | M/M | [16] |
97 | Sulmona | SC | SC/SC | M/M | [30] | |
98 | Trzii Bucresti | SC | SC/SC | M/M | ||
106 | Mono | SC | SI/SI | m/M | [31] | |
109 | Tyrinthos | SC | Sc/Sc | SC/SC | M/M | [16] |
114 | Magyar Kaiszi | SC | SC/SI | M/M | [30] | |
117 | Lito | SC | Sc/S6 | SC/SI | M/M | [16] |
118 | Royal Roussillon | SC | SC/SI | M/M | [32] | |
119 | Harcot | SI | S1/S4 | SI/SI | M/M | [18] |
120 | Reale Imola | SC | Sc/Sc | SC/SC | M/M | [24] |
121 | Tondina di Costigliole | SC | SC/SC | M/M | ||
124 | Big Red | SI | SI/SI | M/M | ||
134 | Bebeco | SC | Sc/S6 | SC/SI | M/M | [16] |
136 | Ouardi | SI | S2/S7 | SI/SI | M/M | [16] |
140 | NJ A1 | SC | SI/SI | M/M | [30] | |
145 | Harleyne | SC | S3/S20 | SC/SI | M/M | [33] |
149 | Sarritzu 1 | SC | SC/SI | m/M | [31] | |
151 | Petra | SC | S1/S- | SI/SI | m/M | [24] |
152 | Kyoto | SC | Sc/S8 | SC/SI | M/M | [24] |
153 | Farmingdale | SC | SC/SI | M/M | [31] | |
157 | Portici 1 | SC | S2/S17 | SI/SI | m/M | [24] |
159 | Bergecot | SC | Sc/S2 | SC/SI | M/M | [14] |
168 | Lady Cot * | SC | Sc/Sc | SC/SI | M/M | [14] |
Primer | Sequence (5′ ≥ 3′) | Locus | Reference |
---|---|---|---|
AprFBC8-F | CATGGAAAAAGCTGACTTATGG | S | [13] |
AprFBC8-R | GCCTCTAATGTCATCTACTCTTAG | S | [13] |
RFBc-F | GAGGAGTGCTACAAACTAAGC | S | [17] |
RFBc-R | ACCCCTATGATGTTCCAAAG | S | [17] |
SFBins-R | TCAAGAACTTGGTTGGATTCG | S | [17] |
SFBc-F | TCGACATCCTAGTAAGACTACCTGC | S | [11] |
SFBc-R | ATTTCTTCACTGCCTGAATCG | S | [11] |
SFB-F | TGGGTTCTGCAAGAAAAACGGTGG | S | This work |
SFB-OUT-R | AATTCCTGTTTCAAGAACTTG | S | This work |
SFB-INS-F | TTTTATGAGATTTTGGGGTTGGGC | S | This work |
SFB-INS-R | GCCCAACCCCAAAATCTCATAAAA | S | This work |
SFBcj-F | GTCCTTTTATTTAGAGATATTTAGTG | S | This work |
SFBcj-R | ATAATCCGGAGGATAAATAAAAG | S | This work |
SFBj-F | GGAGTAA/GCATACCACATTATTG- | S | This work |
Locus_M_F | GGTGGTGGTCTAATGTGTTAAC | M | This work |
Locus_M_R | TCCACTAGATCATGCTGCTT | M | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orlando Marchesano, B.M.; Chiozzotto, R.; Baccichet, I.; Bassi, D.; Cirilli, M. Development of an HRMA-Based Marker Assisted Selection (MAS) Approach for Cost-Effective Genotyping of S and M Loci Controlling Self-Compatibility in Apricot (Prunus armeniaca L.). Genes 2022, 13, 548. https://doi.org/10.3390/genes13030548
Orlando Marchesano BM, Chiozzotto R, Baccichet I, Bassi D, Cirilli M. Development of an HRMA-Based Marker Assisted Selection (MAS) Approach for Cost-Effective Genotyping of S and M Loci Controlling Self-Compatibility in Apricot (Prunus armeniaca L.). Genes. 2022; 13(3):548. https://doi.org/10.3390/genes13030548
Chicago/Turabian StyleOrlando Marchesano, Bianca Maria, Remo Chiozzotto, Irina Baccichet, Daniele Bassi, and Marco Cirilli. 2022. "Development of an HRMA-Based Marker Assisted Selection (MAS) Approach for Cost-Effective Genotyping of S and M Loci Controlling Self-Compatibility in Apricot (Prunus armeniaca L.)" Genes 13, no. 3: 548. https://doi.org/10.3390/genes13030548
APA StyleOrlando Marchesano, B. M., Chiozzotto, R., Baccichet, I., Bassi, D., & Cirilli, M. (2022). Development of an HRMA-Based Marker Assisted Selection (MAS) Approach for Cost-Effective Genotyping of S and M Loci Controlling Self-Compatibility in Apricot (Prunus armeniaca L.). Genes, 13(3), 548. https://doi.org/10.3390/genes13030548