Evolutionary Genetics of Cacti: Research Biases, Advances and Prospects
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Molecular Markers
4.2. Phylogenies
4.3. Biogeography
4.4. Species Delimitation
4.5. Hybridization
4.6. Genome Assemblies
5. Concluding Remarks and Future Directions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arakaki, M.; Christin, P.-A.; Nyffeler, R.; Lendel, A.; Eggli, U.; Ogburn, R.M.; Spriggs, E.; Moore, M.J.; Edwards, E.J. Contemporaneous and recent radiations of the world’s major succulent plant lineages. Proc. Natl. Acad. Sci. USA 2011, 108, 8379–8384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernández-Hernández, T.; Brown, J.; Schlumpberger, B.O.; Eguiarte, L.E.; Magallón, S. Beyond aridification: Multiple explanations for the elevated diversification of cacti in the New World Succulent Biome. New Phytol. 2014, 202, 1382–1397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, G.A.R.; Antonelli, A.; Lendel, A.; Moraes, E.D.M.; Manfrin, M.H. The impact of early Quaternary climate change on the diversification and population dynamics of a South American cactus species. J. Biogeogr. 2017, 45, 76–88. [Google Scholar] [CrossRef]
- Hunt, D.R.; Taylor, N.P.; Charles, G. New Cactus Lexicon; DH Books: New York, NY, USA, 2006; 900p. [Google Scholar]
- Korotkova, N.; Aquino, D.; Arias, S.; Eggl, U.; Franck, A.; Gómez-Hinostrosa, C.; Guerrero, P.C.; Hernández, H.M.; Kohlbecker, A.; Köhler, M.; et al. Cactaceae at Caryo-phyllales. org–a dynamic online species-level taxonomic backbone for the family. Willdenowia 2021, 51, 251–270. [Google Scholar] [CrossRef]
- Britton, N.L.; Rose, J.N. The Cactaceae; Press of Gibson Brothers: Washington, DC, USA, 1920; Volume II, 227p. [Google Scholar]
- Gibson, A.C.; Nobel, P.S. The Cactus Primer; Harvard University Press: Cambridge, MA, USA, 1986; 286p. [Google Scholar]
- Anderson, E.F. The Cactus Family; Timber Press: Portland, OR, USA, 2001; 776p. [Google Scholar]
- Parker, K.C.; Hamrick, J.L. Genetic diversity and clonal structure in a columnar cactus, Lophocereus schottii. Am. J. Bot. 1992, 79, 86–96. [Google Scholar] [CrossRef]
- Mayer, M.S.; Williams, L.M.; Rebman, J.P. Molecular Evidence for the hybrid origin of Opuntia prolifera (Cactaceae). Madroño 2000, 47, 109–115. [Google Scholar]
- Nyffeler, R. Phylogenetic relationships in the cactus family (Cactaceae) based on evidence from trnK/matK and trnL-trnF sequences. Am. J. Bot. 2002, 89, 312–326. [Google Scholar] [CrossRef] [Green Version]
- Solórzano, S.; Cortés-Palomec, A.C.; Ibarra, A.; Dávila, P.; Oyama, K. Isolation, characterization and cross-amplification of polymorphic microsatellite loci in the threatened endemic Mammillaria crucigera (Cactaceae). Mol. Ecol. Resour. 2009, 9, 156–158. [Google Scholar] [CrossRef]
- Majure, L.C.; Puente, R.; Griffith, M.P.; Judd, W.S.; Soltis, P.S.; Soltis, D.E. Phylogeny of Opuntia s.s. (Cactaceae): Clade de-lineation; geographic origins; and reticulate evolution. Am. J. Bot. 2012, 99, 847–864. [Google Scholar] [CrossRef] [Green Version]
- Köhler, M.; Oakley, L.J.; Font, F.; Las Peñas, M.L.; Majure, L.C. On the continuum of evolution: A putative new hybrid speci-ation event in Opuntia (Cactaceae) between a native and an introduced species in southern South America. Syst. Biodivers. 2021, 19, 1026–1039. [Google Scholar] [CrossRef]
- Copetti, D.; Búrquez, A.; Bustamante, E.; Charboneau, J.L.M.; Childs, K.; Eguiarte, L.E.; Lee, S.; Liu, T.L.; McMahon, M.M.; Whiteman, N.; et al. Extensive gene tree discordance and hemiplasy shaped the genomes of North American columnar cacti. Proc. Natl. Acad. Sci. USA 2017, 114, 12003–12008. [Google Scholar] [CrossRef] [Green Version]
- Ritz, C.M.; Martins, L.; Mecklenburg, R.; Goremykin, V.; Hellwig, F.H. The molecular phylogeny of Rebutia (Cactaceae) and its allies demonstrates the influence of paleogeography on the evolution of South American mountain cacti. Am. J. Bot. 2007, 94, 1321–1332. [Google Scholar] [CrossRef]
- Realini, M.F.; González, G.E.; Font, F.; Picca, P.I.; Poggio, L.; Gottlieb, A.M. Phylogenetic relationships in Opuntia (Cactaceae, Opuntioideae) from southern South America. Oesterreichische Bot. Z. 2014, 301, 1123–1134. [Google Scholar] [CrossRef]
- Franco, F.F.; Silva, G.A.R.; Moraes, E.M.; Taylor, N.; Zappi, D.C.; Jojima, C.L.; Machado, M.C. Plio-Pleistocene diversification of Cereus (Cactaceae, Cereeae) and closely allied genera. Bot. J. Linn. Soc. 2017, 183, 199–210. [Google Scholar] [CrossRef]
- Guerrero, P.; Majure, L.C.; Cornejo-Romero, A.; Hernández-Hernández, T. Phylogenetic Relationships and Evolutionary Trends in the Cactus Family. J. Hered. 2018, 110, 4–21. [Google Scholar] [CrossRef] [PubMed]
- Cruse-Sanders, J.M.; Parker, K.C.; Friar, E.A.; Huang, D.I.; Mashayekhi, S.; Prince, L.M.; Otero-Arnaiz, A.; Casas, A. Managing diversity: Domestication and gene flow in Stenocereus stellatus Riccob. (Cactaceae) in Mexico. Ecol. Evol. 2013, 3, 1340–1355. [Google Scholar] [CrossRef] [PubMed]
- Bonatelli, I.A.; Perez, M.F.; Peterson, A.T.; Taylor, N.P.; Zappi, D.C.; Machado, M.C.; Koch, I.; Pires, A.H.C.; Moraes, E.M. Interglacial microrefugia and diversification of a cactus species complex: Phylogeography and palaeodistributional reconstructions for Pilosocereus aurisetus and allies. Mol. Ecol. 2014, 23, 3044–3063. [Google Scholar] [CrossRef]
- Silva, G.A.; Jojima, C.L.; Moraes, E.M.; Antonelli, A.; Manfrin, M.H.; Franco, F.F. Intra and interspecific sequence variation in closely related species of Cereus (CACTACEAE). Biochem. Syst. Ecol. 2016, 65, 137–142. [Google Scholar] [CrossRef]
- van Dijk, E.L.; Auger, H.; Jaszczyszyn, Y.; Thermes, C. Ten years of next-generation sequencing technology. Trends Genet. 2014, 30, 418–426. [Google Scholar] [CrossRef]
- Wetterstrand, K.A. DNA Sequencing Costs: Data from the NHGRI Genome Sequencing Program (GSP). Available online: www.genome.gov/sequencingcostsdata (accessed on 24 November 2021).
- Avise, J.C. Molecular Markers; Natural History and Evolution; Chapman & Hall: Chapel Hill, NC, USA, 1994; 398p. [Google Scholar]
- Pinheiro, F.; Dantas-Queiroz, M.V.; Palma-Silva, C. Plant Species Complexes as Models to Understand Speciation and Evolution: A Review of South American Studies. Crit. Rev. Plant Sci. 2018, 37, 54–80. [Google Scholar] [CrossRef]
- Khan, G.; Franco, F.F.; Silva, G.A.; Bombonato, J.R.; Machado, M.; Alonso, D.P.; Ribolla, P.E.; Albach, D.C.; Moraes, E.M. Maintaining genetic integrity with high promiscuity: Frequent hybridization with low introgression in multiple hybrid zones of Melocactus (Cactaceae). Mol. Phylogenet. Evol. 2019, 142, 106642. [Google Scholar] [CrossRef] [PubMed]
- Arakaki, M.; Speranza, P.; Soltis, P.S.; Soltis, D.E. Examination of Reticulate Evolution Involving Haageocereus and Espostoa. Haseltonia 2020, 27, 102–112. [Google Scholar] [CrossRef]
- Ossa, C.G.; Montenegro, P.; Larridon, I.; Pérez, F. Response of xerophytic plants to glacial cycles in southern South America. Ann. Bot. 2019, 124, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Amaral, D.T.; Bombonato, J.R.; Andrade, S.C.D.S.; Moraes, E.M.; Franco, F.F. The genome of a thorny species: Comparative genomic analysis among South and North American Cactaceae. Planta 2021, 254, 44. [Google Scholar] [CrossRef]
- Juárez-Miranda, A.I.; Cornejo-Romero, A.; Vargas-Mendoza, C.F. Population expansion and genetic structure in Cephalocereus nizandensis (Cactaceae), a microendemic cactus of rocky outcrops of the Tehuantepec basin, Mexico. Plant Ecol. Evol. 2021, 154, 217–230. [Google Scholar] [CrossRef]
- Majure, L.C.; Barrios, D.; Díaz, E.; Zumwalde, B.A.; Testo, W.; Negrón-Ortíz, V. Pleistocene aridification underlies the evolutionary history of the Caribbean endemic, insular, giant Consolea (Opuntioideae). Am. J. Bot. 2021, 108, 200–215. [Google Scholar] [CrossRef]
- Morrone, J.J. Biogeographical regionalisation of the Neotropical region. Zootaxa 2014, 3782, 1–110. [Google Scholar] [CrossRef] [Green Version]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E. The PRISMA 2020 state-ment: An updated guideline for reporting systematic reviews. BMJ 2021, 88, 105906. [Google Scholar] [CrossRef]
- Schlötterer, C. The evolution of molecular markers—just a matter of fashion? Nat. Rev. Genet. 2004, 5, 63–69. [Google Scholar] [CrossRef]
- Wolfe, K.H.; Li, W.-H.; Sharp, P.M. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc. Natl. Acad. Sci. USA 1987, 84, 9054–9058. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.-X.; Hewitt, G.M. Nuclear DNA analyses in genetic studies of populations: Practice, problems and prospects. Mol. Ecol. 2003, 12, 563–584. [Google Scholar] [CrossRef] [PubMed]
- Shaw, J.; Lickey, E.B.; Schilling, E.E.; Small, R.L. Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: The tortoise and the hare III. Am. J. Bot. 2007, 94, 275–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernández- Hernández, T.; Hernández, H.M.; De-Nova, J.A.; Puente, R.; Eguiarte, L.E.; Magallón, S. Phylogenetic relation-ships and evolution of growth form in Cactaceae (Caryophyllales; Eudicotyledoneae). Am. J. Bot. 2011, 98, 44–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calvente, A.; Moraes, E.M.; Lavor, P.; Bonatelli, I.A.; Nacaguma, P.; Versieux, L.M.; Taylor, N.P.; Zappi, D.C. Phylogenetic analyses of Pilosocereus (Cactaceae) inferred from plastid and nuclear sequences. Bot. J. Linn. Soc. 2017, 183, 25–38. [Google Scholar]
- Duchene, D.; Bromham, L. Rates of molecular evolution and diversification in plants: Chloroplast substitution rates correlate with species-richness in the Proteaceae. BMC Evol. Biol. 2013, 13, 65. [Google Scholar] [CrossRef] [Green Version]
- Romeiro-Brito, M.; Moraes, E.M.; Taylor, N.P.; Zappi, D.C.; Franco, F.F. Lineage-specific evolutionary rate in plants: Contri-butions of a screening for Cereus (Cactaceae). Appl. Plant Sci. 2016, 4, 1500074. [Google Scholar] [CrossRef]
- Majure, L.C.; Baker, M.A.; Cloud-Hughes, M.; Salywon, A.; Neubig, K.M. Phylogenomics in Cactaceae: A case study using the chollas sensu lato (Cylindropuntieae, Opuntioideae) reveals a common pattern out of the Chihuahuan and Sonoran deserts. Am. J. Bot. 2019, 106, 1327–1345. [Google Scholar] [CrossRef]
- Köhler, M.; Reginato, M.; Souza-Chies, T.T.; Majure, L.C. Insights into Chloroplast Genome Evolution Across Opuntioideae (Cactaceae) Reveals Robust Yet Sometimes Conflicting Phylogenetic Topologies. Front. Plant Sci. 2020, 11, 729. [Google Scholar] [CrossRef]
- Harpke, D.; Peterson, A. Non-concerted ITS evolution in Mammillaria (Cactaceae). Mol. Phylogenet. Evol. 2006, 41, 579–593. [Google Scholar] [CrossRef]
- Harpke, D.; Peterson, A. Extensive 5.8S nrDNA polymorphism in Mammillaria (Cactaceae) with special reference to the iden-tification of pseudogenic internal transcribed spacer regions. J. Plant Res. 2008, 121, 261–270. [Google Scholar] [CrossRef]
- Small, R.L.; Cronn, R.C.; Wendel, J.F. Use of nuclear genes for phylogeny reconstruction in plants. Aust. Syst. Bot. 2004, 17, 145–170. [Google Scholar] [CrossRef]
- Khan, G.; Godoy, M.O.; Franco, F.F.; Perez, M.; Taylor, N.P.; Zappi, D.; Machado, M.C.; Moraes, E.M. Extreme population subdivision or cryptic speciation in the cactus Pilosocereus jauruensis? A taxonomic challenge posed by a naturally fragmented system. Syst. Biodivers. 2017, 16, 188–199. [Google Scholar] [CrossRef]
- Khan, G.; Ribeiro, P.M.; Bonatelli, I.A.S.; Perez, M.F.; Franco, F.F.; Moraes, E.M. Weak population structure and no genetic erosion in Pilosocereus aureispinus: A microendemic and threatened cactus species from eastern Brazil. PLoS ONE 2018, 13, e0195475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perez, M.F.; Carstens, B.C.; Rodrigues, G.L.; Moraes, E.M. Anonymous nuclear markers reveal taxonomic incongruence and long-term disjunction in a cactus species complex with continental-island distribution in South America. Mol. Phylogenet. Evol. 2016, 95, 11–19. [Google Scholar] [CrossRef]
- Fraga, D.A.; de Carvalho, A.F.; Santana, R.S.; Machado, M.C.; Lacorte, G.A. Development of microsatellite markers for the threatened species Coleocephalocereus purpureus (Cactaceae) using next-generation sequencing. Mol. Biol. Rep. 2019, 47, 1485–1489. [Google Scholar] [CrossRef]
- Gutiérrez, A.V.; Filippi, C.V.; Aguirre, N.C.; Puebla, A.F.; Acuña, C.V.; Taboada, G.M.; Ortega-Baes, F.P. Development of novel SSR molecular markers using a Next-Generation Sequencing approach (ddRADseq) in Stetsonia coryne (Cactaceae). An. Acad. Bras. Ciências 2021, 93. [Google Scholar] [CrossRef]
- Kalia, R.K.; Rai, M.K.; Kalia, S.; Singh, R.; Dhawan, A.K. Microsatellite markers: An overview of the recent progress in plants. Euphytica 2010, 177, 309–334. [Google Scholar] [CrossRef]
- Idrees, M.; Irshad, M. Molecular markers in plants for analysis of genetic diversity: A review. Eur. Acad. Res. 2014, 2, 1513–1540. [Google Scholar]
- Taheri, S.; Abdullah, T.L.; Yusop, M.R.; Hanafi, M.M.; Sahebi, M.; Azizi, P.; Shamshiri, R.R. Mining and Development of Novel SSR Markers Using Next Generation Sequencing (NGS) Data in Plants. Molecules 2018, 23, 399. [Google Scholar] [CrossRef] [Green Version]
- Moraes, E.M.; Perez, M.F.; Téo, M.F.; Zappi, D.C.; Taylor, N.P.; Machado, M.C. Cross-species amplification of microsatellites reveals incongruence in the molecular variation and taxonomic limits of the Pilosocereus aurisetus group (Cactaceae). Genetica 2012, 140, 277–285. [Google Scholar] [CrossRef]
- Fernandes, V.N.D.A.; das Neves, A.F.; Martin, P.G.; Mangolin, C.A.; Machado, M.D.F.P. Genetic structure and molecular divergence among samples of mandacaru (Cereus spp.; Cactaceae) as revealed by microsatellite markers. Biochem. Syst. Ecol. 2016, 64, 38–45. [Google Scholar] [CrossRef]
- Bombonato, J.R.; Bonatelli, I.A.S.; Silva, G.A.R.; Moraes, E.M.; Zappi, D.C.; Taylor, N.P.; Franco, F.F. Cross-genera SSR trans-ferability in cacti revealed by a case study using Cereus (Cereeae; Cactaceae). Genet. Mol. Biol. 2019, 42, 87–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fava, W.S.; Gomes, V.G.N.; Lorenz, A.P.; Paggi, G.M. Cross-amplification of microsatellite loci in the cacti species from Bra-zilian Chaco. Mol. Biol. Rep. 2020, 47, 1535–1542. [Google Scholar] [CrossRef] [PubMed]
- Franco, F.F.; Silva, F.A.; Khan, G.; Bonatelli, I.A.; Amaral, D.T.; Zappi, D.C.; Taylor, N.P.; Moraes, E.M. Generalizations of genetic conservation principles in islands are not always likely: A case study from a Neotropical insular cactus. Bot. J. Linn. Soc. 2021, boab076. [Google Scholar] [CrossRef]
- Bonatelli, I.A.D.S.; Carstens, B.C.; Moraes, E. Using Next Generation RAD Sequencing to Isolate Multispecies Microsatellites for Pilosocereus (Cactaceae). PLoS ONE 2015, 10, e0142602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bombonato, J.R.; Amaral, D.T.; Silva, G.A.R.; Khan, G.; Moraes, E.M.; Andrade, S.C.; Eaton, D.A.R.; Alonso, D.P.; Ribolla, P.E.M.; Taylor, N.; et al. The potential of genome-wide RAD sequences for resolving rapid radiations: A case study in Cactaceae. Mol. Phylogenet. Evol. 2020, 151, 106896. [Google Scholar] [CrossRef]
- Merklinger, F.F.; Böhnert, T.; Arakaki, M.; Weigend, M.; Quandt, D.; Luebert, F. Quaternary diversification of a columnar cactus in the driest place on earth. Am. J. Bot. 2021, 108, 184–199. [Google Scholar] [CrossRef]
- Dodsworth, S.; Pokorny, L.; Johnson, M.G.; Kim, J.T.; Maurin, O.; Wickett, N.J.; Forest, F.; Baker, W.J. Hyb-Seq for Flowering Plant Systematics. Trends Plant Sci. 2019, 24, 887–891. [Google Scholar] [CrossRef]
- Pelletier, T.A.; Carstens, B.C. Geographical range size and latitude predict population genetic structure in a global survey. Biol. Lett. 2018, 14, 20170566. [Google Scholar] [CrossRef]
- Nazareno, A.G.; Bemmels, J.B.; Dick, C.W.; Lohmann, L.G. Minimum sample sizes for population genomics: An empirical study from an Amazonian plant species. Mol. Ecol. Resour. 2017, 17, 1136–1147. [Google Scholar] [CrossRef]
- Silva, G.A.R.; Khan, G.; Ribeiro-Silva, S.; Aona, L.; Machado, M.C.; Bonatelli, I.A.S.; Moraes, E.M. Extreme genetic structure in a relict cactus genus from campo rupestre landscapes: Implications for conservation. Biodivers. Conserv. 2020, 29, 1263–1281. [Google Scholar] [CrossRef]
- Moore, A.J.; de Vos, J.M.; Hancock, L.P.; Goolsby, E.; Edwards, E.J. Targeted Enrichment of Large Gene Families for Phylogenetic Inference: Phylogeny and Molecular Evolution of Photosynthesis Genes in the Portullugo Clade (Caryophyllales). Syst. Biol. 2017, 67, 367–383. [Google Scholar] [CrossRef] [PubMed]
- McCormack, J.E.; Harvey, M.G.; Faircloth, B.C.; Crawford, N.G.; Glenn, T.C.; Brumfield, R.T. Data from: A phylogeny of birds based on over 1500 loci collected by target enrichment and high-throughput sequencing. Dryad Dataset 2013, 8, e54848. [Google Scholar] [CrossRef]
- Bravo, G.A.; Antonelli, A.; Bacon, C.D.; Bartoszek, K.; Blom, M.P.K.; Huynh, S.; Jones, G.; Knowles, L.L.; Lamichhaney, S.; Marcussen, T.; et al. Embracing heterogeneity: Coalescing the Tree of Life and the future of phylogenomics. PeerJ 2019, 7, e6399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Degnan, J.H.; Rosenberg, N. Discordance of Species Trees with Their Most Likely Gene Trees. PLoS Genet. 2006, 2, e68. [Google Scholar] [CrossRef] [Green Version]
- Edwards, S. Is a new and general theory of molecular systematics emerging? Evolution 2009, 63, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Rabiee, M.; Sayyari, E.; Mirarab, S. ASTRAL-III: Polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinform. 2018, 19, 15–30. [Google Scholar] [CrossRef] [Green Version]
- Chifman, J.; Kubatko, L. Quartet Inference from SNP Data Under the Coalescent Model. Bioinformatics 2014, 30, 3317–3324. [Google Scholar] [CrossRef] [Green Version]
- Ogilvie, H.A.; Bouckaert, R.R.; Drummond, A. StarBEAST2 Brings Faster Species Tree Inference and Accurate Estimates of Substitution Rates. Mol. Biol. Evol. 2017, 34, 2101–2114. [Google Scholar] [CrossRef]
- Bryant, D.; Bouckaert, R.; Felsenstein, J.; Rosenberg, N.A.; RoyChoudhury, A. Inferring Species Trees Directly from Biallelic Genetic Markers: Bypassing Gene Trees in a Full Coalescent Analysis. Mol. Biol. Evol. 2012, 29, 1917–1932. [Google Scholar] [CrossRef] [Green Version]
- Mantooth, S.J.; Riddle, B.R. Molecular Biogeography: The Intersection between Geographic and Molecular Variation. Geogr. Compass 2011, 5, 1–20. [Google Scholar] [CrossRef]
- Crisp, M.D.; Trewick, S.A.; Cook, L. Hypothesis testing in biogeography. Trends Ecol. Evol. 2011, 26, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Stevens, R.D.; Weber, M.M.; Villalobos, F. Contemporary Biogeography. In Phyllostomid Bats; Fleming, T.H., Dávalos, L.M., Mello, M.A.R., Eds.; University of Chicago Press: Chicago, IL, USA, 2020; pp. 391–410. [Google Scholar]
- Ornelas, J.F.; Rodriguez-Gomez, F. Influence of Pleistocene Glacial/Interglacial Cycles on the Genetic Structure of the Mistletoe Cactus Rhipsalis baccifera (Cactaceae) in Mesoamerica. J. Hered. 2015, 106, 196–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franco, F.F.; Jojima, C.L.; Perez, M.F.; Zappi, D.C.; Taylor, N.; Moraes, E.M. The xeric side of the Brazilian Atlantic Forest: The forces shaping phylogeographic structure of cacti. Ecol. Evol. 2017, 7, 9281–9293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nason, J.D.; Hamrick, J.L.; Fleming, T.H. Historical vicariance and postglacial colonization effects on the evolution of genetic structure in Lophocereus, a Sonoran Desert columnar cactus. Evolution 2002, 56, 2214–2226. [Google Scholar] [CrossRef]
- Gutiérrez-Flores, C.; García-De-León, F.J.; Cota-Sánchez, J.H. Microsatellite genetic diversity and mating systems in the co-lumnar cactus Pachycereus pringlei (Cactaceae). Perspect. Plant Ecol. Evol. Syst. 2016, 22, 1–10. [Google Scholar]
- Aquino, D.; Moreno-Letelier, A.; González-Botello, M.A.; Arias, S. The importance of environmental conditions in maintaining lineage identity in Epithelantha (Cactaceae). Ecol. Evol. 2021, 11, 4520–4531. [Google Scholar] [CrossRef]
- de Menezes, M.O.T.; Zappi, D.; Moraes, E.M.; Franco, F.F.; Taylor, N.P.; Costa, I.; Loiola, M.I. Pleistocene radiation of coastal species of Pilosocereus (Cactaceae) in eastern Brazil. J. Arid Environ. 2016, 135, 22–32. [Google Scholar] [CrossRef]
- Rull, V. Neotropical Diversification: Historical Overview and Conceptual Insights. In Neotropical Diversification: Patterns and Processes; Springer: Cham, Switzerland, 2020; pp. 13–49. [Google Scholar] [CrossRef]
- Zizka, A.; Carvalho-Sobrinho, J.G.; Pennington, R.T.; Queiroz, L.P.; Alcantara, S.; Baum, D.A.; Bacon, C.D.; Antonelli, A. Transitions between biomes are common and directional in Bombacoideae (Malvaceae). J. Biogeogr. 2020, 47, 1310–1321. [Google Scholar] [CrossRef] [Green Version]
- Amaral, D.T.; Minhós-Yano, I.; Oliveira, J.V.M.; Romeiro-Brito, M.; Bonatelli, I.A.S.; Taylor, N.P.; Zappi, D.C.; Moraes, E.M.; Eaton, D.A.R.; Franco, F.F. Tracking the xeric biomes of South America: The spatiotemporal diversification of Mandacaru cactus. J. Biogeogr. 2021, 48, 3085–3103. [Google Scholar] [CrossRef]
- Liu, Y.; Fu, B.; Wang, S.; Zhao, W. Global ecological regionalization: From biogeography to ecosystem services. Curr. Opin. Environ. Sustain. 2018, 33, 1–8. [Google Scholar] [CrossRef]
- Mucina, L. Biome: Evolution of a crucial ecological and biogeographical concept. New Phytol. 2018, 222, 97–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunter, J.; Franklin, S.; Luxton, S.; Loidi, J. Terrestrial biomes: A conceptual review. Veg. Classif. Surv. 2021, 2, 73–85. [Google Scholar] [CrossRef]
- Maestre, F.T.; Benito, B.M.; Berdugo, M.; Concostrina-Zubiri, L.; Delgado-Baquerizo, M.; Eldridge, D.J.; Guirado, E.; Gross, N.; Kéfi, S.; le Bagousse-Pinguet, Y.; et al. Biogeography of global drylands. New Phytol. 2021, 231. [Google Scholar] [CrossRef]
- Goettsch, B.; Hilton-Taylor, C.; Cruz-Piñón, G.; Duffy, J.P.; Frances, A.; Hernández, H.M.; Inger, R.; Pollock, C.; Schipper, J.; Superina, M.; et al. High proportion of cactus species threatened with extinction. Nat. Plants 2015, 1, 15142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goettsch, B.; Durán, A.P.; Gaston, K.J. Global gap analysis of cactus species and priority sites for their conservation. Conserv. Biol. 2018, 33, 369–376. [Google Scholar] [CrossRef] [PubMed]
- Saco, P.M.; Heras, M.M.-D.L.; Keesstra, S.; Baartman, J.; Yetemen, O.; Rodríguez, J.F. Vegetation and soil degradation in drylands: Non linear feedbacks and early warning signals. Curr. Opin. Environ. Sci. Health 2018, 5, 67–72. [Google Scholar] [CrossRef]
- Fontenele, R.S.; Köhler, M.; Majure, L.C.; Avalos-Calleros, J.A.; Argüello-Astorga, G.R.; Font, F.; Vidal, A.H.; Roumagnac, P.; Kraberger, S.; Martin, D.P.; et al. Novel circular DNA virus identified in Opuntia discolor (Cactaceae) that codes for proteins with similarity to those of geminiviruses. J. Gen. Virol. 2021, 102, 001671. [Google Scholar] [CrossRef]
- Papadopoulou, A.; Knowles, L.L. Toward a paradigm shift in comparative phylogeography driven by trait-based hypotheses. Proc. Natl. Acad. Sci. USA 2016, 113, 8018–8024. [Google Scholar] [CrossRef] [Green Version]
- Zamudio, K.R.; Bell, R.C.; Mason, N.A. Phenotypes in phylogeography: Species’ traits, environmental variation, and vertebrate diversification. Proc. Natl. Acad. Sci. USA 2016, 113, 8041–8048. [Google Scholar] [CrossRef] [Green Version]
- Sukumaran, J.; Knowles, L.L. Trait-Dependent Biogeography: (Re)Integrating Biology into Probabilistic Historical Biogeographical Models. Trends Ecol. Evol. 2018, 33, 390–398. [Google Scholar] [CrossRef]
- Espíndola, A.; Ruffley, M.; Smith, M.L.; Carstens, B.C.; Tank, D.C.; Sullivan, J. Identifying cryptic diversity with predictive phylogeography. Proc. R. Soc. B Biol. Sci. 2016, 283, 20161529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sullivan, J.; Smith, M.L.; Espíndola, A.; Ruffley, M.; Rankin, A.; Tank, D.; Carstens, B. Integrating life history traits into pre-dictive phylogeography. Mol. Ecol. 2019, 28, 2062–2073. [Google Scholar] [CrossRef] [PubMed]
- GBIF: The Global Biodiversity Information Facility (2022) What Is GBIF? Available online: https://www.gbif.org/what-is-gbif (accessed on 13 January 2022).
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Kattge, J.; Diaz, S.; Lavorel, S.; Prentice, I.C.; Leadley, P.; Bönisch, G.; Garnier, E.; Westoby, M.; Reich, P.B.; Wright, I.J.; et al. TRY—A global database of plant traits. Glob. Chang. Biol. 2011, 17, 2905–2935. [Google Scholar] [CrossRef]
- Paz, A.; Ibáñez, R.; Lips, K.R.; Crawford, A.J. Testing the role of ecology and life history in structuring genetic variation across a landscape: A trait-based phylogeographic approach. Mol. Ecol. 2015, 24, 3723–3737. [Google Scholar] [CrossRef]
- Riddle, B.R. Comparative phylogeography clarifies the complexity and problems of continental distribution that drove AR Wallace to favor islands. Proc. Natl. Acad. Sci. USA 2016, 113, 7970–7977. [Google Scholar] [CrossRef] [Green Version]
- Perez, M.F.; Bonatelli, I.A.S.; Romeiro-Brito, M.; Franco, F.F.; Taylor, N.P.; Zappi, D.C.; Moraes, E.M. Coalescent-based species delimitation meets deep learning: Insights from a highly fragmented cactus system. Mol. Ecol. Resour. 2021. [Google Scholar] [CrossRef]
- Yesson, C.; Bárcenas, R.T.; Hernandez, H.M.; Ruiz-Maqueda, M.D.L.L.; Prado, A.; Rodríguez, V.M.; Hawkins, J.A. DNA barcodes for Mexican Cactaceae, plants under pressure from wild collecting. Mol. Ecol. Resour. 2011, 11, 775–783. [Google Scholar] [CrossRef]
- CBOL Plant Working Group. A DNA barcode for land plants. Proc. Natl. Acad. Sci. USA 2009, 106, 12794–12797. [Google Scholar] [CrossRef] [Green Version]
- Baker, M.A.; Butterworth, C.A. Geographic distribution and taxonomic circumscription of populations within Coryphantha section Robustispina (Cactaceae). Am. J. Bot. 2013, 100, 984–997. [Google Scholar] [CrossRef]
- Ritz, C.M.; Fickenscher, K.; Föller, J.; Herrmann, K.; Mecklenburg, R.; Wahl, R. Molecular phylogenetic relationships of the Andean genus Aylostera Speg. (Cactaceae; Trichocereeae); a new classification and a morphological identification key. Plant Syst. Evol. 2016, 302, 763–780. [Google Scholar] [CrossRef]
- Larridon, I.; Veltjen, E.; Semmouri, I.; Asselman, P.; Guerrero, P.; Duarte, M.; Walter, H.E.; Cisternas, M.A.; Samain, M.-S. Investigating taxon boundaries and extinction risk in endemic Chilean cacti (Copiapoa subsection Cinerei, Cactaceae) using chloroplast DNA sequences, microsatellite data and 3D mapping. Kew Bull. 2018, 73, 55. [Google Scholar] [CrossRef] [Green Version]
- Majure, L.C.; Encarnación, Y.; Clase, T.; Peguero, B.; Ho, K.; Barrios, D. Phylogenetics of Leptocereus (Cactaceae) on Hispaniola: Clarifying species limits in the L. weingartianus complex and a new species from the Sierra de Bahoruco. PhytoKeys 2021, 172, 17–37. [Google Scholar] [CrossRef]
- Donoghue, M.J. A Critique of the Biological Species Concept and Recommendations for a Phylogenetic Alternative. Bryologist 1985, 88, 172. [Google Scholar] [CrossRef] [Green Version]
- Cracraft, J. Species Concepts and Speciation Analysis. In Current Ornithology; Springer: New York, NY, USA, 1983; pp. 159–187. [Google Scholar] [CrossRef]
- Mallet, J. A species definition for the Modem Synthesis. Trends Ecol. Evol. 1995, 10, 294–299. [Google Scholar] [CrossRef]
- Aquino, D.; Cervantes, R.C.; Gernandt, D.S.; Arias, S. Species Delimitation and Phylogeny of Epithelantha (Cactaceae). Syst. Bot. 2019, 44, 600–615. [Google Scholar] [CrossRef]
- Alvarado-Sizzo, H.; Casas, A.; Parra, F.; Arreola-Nava, H.J.; Terrazas, T.; Sánchez, C. Species delimitation in the Stenocereus griseus (Cactaceae) species complex reveals a new species, S. huastecorum. PLoS ONE 2018, 13, e0190385. [Google Scholar] [CrossRef] [Green Version]
- Zappi, D.C. Pilosocereus (Cactaceae): The Genus in Brazil; Royal Botanic Gardens: Kew, UK, 1994; 135p.
- Braun, P.J.; Esteves, E.E. Cactaceae. Pilosocereus densivillosus. Kakt. Sukk 1994, 45, 108–114. [Google Scholar]
- Braun, P.J.; Esteves, E.; Esteves, R. Pilosocereus jauruensis subsp. cincinnopetalus (Cactaceae), eine neue Sippe aus dem mittleren Westen Brasiliens. Kakt. Suk 2020, 71, 73–77. [Google Scholar]
- De Queiroz, K. The general lineage concept of species, species criteria, and the process of speciation: A conceptual unification and terminological recommendations. In Endless Forms: Species Population Genetic Structure of Pilosocereus jauruensis 197 and Speciation; Howard, D.J., Berlocher, S.H., Eds.; Oxford University Press: New York, NY, USA, 1998; pp. 57–75. [Google Scholar]
- Avise, J.C.; Arnold, J.; Ball, R.M.; Bermingham, E.; Lamb, T.; Neigel, J.E.; A Reeb, C.; Saunders, N.C. INTRASPECIFIC PHYLOGEOGRAPHY: The Mitochondrial DNA Bridge Between Population Genetics and Systematics. Annu. Rev. Ecol. Syst. 1987, 18, 489–522. [Google Scholar] [CrossRef]
- Carstens, B.C.; Pelletier, T.A.; Reid, N.M.; Satler, J.D. How to fail at species delimitation? Mol. Ecol. 2013, 22, 4369–4383. [Google Scholar] [CrossRef]
- Pons, J.; Barraclough, T.; Gómez-Zurita, J.; Cardoso, A.; Duran, D.P.; Hazell, S.; Kamoun, S.; Sumlin, W.D.; Vogler, A.P. Sequence-Based Species Delimitation for the DNA Taxonomy of Undescribed Insects. Syst. Biol. 2006, 55, 595–609. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Rannala, B. Unguided Species Delimitation Using DNA Sequence Data from Multiple Loci. Mol. Biol. Evol. 2014, 31, 3125–3135. [Google Scholar] [CrossRef] [Green Version]
- Pei, J.; Chu, C.; Li, X.; Lu, B.; Wu, Y. CLADES: A classification-based machine learning method for species delimitation from population genetic data. Mol. Ecol. Resour. 2018, 18, 1144–1156. [Google Scholar] [CrossRef]
- Derkarabetian, S.; Castillo, S.; Koo, P.K.; Ovchinnikov, S.; Hedin, M. A demonstration of unsupervised machine learning in species delimitation. Mol. Phylogenet. Evol. 2019, 139, 106562. [Google Scholar] [CrossRef]
- Arnold, M.L. Natural Hybridization and Evolution; Oxford Series in Ecology and Evolution; Oxford University Press: New York, NY, USA, 1997; 232p. [Google Scholar]
- Rieseberg, L.H. Hybrid origins of plant species. Annu. Rev. Ecol. Syst. 1997, 28, 359–389. [Google Scholar] [CrossRef] [Green Version]
- Mallet, J.; Beltran, M.; Neukirchen, W.; Linares, M. Natural hybridization in heliconiine butterflies: The species boundary as a continuum. BMC Evol. Biol. 2007, 7, 28. [Google Scholar] [CrossRef] [Green Version]
- Schley, R.J.; Twyford, A.D.; Pennington, R.T. Hybridization: A ‘double-edged sword’ for Neotropical plant diversity. Bot. J. Linn. Soc. 2021, boab070. [Google Scholar] [CrossRef]
- Friedrich, H. Hybridization as a factor in the evolution of the Cactaceae. Cactus Succul. J. 1974, 46, 213–214. [Google Scholar]
- Machado, M.C. What is the role of hybridization in the evolution of the Cactaceae? Bradleya 2008, 26, 1–18. [Google Scholar] [CrossRef]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef]
- Anderson, E.C.; Thompson, E.A. A Model-Based Method for Identifying Species Hybrids Using Multilocus Genetic Data. Genetics 2002, 160, 1217–1229. [Google Scholar] [CrossRef]
- Beerli, P.; Felsenstein, J. Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proc. Natl. Acad. Sci. USA 2001, 98, 4563–4568. [Google Scholar] [CrossRef] [Green Version]
- Gronau, I.; Hubisz, M.J.; Gulko, B.; Danko, C.G.; Siepel, A. Bayesian inference of ancient human demography from individual genome sequences. Nat. Genet. 2011, 43, 1031–1034. [Google Scholar] [CrossRef] [Green Version]
- Gompert, Z.; Buerkle, C.A. introgress: A software package for mapping components of isolation in hybrids. Mol. Ecol. Resour. 2010, 10, 378–384. [Google Scholar] [CrossRef]
- Solís-Lemus, C.; Bastide, P.; Ané, C. PhyloNetworks: A Package for Phylogenetic Networks. Mol. Biol. Evol. 2017, 34, 3292–3298. [Google Scholar] [CrossRef]
- Griffith, M.P. Using molecular data to elucidate reticulate evolution in Opuntia. Madroño 2003, 50, 162–169. [Google Scholar]
- Lambert, S.M.; Borba, E.L.; Machado, M.C.; Andrade, S.C.D.S. Allozyme Diversity and Morphometrics of Melocactus paucispinus (Cactaceae) and Evidence for Hybridization with M. concinnus in the Chapada Diamantina, North-eastern Brazil. Ann. Bot. 2006, 97, 389–403. [Google Scholar] [CrossRef] [Green Version]
- Rayamajhi, N.; Sharma, J. Genetic diversity and structure of a rare endemic cactus and an assessment of its genetic relationship with a more common congener. Genetica 2018, 146, 329–340. [Google Scholar] [CrossRef]
- Granados-Aguilar, X.; Mendoza, C.G.; Cervantes, C.R.; Montes, J.R.; Arias, S. Unraveling Reticulate Evolution in Opuntia (Cactaceae) From Southern Mexico. Front. Plant Sci. 2021, 11. [Google Scholar] [CrossRef]
- Schwabe, A.L.; Neale, J.R.; McGlaughlin, M.E. Examining the genetic integrity of a rare endemic Colorado cactus (Sclerocactus glaucus) in the face of hybridization threats from a close and widespread congener (Sclerocactus parviflorus). Conserv. Genet. 2014, 16, 443–457. [Google Scholar] [CrossRef]
- Plume, O.; Straub, S.C.K.; Tel-Zur, N.; Cisneros, A.; Schneider, B.; Doyle, J.J. Testing a Hypothesis of Intergeneric Allopolyploidy in Vine Cacti (Cactaceae: Hylocereeae). Syst. Bot. 2013, 38, 737–751. [Google Scholar] [CrossRef] [Green Version]
- Majure, L.; Puente-Martinez, R. Phylogenetic relationships and morphological evolution in Opuntia s.str. and closely related members of tribe Opuntieae. Succul. Plant Res. 2014, 8, 9–30. [Google Scholar]
- Arakaki, M.; Soltis, D.E.; Soltis, P.S.; Speranza, P.R. Characterization of polymorphic microsatellite loci in Haageocereus (Trichocereeae, Cactaceae). Am. J. Bot. 2010, 97, e17–e19. [Google Scholar] [CrossRef]
- Twyford, A.D.; Ennos, R.A. Next-generation hybridization and introgression. Heredity 2011, 108, 179–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.-Y.; Xie, F.-F.; Cui, Y.-Z.; Chen, C.-B.; Lu, W.-J.; Hu, X.-D.; Hua, Q.-Z.; Zhao, J.; Wu, Z.-J.; Gao, D.; et al. A chromosome-scale genome sequence of pitaya (Hylocereus undatus) provides novel insights into the genome evolution and regulation of betalain biosynthesis. Hortic. Res. 2021, 8, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Walker, J.F.; Yang, Y.; Feng, T.; Timoneda, A.; Mikenas, J.; Hutchison, V.; Edwards, C.; Wang, N.; Ahluwalia, S.; Olivieri, J.; et al. From cacti to carnivores: Improved phylotranscriptomic sampling and hierarchical homology inference provide further insight into the evolution of Caryophyllales. Am. J. Bot. 2018, 105, 446–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, N.; Yang, Y.; Moore, M.J.; Brockington, S.F.; Walker, J.F.; Brown, J.W.; Liang, B.; Feng, T.; Edwards, C.; Mikenas, J.; et al. Evolution of Portulacineae Marked by Gene Tree Conflict and Gene Family Expansion Associated with Adaptation to Harsh Environments. Mol. Biol. Evol. 2018, 36, 112–126. [Google Scholar] [CrossRef]
- Rodríguez-Alonso, G.; Matvienko, M.; López-Valle, M.L.; Lázaro-Mixteco, P.E.; Napsucialy-Mendivil, S.; Dubrovsky, J.G.; Shishkova, S. Transcriptomics insights into the genetic regulation of root apical meristem exhaustion and determinate primary root growth in Pachycereus pringlei (Cactaceae). Sci. Rep. 2018, 8, 8529. [Google Scholar] [CrossRef]
- Yang, Y.; Moore, M.J.; Brockington, S.F.; Mikenas, J.; Olivieri, J.; Walker, J.F.; Smith, S.A. Improved transcriptome sampling pinpoints 26 ancient and more recent polyploidy events in Caryophyllales, including two allopolyploidy events. New Phytol. 2017, 217, 855–870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nong, Q.; Zhang, M.; Chen, J.; Zhang, M.; Cheng, H.; Jian, S.; Lu, H.; Xia, K. RNA-Seq De Novo Assembly of Red Pitaya (Hylocereus polyrhizus) Roots and Differential Transcriptome Analysis in Response to Salt Stress. Trop. Plant Biol. 2019, 12, 55–66. [Google Scholar] [CrossRef]
- Zhou, Z.; Gao, H.; Ming, J.; Ding, Z.; Lin, X.; Zhan, R. Combined Transcriptome and Metabolome analysis of Pitaya fruit unveiled the mechanisms underlying Peel and pulp color formation. BMC Genom. 2020, 21, 734. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Xu, J.; Han, X.; Qiao, G.; Yang, K.; Wen, Z.; Wen, X. Comparative transcriptome analysis combining SMRT-and Illu-mina-based RNA-Seq identifies potential candidate genes involved in betalain biosynthesis in pitaya fruit. Int. J. Mol. Sci. 2020, 21, 3288. [Google Scholar] [CrossRef]
- Ramanauskas, K.; Igić, B. RNase-based self-incompatibility in cacti. New Phytol. 2021, 231, 2039–2049. [Google Scholar] [CrossRef]
- Torres-Silva, G.; Correia, L.N.F.; Batista, D.S.; Koehler, A.D.; Resende, S.V.; Romanel, E.; Cassol, D.; Almeida, A.M.R.; Strickler, S.R.; Specht, C.D.; et al. Transcriptome Analysis of Melocactus glaucescens (Cactaceae) Reveals Metabolic Changes During in vitro Shoot Organogenesis Induction. Front. Plant Sci. 2021, 12. [Google Scholar] [CrossRef]
- Helmy, M.; Awad, M.; Mosa, K.A. Limited resources of genome sequencing in developing countries: Challenges and solutions. Appl. Transl. Genom. 2016, 9, 15–19. [Google Scholar] [CrossRef] [Green Version]
- McKain, M.R.; Johnson, M.G.; Uribe-Convers, S.; Eaton, D.; Yang, Y. Practical considerations for plant phylogenomics. Appl. Plant Sci. 2018, 6, e1038. [Google Scholar] [CrossRef]
- Martínez-González, C.R.; Ramírez-Mendoza, R.; Jiménez-Ramírez, J.; Gallegos-Vázquez, C.; Luna-Vega, I. Improved method for genomic DNA extraction for Opuntia Mill. (Cactaceae). Plant Methods 2017, 13, 82. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Moore, M.; Brockington, S.; Timoneda, A.; Feng, T.; Marx, H.E.; Walker, J.; Smith, S. An Efficient Field and Laboratory Workflow for Plant Phylotranscriptomic Projects. Appl. Plant Sci. 2017, 5. [Google Scholar] [CrossRef]
- Tørresen, O.K.; Star, B.; Mier, P.; Andrade-Navarro, M.A.; Bateman, A.; Jarnot, P.; Gruca, A.; Grynberg, M.; Kajava, A.V.; Promponas, V.J.; et al. Tandem repeats lead to sequence assembly errors and impose multi-level challenges for genome and protein databases. Nucleic Acids Res. 2019, 47, 10994–11006. [Google Scholar] [CrossRef] [PubMed]
- Michael, T.P.; VanBuren, R. Building near-complete plant genomes. Curr. Opin. Plant Biol. 2020, 54, 26–33. [Google Scholar] [CrossRef]
- Sun, Y.; Shang, L.; Zhu, Q.-H.; Fan, L.; Guo, L. Twenty years of plant genome sequencing: Achievements and challenges. Trends Plant Sci. 2021. [Google Scholar] [CrossRef] [PubMed]
- Kyriakidou, M.; Tai, H.H.; Anglin, N.L.; Ellis, D.; Strömvik, M.V. Current Strategies of Polyploid Plant Genome Sequence Assembly. Front. Plant Sci. 2018, 9, 1660. [Google Scholar] [CrossRef]
- Goerner-Potvin, P.; Bourque, G. Computational tools to unmask transposable elements. Nat. Rev. Genet. 2018, 19, 688–704. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Zhao, X.; Mace, E.; Henry, R.; Jordan, D. Exploring and Exploiting Pan-genomics for Crop Improvement. Mol. Plant 2019, 12, 156–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bayer, P.E.; Golicz, A.A.; Scheben, A.; Batley, J.; Edwards, D. Plant pan-genomes are the new reference. Nat. Plants 2020, 6, 914–920. [Google Scholar] [CrossRef]
- Andrews, K.R.; Good, J.M.; Miller, M.R.; Luikart, G.; Hohenlohe, P.A. Harnessing the power of RADseq for ecological and evolutionary genomics. Nat. Rev. Genet. 2016, 17, 81–92. [Google Scholar] [CrossRef] [Green Version]
- Acha, S.; Majure, L.C. A New Approach Using Targeted Sequence Capture for Phylogenomic Studies across Cactaceae. Genes 2022, 13, 350. [Google Scholar] [CrossRef]
- Romeiro-Brito, M.; Telhe, M.C.; Amaral, D.T.; Franco, F.F.; Moraes, E.M. A Target Enrichment Probe Set for Deep and Shallow Phylogenetic Studies in Cactaceae, Universidade Federal de Sao Carlos: Sorocaba, SP, Brazil, 2022; to be submitted.
- UIS. Research and Development. UNESCO Institute of Statistics. Available online: http://uis.unesco.org/en/topic/research-and-development (accessed on 14 February 2022).
- Lewin, H.A.; Robinson, G.E.; Kress, W.J.; Baker, W.J.; Coddington, J.A.; Crandall, K.A.; Durbin, R.; Edwards, S.V.; Forest, F.; Gilbert, M.; et al. Earth BioGenome Project: Sequencing life for the future of life. Proc. Natl. Acad. Sci. USA 2018, 115, 4325–4333. [Google Scholar] [CrossRef] [Green Version]
- International Virtual Mini-Symposium “Cactaceae: Phylogenetics, Evolution and Conservation in the Genomic Era”. Available online: https://dbg.org/events/cactus-symposium-2021/ (accessed on 22 February 2022).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franco, F.F.; Amaral, D.T.; Bonatelli, I.A.S.; Romeiro-Brito, M.; Telhe, M.C.; Moraes, E.M. Evolutionary Genetics of Cacti: Research Biases, Advances and Prospects. Genes 2022, 13, 452. https://doi.org/10.3390/genes13030452
Franco FF, Amaral DT, Bonatelli IAS, Romeiro-Brito M, Telhe MC, Moraes EM. Evolutionary Genetics of Cacti: Research Biases, Advances and Prospects. Genes. 2022; 13(3):452. https://doi.org/10.3390/genes13030452
Chicago/Turabian StyleFranco, Fernando Faria, Danilo Trabuco Amaral, Isabel A. S. Bonatelli, Monique Romeiro-Brito, Milena Cardoso Telhe, and Evandro Marsola Moraes. 2022. "Evolutionary Genetics of Cacti: Research Biases, Advances and Prospects" Genes 13, no. 3: 452. https://doi.org/10.3390/genes13030452
APA StyleFranco, F. F., Amaral, D. T., Bonatelli, I. A. S., Romeiro-Brito, M., Telhe, M. C., & Moraes, E. M. (2022). Evolutionary Genetics of Cacti: Research Biases, Advances and Prospects. Genes, 13(3), 452. https://doi.org/10.3390/genes13030452