Transcriptional Profiling and Deriving a Seven-Gene Signature That Discriminates Active and Latent Tuberculosis: An Integrative Bioinformatics Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Data Processing and Differential Gene Expression Analysis
2.2.1. Gene Ontology and Pathway Enrichment Analysis of Top DEGs
2.2.2. Analysis of Protein–Protein Interaction Network
2.3. Validation of DEGs in An Independent Cohort Using Bioinformatics Analysis
2.4. Receiver Operating Characteristic Curve Analysis
2.5. Statistical Analysis
3. Results
3.1. Identification of Top Significant DEGs Derived from Microarray Dataset GSE37250
3.2. Pathway Enrichment and Functional Annotation of Top DEGs
3.3. Analysis of Protein–Protein Interaction (PPI) Network among the DEGs and Identification of Hub Genes for the Upregulated Gene Network
3.4. Gene Ontology and Pathway Analysis of Downregulated Genes
3.5. Deriving and Validation of a Seven-Gene Signature in Discrimination of Active and Latent Tuberculosis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Global Tuberculosis Report 2021; World Health Organization: Geneva, Switzerland, 2021; Available online: https://www.who.int/publications/i/item/9789240037021 (accessed on 1 January 2022).
- Houben, R.M.; Dodd, P.J. The Global Burden of Latent Tuberculosis Infection: A Re-estimation Using Mathematical Modelling. PLoS Med. 2016, 13, e1002152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Global Tuberculosis Report 2018; World Health Organization: Geneva, Switzerland, 2018; Available online: https://apps.who.int/iris/handle/10665/274453 (accessed on 31 May 2021).
- Drain, P.K.; Bajema, K.L.; Dowdy, D.; Dheda, K.; Naidoo, K.; Schumacher, S.G.; Ma, S.; Meermeier, E.; Lewinsohn, D.M.; Sherman, D.R. Incipient and subclinical tuberculosis: A clinical review of early stages and progression of infection. Clin. Microbiol. Rev. 2018, 31, e00021-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurt, T.; Frieden, T.R.; World Health Organization. Toman’s Tuberculosis: Case Detection, Treatment, and Monitoring: Questions and Answers, 2nd ed.; Frieden, T., Ed.; World Health Organization: Geneva, Switzerland, 2004. [Google Scholar]
- Petrilli, J.D.; Araújo, L.E.; da Silva, L.S.; Laus, A.C.; Müller, I.; Reis, R.M.; Netto, E.M.; Riley, L.W.; Arruda, S.; Queiroz, A. Whole blood mRNA expression-based targets to discriminate active tuberculosis from latent infection and other pulmonary diseases. Sci. Rep. 2020, 10, 22072. [Google Scholar] [CrossRef] [PubMed]
- Pai, M.; Denkinger, C.M.; Kik, S.V.; Rangaka, M.X.; Zwerling, A.; Oxlade, O.; Metcalfe, J.Z.; Cattamanchi, A.; Dowdy, D.W.; Dheda, K.; et al. Gamma interferon release assays for detection of Mycobacterium tuberculosis infection. Clin. Microbiol. Rev. 2014, 27, 3–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ai, J.W.; Ruan, Q.L.; Liu, Q.H.; Zhang, W.H. Updates on the risk factors for latent tuberculosis reactivation and their managements. Emerg. Microbes Infect. 2016, 5, e10. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Tuberculosis Report 2020; World Health Organization: Geneva, Switzerland, 2020; Available online: https://www.who.int/publications/i/item/9789240013131 (accessed on 19 April 2021).
- WHO. The End TB Strategy. Available online: https://www.who.int/tb/strategy/End_TB_Strategy.pdf (accessed on 18 November 2021).
- Weiner, J.; Maertzdorf, J.; Kaufmann, S.H. The dual role of biomarkers for understanding basic principles and devising novel intervention strategies in tuberculosis. Ann. N. Y. Acad. Sci. 2013, 1283, 22–29. [Google Scholar] [CrossRef]
- World Health Organization. High Priority Target Product Profiles for New Tuberculosis Diagnostics: Report of a Consensus Meeting, 28–29 April 2014; World Health Organization: Geneva, Switzerland, 2014; Available online: https://apps.who.int/iris/handle/10665/135617 (accessed on 19 April 2021).
- World Health Organization. Consensus Meeting Report: Development of a Target Product Profile (TPP) and a Framework for Evaluation for a Test for Predicting Progression from Tuberculosis Infection to Active Disease; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Kaforou, M.; Wright, V.J.; Oni, T.; French, N.; Anderson, S.T.; Bangani, N.; Banwell, C.M.; Brent, A.J.; Crampin, A.; Dockrell, H.; et al. Detection of tuberculosis in HIV-infected and-uninfected African adults using whole blood RNA expression signatures: A case-control study. PLoS Med. 2013, 10, e1001538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blankley, S.; Graham, C.M.; Turner, J.; Berry, M.P.; Bloom, C.I.; Xu, Z.; Pascual, V.; Banchereau, J.; Chaussabel, D.; Breen, R.; et al. The Transcriptional Signature of Active Tuberculosis Reflects Symptom Status in Extra-Pulmonary and Pulmonary Tuberculosis. PLoS ONE 2016, 11, e0162220. [Google Scholar] [CrossRef] [PubMed]
- Blankley, S.; Graham, C.M.; Levin, J.; Turner, J.; Berry, M.P.; Bloom, C.I.; Xu, Z.; Pascual, V.; Banchereau, J.; Chaussabel, D.; et al. A 380-gene meta-signature of active tuberculosis compared with healthy controls. Eur. Respir. J. 2016, 47, 1873–1876. [Google Scholar] [CrossRef]
- Sweeney, T.E.; Braviak, L.; Tato, C.M.; Khatri, P. Genome-wide expression for diagnosis of pulmonary tuberculosis: A multicohort analysis. Lancet Respir. Med. 2016, 4, 213–224. [Google Scholar] [CrossRef] [Green Version]
- Zak, D.E.; Penn-Nicholson, A.; Scriba, T.J.; Thompson, E.; Suliman, S.; Amon, L.M.; Mahomed, H.; Erasmus, M.; Whatney, W.; Hussey, G.D.; et al. ACS and GC6-74 cohort study 2016. A blood RNA signature for tuberculosis disease risk: A prospective cohort study. Lancet 2016, 387, 2312–2322. [Google Scholar] [CrossRef] [Green Version]
- Edgar, R.; Domrachev, M.; Lash, A.E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002, 30, 207–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrett, T.; Edgar, R. Mining Microarray Data at NCBI’s GENE Expression Omnibus (GEO). In Gene Mapping, Discovery, and Expression; Humana Press: New York, NY, USA, 2006; Volume 338, pp. 175–190. [Google Scholar] [CrossRef] [Green Version]
- Barrett, T.; Wilhite, S.E.; Ledoux, P.; Evangelista, C.; Kim, I.F.; Tomashevsky, M.; Marshall, K.A.; Phillippy, K.H.; Sherman, P.M.; Holko, M.; et al. NCBI GEO: Archive for functional genomics data sets-update. Nucleic Acids Res. 2013, 41, D991–D995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simon, R.; Lam, A.; Li, M.C.; Ngan, M.; Menenzes, S.; Zhao, Y. Analysis of gene expression data using BRB-ArrayTools. Cancer Inform. 2007, 3, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Babicki, S.; Arndt, D.; Marcu, A.; Liang, Y.; Grant, J.R.; Maciejewski, A.; Wishart, D.S. Heatmapper: Web-enabled heat mapping for all. Nucleic Acids Res. 2016, 44, W147–W153. [Google Scholar] [CrossRef] [PubMed]
- Dennis, G., Jr.; Sherman, B.T.; Hosack, D.A.; Yang, J.; Gao, W.; Lane, H.C.; Lempicki, R.A. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 2003, 4, R60. [Google Scholar] [CrossRef] [Green Version]
- Croft, D.; O’Kelly, G.; Wu, G.; Haw, R.; Gillespie, M.; Matthews, L.; Caudy, M.; Garapati, P.; Gopinath, G.; Jassal, B.; et al. Reactome: A database of reactions, pathways and biological processes. Nucleic Acids Res. 2011, 39, D691–D697. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Zhang, Y.; Yu, H.; Tian, R.; Wang, G.; Li, F. Identification of unique key genes and miRNAs in latent tuberculosis infection by network analysis. Mol. Immunol. 2019, 112, 103–114. [Google Scholar] [CrossRef] [PubMed]
- Alam, A.; Imam, N.; Ahmed, M.M.; Tazyeen, S.; Tamkeen, N.; Farooqui, A.; Malik, M.Z.; Ishrat, R. Identification and Classification of Differentially Expressed Genes and Network Meta-Analysis Reveals Potential Molecular Signatures Associated with Tuberculosis. Front. Genet. 2019, 10, 932. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.U.; Kumar, D.T.; Bithia, R.; Sankar, S.; Magesh, R.; Sidenna, M.; Doss, C.G.P.; Zayed, H. Analysis of Differentially Expressed Genes and Molecular Pathways in Familial Hypercholesterolemia Involved in Atherosclerosis: A Systematic and Bioinformatics Approach. Front. Genet. 2020, 11, 734. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.U.; Saleem, A.; Kumar, D.T.; Preethi, V.A.; Younes, S.; Zayed, H.; Tayubi, I.A.; Doss, C.G.P. A systemic approach to explore the mechanisms of drug resistance and altered signaling cascades in extensively drug-resistant tuberculosis. Adv. Protein Chem. Struct. Biol. 2021, 127, 343–364. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Franceschini, A.; Wyder, S.; Forslund, K.; Heller, D.; Huerta-Cepas, J.; Simonovic, M.; Roth, A.; Santos, A.; Tsafou, K.P.; et al. STRING v10: Protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015, 43, D447–D452. [Google Scholar] [CrossRef] [PubMed]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Kutmon, M.; Kelder, T.; Mandaviya, P.; Evelo, C.T.; Coort, S.L. CyTargetLinker: A cytoscape app to integrate regulatory interactions in network analysis. PLoS ONE 2013, 8, e82160. [Google Scholar] [CrossRef]
- Bindea, G.; Galon, J.; Mlecnik, B. CluePedia Cytoscape plugin: Pathway insights using integrated experimental and in silico data. Bioinformatics 2013, 29, 661–663. [Google Scholar] [CrossRef] [PubMed]
- Berry, M.P.; Graham, C.M.; McNab, F.W.; Xu, Z.; Bloch, S.A.; Oni, T.; Wilkinson, K.; Banchereau, R.; Skinner, J.; Wilkinson, R.; et al. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 2010, 466, 973–977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smyth, G.K. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 2004, 3, 1–25. [Google Scholar] [CrossRef]
- Maertzdorf, J.; Ota, M.; Repsilber, D.; Mollenkopf, H.J.; Weiner, J.; Hill, P.C.; Kaufmann, S.H. Functional correlations of pathogenesis-driven gene expression signatures in tuberculosis. PLoS ONE 2011, 6, e26938. [Google Scholar] [CrossRef]
- Warsinske, H.; Vashisht, R.; Khatri, P. Host-response-based gene signatures for tuberculosis diagnosis: A systematic comparison of 16 signatures. PLoS Med. 2019, 16, e1002786. [Google Scholar] [CrossRef] [Green Version]
- Lesho, E.; Forestiero, F.J.; Hirata, M.H.; Hirata, R.D.; Cecon, L.; Melo, F.F.; Paik, S.H.; Murata, Y.; Ferguson, E.W.; Wang, Z.; et al. Transcriptional responses of host peripheral blood cells to tuberculosis infection. Tuberculosis 2011, 91, 390–399. [Google Scholar] [CrossRef]
- Estévez, O.; Anibarro, L.; Garet, E.; Pallares, Á.; Barcia, L.; Calviño, L.; Maueia, C.; Mussá, T.; Fdez-Riverola, F.; Glez-Peña, D.; et al. An RNA-seq Based Machine Learning Approach Identifies Latent Tuberculosis Patients with an Active Tuberculosis Profile. Front. Immunol. 2020, 11, 1470. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Shen, H.; Huang, H.; Yang, R.; Yao, L. Impairment of Wnt/β-catenin signaling in blood cells of patients with severe cavitary pulmonary tuberculosis. PLoS ONE 2017, 12, e0172549. [Google Scholar] [CrossRef]
- Cliff, J.M.; Kaufmann, S.H.; McShane, H.; van Helden, P.; O’Garra, A. The human immune response to tuberculosis and its treatment: A view from the blood. Immunol. Rev. 2015, 264, 88–102. [Google Scholar] [CrossRef] [PubMed]
- Maertzdorf, J.; Repsilber, D.; Parida, S.K.; Stanley, K.; Roberts, T.; Black, G.; Walzl, G.; Kaufmann, S.H. Human gene expression profiles of susceptibility and resistance in tuberculosis. Genes Immun. 2011, 12, 15–22. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.H.; Liu, H.; Ge, B. Innate immunity in tuberculosis: Host defense vs pathogen evasion. Cell. Mol. Immunol. 2017, 14, 963–975. [Google Scholar] [CrossRef] [PubMed]
- Guilliams, M.; Bruhns, P.; Saeys, Y.; Hammad, H.; Lambrecht, B.N. The function of Fcγ receptors in dendritic cells and macrophages. Nat. Rev. Immunol. 2014, 14, 94–108. [Google Scholar] [CrossRef] [PubMed]
- Alemán, M.; Beigier-Bompadre, M.; Borghetti, C.; de la Barrera, S.; Abbate, E.; Isturiz, M.; Sasiain, M.C. Activation of peripheral blood neutrophils from patients with active advanced tuberculosis. Clin. Immunol. 2001, 100, 87–95. [Google Scholar] [CrossRef]
- Wilson, G.J.; Marakalala, M.J.; Hoving, J.C.; van Laarhoven, A.; Drummond, R.A.; Kerscher, B.; Keeton, R.; van de Vosse, E.; Ottenhoff, T.H.; Plantinga, T.S.; et al. The C-type lectin receptor CLECSF8/CLEC4D is a key component of anti-mycobacterial immunity. Cell Host Microbe 2015, 17, 252–259. [Google Scholar] [CrossRef] [Green Version]
- Singer, B.B.; Opp, L.; Heinrich, A.; Schreiber, F.; Binding-Liermann, R.; Berrocal-Almanza, L.C.; Heyl, K.A.; Müller, M.M.; Weimann, A.; Zweigner, J.; et al. Soluble CEACAM8 interacts with CEACAM1 inhibiting TLR2-triggered immune responses. PLoS ONE 2014, 9, e94106. [Google Scholar] [CrossRef]
- Hornung, V.; Ablasser, A.; Charrel-Dennis, M.; Bauernfeind, F.; Horvath, G.; Caffrey, D.R.; Latz, E.; Fitzgerald, K.A. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 2009, 458, 514–518. [Google Scholar] [CrossRef] [Green Version]
- Parker, D.; Prince, A. Innate immunity in the respiratory epithelium. Am. J. Respir. Cell Mol. Biol. 2011, 45, 189–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gopalakrishnan, A.; Salgame, P. Toll-like receptor 2 in host defense against Mycobacterium tuberculosis: To be or not to be-that is the question. Curr. Opin. Immunol. 2016, 42, 76–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warsinske, H.C.; Rao, A.M.; Moreira, F.; Santos, P.; Liu, A.B.; Scott, M.; Malherbe, S.T.; Ronacher, K.; Walzl, G.; Winter, J.; et al. Assessment of Validity of a Blood-Based 3-Gene Signature Score for Progression and Diagnosis of Tuberculosis, Disease Severity, and Treatment Response. JAMA Netw. Open 2018, 1, e183779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prada-Medina, C.A.; Fukutani, K.F.; Pavan Kumar, N.; Gil-Santana, L.; Babu, S.; Lichtenstein, F.; West, K.; Sivakumar, S.; Menon, P.A.; Viswanathan, V.; et al. Systems Immunology of Diabetes-Tuberculosis Comorbidity Reveals Signatures of Disease Complications. Sci. Rep. 2017, 7, 1999. [Google Scholar] [CrossRef] [PubMed]
- Gliddon, H.D.; Kaforou, M.; Alikian, M.; Habgood-Coote, D.; Zhou, C.; Oni, T.; Anderson, S.T.; Brent, A.J.; Crampin, A.C.; Eley, B.; et al. Identification of Reduced Host Transcriptomic Signatures for Tuberculosis Disease and Digital PCR-Based Validation and Quantification. Front. Immunol. 2021, 12, 637164. [Google Scholar] [CrossRef]
(A) | ||||
S.No | Gene | Probset ID | Mean ± SD Fold Change | p-Value |
1 | FCGR1A | ILMN_2176063 | 8.20 ± 1.14 | 1 × 10−7 |
2 | FCGR1B | ILMN_2391051 | 9.80 ± 2.80 | 1 × 10−7 |
3 | FCGR1C | ILMN_3247506 | 6.11 ± 2.24 | 1 × 10−7 |
4 | BATF2 | ILMN_1690241 | 12.4 ± 2.39 | 1 × 10−7 |
5 | GBP1 | ILMN_2148785 | 3.63 ± 0.32 | 1 × 10−7 |
6 | ANKRD22 | ILMN_1799848 | 10.25 ± 3.34 | 1 × 10−7 |
7 | GBP5 | ILMN_2114568 | 3.53 ± 1.03 | 1 × 10−7 |
8 | AIM2 | ILMN_1681301 | 4.10 ± 0.22 | 1 × 10−7 |
9 | GBP6 | ILMN_1756953 | 7.43 ± 2.82 | 1 × 10−7 |
10 | CASP4 | ILMN_1778059 | 4.40 ± 1.89 | 1 × 10−7 |
(B) | ||||
S.No | Gene | Probset ID | Mean ± SD Fold Change | p-Value |
1 | NDRG2 | ILMN_2361603 | 2.17 ± 0.00 | 1 × 10−7 |
2 | KLF12 | ILMN_1762801 | 2.77 ± 0.00 | 1.4 × 10−6 |
3 | ANO9 | ILMN_1798679 | 4.05 ± 0.68 | 1 × 10−7 |
4 | CD79A | ILMN_1659227 | 3.80 ± 0.50 | 1 × 10−7 |
5 | FCGBP | ILMN_2302757 | 3.64 ± 0.28 | 1 × 10−7 |
6 | GZMK | ILMN_1710734 | 2.22 ± 0.13 | 1 × 10−7 |
7 | CXCR3 | ILMN_1797975 | 2.27 ± 0.07 | 1 × 10−7 |
8 | MIEF2 | ILMN_1815923 | 2.06 ± 0.44 | 4.2 × 10−6 |
9 | CXCR5 | ILMN_2337928 | 2.86 ± 0.23 | 1 × 10−7 |
10 | CD27 | ILMN_1688959 | 2.15 ± 0.32 | 1 × 10−7 |
S.No | Term/Pathway | p Value | Genes |
---|---|---|---|
GENE ONTOLOGY | |||
1 | GO:0045087 ~ innate immune response | 1.6 × 10−10 | CLEC4D, JAK2, NAIP, AIM2, CASP4, CAMP, C1QB, C1QC, CR1, DEFA1B, DEFA3, DEFA4, IL27, SLPI, SERPING1, and TLR2 |
2 | GO:0006955 ~ immune response | 1 × 10−6 | CD274, FCAR, FCGR2C, FCGR1A, FCGR1B, AIM2, CEACAM,8, C1QC, DEFA1B, GBP6, SLPI, and TLR2 |
3 | GO:0050900 ~ leukocyte migration | 1 × 10−5 | CD177, CEACAM1, CEACAM6, CEACAM8, GAS6, ITGB3, and SELP |
4 | GO:0019731 ~ antibacterial humoral response | 3 × 10−5 | CAMP, DEFA1B, DEFA3, DEFA4, and SLPI |
5 | GO:0042742 ~ defense response to bacterium | 3.2 × 10−4 | CLEC4D, ANXA3, CAMP, DEFA3, GBP6, and HP |
6 | GO:0050830 ~ defense response to Gram-positive bacterium | 4.1 × 10−4 | CAMP, DEFA1B, DEFA3, DEFA4, and TLR2 |
7 | GO:0002576 ~ platelet degranulation | 8.5 × 10−4 | GAS6, ITGB3, MMRN1, SELP, and SERPING1 |
8 | GO:0006954 ~ inflammatory response | 9.1 × 10−4 | NAIP, TNFAIP6, AIM2, CASP4, GBP5, IL27, SELP, and TLR2 |
9 | GO:0031640 ~ killing of cells of other organism | 0.0014 | DEFA1B, DEFA3, and DEFA4 |
10 | GO:0042981 ~ regulation of apoptotic process | 0.0018 | JAK2, CASP4, CASP5, CARD16, CARD17, and OLFM4 |
KEGG PATHWAY | |||
1 | has05150:Staphylococcus aureus infection | 3 × 10−6 | FCAR, FCGR2C, FCGR1A, C1QB, C1QC, and SELP |
2 | has05140:Leishmaniasis | 1 × 10−5 | FCGR2C, FCGR1A, JAK2, CR1, MAPK14, and TLR2 |
3 | has05152:Tuberculosis | 9.4 × 10−5 | FCGR2C, FCGR1A, CAMP, CR1, MAPK14, and TLR2 |
4 | has05322:Systemic lupus erythematosus | 0.0025 | FCGR1A, C1QB, C1QC, HIST1H4H, and HIST2H2AB |
5 | has04610:Complement and coagulation cascades | 0.0032 | C1QB, C1QC, CR1, and SERPING1 |
6 | has04145:Phagosome | 0.0038 | FCAR, FCGR2C, FCGR1A, ITGB3, and TLR2 |
7 | has05133:Pertussis | 0.0040 | C1QB, C1QC, MAPK14, and SERPING1 |
REACTOME PATHWAY | |||
1 | Neutrophil degranulation | 2 × 10−14 | CR1, TNFAIP6, DEFA4, MGST1, HP, MCEMP1, GPR84, OLFM4, MAPK14, FCAR, SELP, CEACAM1, CLEC4D, SLPI, CEACAM6, DEFA1B, CEACAM8, FCGR2C, CAMP, CD177, TLR2, and SIGLEC5 |
2 | Immune System | 5.3 × 10−12 | C1QB, CD274, TNFAIP6, ITGB3, MGST1, HPIL27, GPR84, IFIT3, FCAR, CASP4, DEFA1B JAK2, FCGR1A, GBP1, FCGR1B, CAMP, CD177 GBP6, GBP5, CR1, RSAD2, DEFA4, DEFA3, NRG1, MCEMP1, OLFM4, MAPK14, SELP, CEACAM1, CLEC4D, AIM2, SLPI, CEACAM6, SERPING1, CEACAM8, FCGR2C, TLR2, SIGLEC5, and C1QC |
3 | Innate Immune System | 6.8 × 10−10 | C1QB, TNFAIP6, MGST1, HP, GPR84, FCAR, CASP4, DEFA1B, FCGR1A, CAMP, CD177, CR1, DEFA4, DEFA3, MCEMP1, OLFM4, MAPK14, SELP, CEACAM1, CLEC4D, AIM2, SLPI, CEACAM6, SERPING1, CEACAM8, FCGR2C, TLR2, SIGLEC5, and C1QC |
4 | Interferon Signaling | 8.8 × 10−8 | GBP6, GBP5, RSAD2, JAK2, FCGR1A, GBP1, FCGR1B, and IFIT3 |
5 | Interferon γ signaling | 1.4 × 10−6 | GBP6, GBP5, FCGR1A, JAK2, GBP1, and FCGR1B |
6 | Fibronectin matrix formation | 1.7 × 10−5 | CEACAM1, CEACAM6, and CEACAM8 |
7 | RMTs methylate histone arginines | 3.7 × 10−5 | SMARCD3, HIST2H2AB, HIST1H4H, and JAK2 |
8 | α-defensins | 6.7 × 10−5 | DEFA4, DEFA3, and DEFA1B |
9 | Cell surface interactions at the vascular wall | 7.5 × 10−5 | SELP, CEACAM1, CEACAM6, ITGB3, CEACAM8, GAS6, and CD177 |
10 | Cytokine signaling in immune system | 3 × 10−4 | GBP6, GBP5, RSAD2, ITGB3, IL27, NRG1, JAK2, FCGR1A, MAPK14, GBP1, FCGR1B, and IFIT3 |
Scheme | Term/Pathway | p Value | Genes |
---|---|---|---|
GENE ONTOLOGY | |||
1 | GO:0016055 ~ Wnt signaling pathway | 0.0012 | NDRG2, WNT7A, CSNK1E, DKK3, TCF7, and TLE2 |
2 | GO:0030154 ~ cell differentiation | 0.0035 | BLK, FCRLA, NDRG2, SFMBT1, SPIB, FLNB, LAMA5, and MATK |
3 | GO:0006954 ~ inflammatory response | 0.0056 | CXCR3, CD27, GPR68, TNFRSF25, IL23A, NCR3, and NFATC3 |
4 | GO:0042127 ~ regulation of cell proliferation | 0.0081 | BLK, CD27, TNFRSF25, LAMA5, TCF7 |
5 | GO:0006955 ~ immune response | 0.0093 | CXCR5, CD27, CD8B, TNFRSF25, NCR3, VPREB3, and TCF7 |
6 | GO:0050853 ~ B cell receptor signaling pathway | 0.022 | BLK, CD19, and CD79A |
7 | GO:0007275 ~ multicellular organism development | 0.024 | TCL1A, TNFRSF25, DKK3, EBF1, ID3, PLXNA3, and PAQR7 |
KEGG PATHWAY | |||
1 | has05340: primary immunodeficiency | 4.9 × 10−4 | CD19, CD79A, CD8B, and TNFRSF13C |
2 | hsa04060: cytokine-cytokine receptor interaction | 7.6 × 10−4 | CXCR3, CXCR5, CD27, TNFRSF13C, TNFRSF25, IL11RA, and IL23A |
3 | hsa04640: hematopoietic cell lineage | 0.0074 | CD19, CD8B, IL11RA, and MS4A1 |
4 | has04360: Axon guidance | 0.020 | EPHA4, EPHB6, NFATC3, and PLXNA3 |
5 | hsa04310: Wnt signaling pathway | 0.025 | WNT7A, CSNK1E, NFATC3, and TCF7 |
6 | hsa04662: B cell receptor signaling pathway | 0.040 | CD19, CD79A, and NFATC3 |
REACTOME PATHWAY | |||
1 | Repression of WNT target genes | 0.0062 | TLE2, TCF7 |
2 | Loss of proteins required for interphase microtubule organization from the centrosome | 0.0153 | HAUS5, CSNK1E, and SFI1 |
3 | Loss of Nlp from mitotic centrosomes | 0.0153 | HAUS5, CSNK1E, and SFI1 |
4 | AURKA Activation by TPX2 | 0.0170 | HAUS5, CSNK1E, and SFI1 |
5 | TNFs bind their physiological receptors | 0.0204 | CD27, TNFRSF25 |
6 | Recruitment of mitotic centrosome proteins and complexes | 0.0216 | HAUS5, CSNK1E, and SFI1 |
7 | Centrosome maturation | 0.0230 | HAUS5, CSNK1E, and SFI1 |
8 | Regulation of PLK1 Activity at G2/M Transition | 0.0299 | HAUS5, CSNK1E, and SFI1 |
9 | Recruitment of NuMA to mitotic centrosomes | 0.0342 | HAUS5, CSNK1E, and SFI1 |
10 | Antigen activates B Cell Receptor (BCR) leading to generation of second messengers | 0.0397 | BLK, CD79A, and CD19 |
(A) | ||||
Custer | MCODE Score (Density X No. of Nodes) | Nodes | Edges | Node IDs |
1 | 7 | 7 | 21 | CLEC4D, GPR84, CEACAM8, and CEACAM1 CD177, FCAR, and MCEMP1 |
2 | 5 | 13 | 30 | CASP4, DEFA4, CAMP, FCGR1A, TLR2, CASP5, CR1, AIM2, SLPI, and NAIP OLFM4, FCGR2A, and HP |
(B) | ||||
Rank | Hub Nodes | MCC Score | ||
1 | CEACAM8 | 770 | ||
2 | FCAR | 750 | ||
3 | CLEC4D | 730 | ||
4 | CD177 | 723 | ||
5 | CEACAM1 | 722 | ||
6 | MCEMP1 | 720 | ||
7 | GPR84 | 720 | ||
8 | TLR2 | 76 | ||
9 | FCGR1A | 70 | ||
10 | CAMP | 62 | ||
11 | FCGR2A | 52 | ||
12 | OLFM4 | 50 | ||
13 | DEFA4 | 48 | ||
14 | HP | 43 | ||
15 | CASP4 | 38 | ||
16 | CASP5 | 38 | ||
17 | AIM2 | 33 | ||
18 | CR1 | 31 | ||
19 | SLPI | 30 | ||
20 | NAIP | 24 |
S.No. | Gene | Sensitivity (95% CI) | Specificity (95% CI) | AUC | 95% CI |
---|---|---|---|---|---|
1 | FCGR1B | 100% | 95% | 1 | 1.000 to 1.000 |
2 | ANKRD22 | 90% | 85% | 0.94 | 0.8689 to 1.000 |
3 | CARD17 | 85% | 90% | 0.96 | 0.9152 to 1.000 |
4 | IFITM3 | 85% | 85% | 0.85 | 0.7261 to 0.9789 |
5 | TNFAIP6 | 80% | 90% | 0.89 | 0.7831 to 1.000 |
6 | KLF12 | 75% | 80% | 0.84 | 0.7222 to 0.9678 |
7 | FCGBP | 80% | 80% | 0.9 | 0.8103 to 0.9947 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Natarajan, S.; Ranganathan, M.; Hanna, L.E.; Tripathy, S. Transcriptional Profiling and Deriving a Seven-Gene Signature That Discriminates Active and Latent Tuberculosis: An Integrative Bioinformatics Approach. Genes 2022, 13, 616. https://doi.org/10.3390/genes13040616
Natarajan S, Ranganathan M, Hanna LE, Tripathy S. Transcriptional Profiling and Deriving a Seven-Gene Signature That Discriminates Active and Latent Tuberculosis: An Integrative Bioinformatics Approach. Genes. 2022; 13(4):616. https://doi.org/10.3390/genes13040616
Chicago/Turabian StyleNatarajan, Sudhakar, Mohan Ranganathan, Luke Elizabeth Hanna, and Srikanth Tripathy. 2022. "Transcriptional Profiling and Deriving a Seven-Gene Signature That Discriminates Active and Latent Tuberculosis: An Integrative Bioinformatics Approach" Genes 13, no. 4: 616. https://doi.org/10.3390/genes13040616
APA StyleNatarajan, S., Ranganathan, M., Hanna, L. E., & Tripathy, S. (2022). Transcriptional Profiling and Deriving a Seven-Gene Signature That Discriminates Active and Latent Tuberculosis: An Integrative Bioinformatics Approach. Genes, 13(4), 616. https://doi.org/10.3390/genes13040616