Integrated Quantitative Neuro-Transcriptome Analysis of Several Brain Areas in Human Trisomy 21
Abstract
:1. Introduction
2. Methodology
2.1. Data Mining
2.2. Differential Gene Expression Quantification
2.3. Statistical Analysis
3. Results
3.1. Differences in the Global Gene Over-Expression in Brain in Chromosomes and Structures of Down Syndrome Individuals
3.2. Z-Ratio Correlations among Brain Structures and Age-Ranks
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SD | Down syndrome |
CBC | Cerebellar cortex |
DFC | Dorsolateral prefrontal cortex |
HIP | Hippocampus |
ID | Intellectual disability |
SAGE | Serial analysis of gene expression |
DNA | Deoxyribonucleic acid |
RNA | ribonucleic acid |
ATP | Adenosine triphosphate |
ROS | Reactive Oxygen Species |
OPC | Orbital prefrontal cortex |
VFC | Ventrolateral prefrontal cortex |
MFC | Medial prefrontal cortex |
S1C | Primary somatosensory cortex |
IPC | Inferior parietal cortex |
V1C | Primary visual cortex |
STC | Superior temporal cortex |
ITC | Inferior temporal cortex |
References
- Epstein, C.J. From down syndrome to the “human” in “human genetics” **previously presented at the annual meeting of The American Society of Human Genetics, in San Diego, on October 15, 2001. Am. J. Hum. Genet. 2002, 70, 300–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stoll, C.; Alembik, Y.; Dott, B.; Roth, M.P. Study of Down syndrome in 238,942 consecutive births. Ann. Genet. 1998, 41, 44–51. [Google Scholar] [PubMed]
- Sagi-Dain, L.; Peleg, A.; Sagi, S. First-trimester crown-rump length and risk of chromosomal aberrations—A systematic review and meta-analysis. Obstet. Gynecol. Surv. 2017, 72, 603–609. [Google Scholar] [CrossRef] [PubMed]
- Sparks, T.N.; Griffin, E.; Page, J.; Pilliod, R.; Shaffer, B.L.; Caughey, A.B. Down syndrome: Perinatal mortality risks with each additional week of expectant management. Prenat. Diagn. 2016, 36, 368–374. [Google Scholar] [CrossRef] [Green Version]
- Hassold, T.; Sherman, S. Down syndrome: Genetic recombination and the origin of the extra chromosome 21. Clin. Genet. 2000, 57, 95–100. [Google Scholar] [CrossRef]
- Ramírez, N.J.; Belalcázar, H.M.; Yunis, J.J.; Quintero, L.N.; Arboleda, G.H.; Arboleda, H. Parental origin, nondisjunction, and recom-bination of the extra chromosome 21 in Down syndrome: A study in a sample of the Colombian population. Biomedica 2007, 27, 141–148. [Google Scholar] [CrossRef] [Green Version]
- Lott, I.T. Neurological phenotypes for Down syndrome across the life span. Prog. Brain Res. 2012, 197, 101–121. [Google Scholar] [CrossRef] [Green Version]
- Edgin, J.O.; Mason, G.M.; Allman, M.J.; Capone, G.T.; DeLeon, I.; Maslen, C.; Reeves, R.H.; Sherman, S.L.; Nadel, L. Development and validation of the Arizona Cognitive Test Battery for Down syndrome. J. Neurodev. Disord. 2010, 2, 149–164. [Google Scholar] [CrossRef] [Green Version]
- Roper, R.J.; Reeves, R.H. Understanding the Basis for Down Syndrome Phenotypes. PLoS Genet. 2006, 2, e50. [Google Scholar] [CrossRef] [Green Version]
- Gardiner, K.; Herault, Y.; Lott, I.T.; Antonarakis, S.E.; Reeves, R.H.; Dierssen, M. Down syndrome: From understanding the neurobiology to therapy. J. Neurosci. 2010, 30, 14943–14945. [Google Scholar] [CrossRef] [Green Version]
- Roizen, N.J.; Patterson, D. Down’s syndrome. Lancet 2003, 361, 1281–1289. [Google Scholar] [CrossRef]
- Pritchard, M.A.; Kola, I. The “gene dosage effect” hypothesis versus the “amplified developmental instability” hypothesis in Down syndrome. Mol. Biol. Down Syndr. 1999, 57, 293–303. [Google Scholar]
- Graison, E.A.Y.; Aubert, J.; Dauphinot, L.; Rivals, I.; Prieur, M.; Golfier, G.; Rossier, J.; Personnaz, L.; Créau, N.; Bléhaut, H.; et al. Classification of human chromosome 21 gene-expression variations in down syndrome: Impact on disease phenotypes. Am. J. Hum. Genet. 2007, 81, 475–491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saran, N.G.; Pletcher, M.T.; Natale, J.E.; Cheng, Y.; Reeves, R.H. Global disruption of the cerebellar transcriptome in a Down syndrome mouse model. Hum. Mol. Genet. 2003, 12, 2013–2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vilardell, M.; Rasche, A.; Thormann, A.; Maschke-Dutz, E.; A Pérez-Jurado, L.; Lehrach, H.; Herwig, R. Meta-analysis of heterogeneous Down Syndrome data reveals consistent genome-wide dosage effects related to neurological processes. BMC Genom. 2011, 12, 229. [Google Scholar] [CrossRef] [Green Version]
- Kahlem, P. Gene-dosage effect on chromosome 21 transcriptome in trisomy 21: Implication in Down syndrome cognitive dis-orders. Behav. Genet. 2006, 36, 416–428. [Google Scholar] [CrossRef]
- Korenberg, J.R. Molecular mapping of the Down syndrome phenotype. Prog. Clin. Biol. Res. 1990, 360, 105–115. [Google Scholar]
- Lockstone, H.; Harris, L.; Swatton, J.; Wayland, M.; Holland, A.; Bahn, S. Gene expression profiling in the adult Down syndrome brain. Genomics 2007, 90, 647–660. [Google Scholar] [CrossRef] [Green Version]
- Prandini, P.; Deutsch, S.; Lyle, R.; Gagnebin, M.; Vivier, C.D.; Delorenzi, M.; Gehrig, C.; Descombes, P.; Sherman, S.; Bricarelli, F.D.; et al. Natural gene-expression variation in down syndrome modulates the outcome of gene-dosage imbalance. Am. J. Hum. Genet. 2007, 81, 252–263. [Google Scholar] [CrossRef] [Green Version]
- Volk, M.; Maver, A.; Lovrečić, L.; Juvan, P.; Peterlin, B. Expression signature as a biomarker for prenatal diagnosis of trisomy 21. PLoS ONE 2013, 8, e74184. [Google Scholar] [CrossRef] [Green Version]
- Kong, X.; Liu, N.; Xu, X. Bioinformatics analysis of biomarkers and transcriptional factor motifs in Down syndrome. Braz. J. Med. Biol. Res. 2014, 47, 834–841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, J.; Zhang, Z.; Ren, S.; Zong, Y.; Kong, X. Co-expression network analysis of Down’s syndrome based on microarray data. Exp. Ther. Med. 2016, 12, 1503–1508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Borel, C.; Li, L.; Müller, T.; Williams, E.; Germain, P.-L.; Buljan, M.; Sajic, T.; Boersema, P.J.; Shao, W.; et al. Systematic proteome and proteostasis profiling in human Trisomy 21 fibroblast cells. Nat. Commun. 2017, 8, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Letourneau, A.; Santoni, F.A.; Bonilla, X.; Sailani, M.R.; Gonzalez, D.; Kind, J.; Chevalier, C.; Thurman, R.; Sandstrom, R.S.; Hibaoui, Y.; et al. Domains of genome-wide gene expression dysregulation in Down’s syndrome. Nature 2014, 508, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, K.D.; Lewis, H.C.; Hill, A.A.; Pandey, A.; Jackson, L.P.; Cabral, J.; Smith, K.P.; Liggett, L.A.; Gomez, E.B.; Galbraith, M.; et al. Trisomy 21 consistently activates the interferon response. eLife 2016, 5, e16220. [Google Scholar] [CrossRef] [PubMed]
- Antonarakis, S.E. Down syndrome and the complexity of genome dosage imbalance. Nat. Rev. Genet. 2017, 18, 147–163. [Google Scholar] [CrossRef]
- Olmos-Serrano, J.L.; Kang, H.J.; Tyler, W.A.; Silbereis, J.C.; Cheng, F.; Zhu, Y.; Pletikos, M.; Jankovic-Rapan, L.; Cramer, N.; Galdzicki, Z.; et al. Down Syndrome Developmental Brain Transcriptome Reveals Defective Oligodendrocyte Differentiation and Myelination. Neuron 2016, 89, 1208–1222. [Google Scholar] [CrossRef] [Green Version]
- Cheadle, C.; Vawter, M.P.; Freed, W.J.; Becker, K.G. Analysis of Microarray Data Using Z Score Transformation. J. Mol. Diagn. 2003, 5, 73–81. [Google Scholar] [CrossRef] [Green Version]
- Labbadia, J.; Morimoto, R.I. The Biology of Proteostasis in Aging and Disease. Annu. Rev. Biochem. 2015, 84, 435–464. [Google Scholar] [CrossRef] [Green Version]
- Kahlem, P.; Sultan, M.; Herwig, R.; Steinfath, M.; Balzereit, D.; Eppens, B.; Saran, N.G.; Pletcher, M.T.; South, S.T.; Stetten, G.; et al. Transcript Level Alterations Reflect Gene Dosage Effects Across Multiple Tissues in a Mouse Model of Down Syndrome. Genome Res. 2004, 14, 1258–1267. [Google Scholar] [CrossRef] [Green Version]
- Do, C.; Xing, Z.; Yu, Y.E.; Tycko, B. Trans-acting epigenetic effects of chromosomal aneuploidies: Lessons from Down syndrome and mouse models. Epigenomics 2017, 9, 189–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Hajj, N.; Dittrich, M.; Böck, J.; Kraus, T.F.J.; Nanda, I.; Müller, T.; Seidmann, L.; Tralau, T.; Galetzka, D.; Schneider, E.; et al. Epigenetic dysregulation in the developing Down syndrome cortex. Epigenetics 2016, 11, 563–578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valenti, D.; Braidy, N.; De Rasmo, D.; Signorile, A.; Rossi, L.; Atanasov, A.; Volpicella, M.; Henrion-Caude, A.; Nabavi, S.; Vacca, R. Mitochondria as pharmacological targets in Down syndrome. Free Radic. Biol. Med. 2018, 114, 69–83. [Google Scholar] [CrossRef] [PubMed]
- Di Domenico, F.; Coccia, R.; Cocciolo, A.; Murphy, M.P.; Cenini, G.; Head, E.; Butterfield, D.A.; Giorgi, A.; Schinina, M.E.; Mancuso, C.; et al. Impairment of proteostasis network in Down syndrome prior to the development of Alzheimer’s disease neuropathology: Redox proteomics analysis of human brain. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2013, 1832, 1249–1259. [Google Scholar] [CrossRef]
- Aivazids, S.; Coughlan, C.M.; Rauniyar, A.K.; Jiang, H.; Liggett, L.A.; MacLean, K.N.; Roede, J.R. The burden of trisomy 21 disrupts the proteostasis network in Down syndrome. PLoS ONE 2017, 12, e0176307. [Google Scholar] [CrossRef] [PubMed]
- Li, C.M.; Guo, M.; Salas, M.; Schupf, N.; Silverman, W.; Zigman, W.B.; Husain, S.; Warburton, D.; Thaker, H.; Tycko, B. Cell type-specific over-expression of chromosome 21 genes in fibroblasts and fetal hearts with trisomy 21. BMC Med. Genet. 2006, 7, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pagano, G.; Castello, G. Oxidative Stress and Mitochondrial Dysfunction in Down Syndrome. Adv. Exp. Med. Biol. 2012, 724, 291–299. [Google Scholar] [CrossRef]
- Izzo, A.; Mollo, N.; Nitti, M.; Paladino, S.; Calì, G.; Genesio, R.; Bonfiglio, F.; Cicatiello, R.; Barbato, M.; Sarnataro, V.; et al. Mitochondrial dysfunction in down syndrome: Molecular mechanisms and therapeutic targets. Mol. Med. 2018, 24, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Song, W.-J.; Chung, K.C. Function and regulation of Dyrk1A: Towards understanding down syndrome. Cell. Mol. Life Sci. 2009, 66, 3235–3240. [Google Scholar] [CrossRef]
- Wu, Y.; Song, W. Regulation of RCAN1 translation and its role in oxidative stress-induced apoptosis. FASEB J. 2013, 27, 208–221. [Google Scholar] [CrossRef]
- Piccoli, C.; Izzo, A.; Scrima, R.; Bonfiglio, F.; Manco, R.; Negri, R.; Quarato, G.; Cela, O.; Ripoli, M.; Prisco, M.; et al. Chronic pro-oxidative state and mitochondrial dysfunctions are more pronounced in fibroblasts from Down syndrome foeti with congenital heart defects. Hum. Mol. Genet. 2013, 22, 1218–1232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartley, M.G.; Marquardt, K.; Kirchhof, D.; Wilkins, H.M.; Patterson, D.; Linseman, D.A. Overexpression of Amyloid-β Protein Precursor Induces Mitochondrial Oxidative Stress and Activates the Intrinsic Apoptotic Cascade. J. Alzheimer’s Dis. 2012, 28, 855–868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Chromosome | Protein Coding Genes/Chromosome * | Protein Coding Genes Overexpressed in DS Brain/Chromosome | Percentage ** |
---|---|---|---|
1 | 2058 | 46 | 2.24 |
2 | 1309 | 23 | 1.76 |
3 | 1078 | 22 | 2.04 |
4 | 752 | 19 | 2.53 |
5 | 876 | 12 | 1.37 |
6 | 1048 | 29 | 2.77 |
7 | 989 | 7 | 0.71 |
8 | 677 | 21 | 3.10 |
9 | 786 | 12 | 1.53 |
10 | 733 | 20 | 2.73 |
11 | 1298 | 29 | 2.23 |
12 | 1034 | 30 | 2.90 |
13 | 327 | 9 | 2.75 |
14 | 830 | 15 | 1.81 |
15 | 613 | 7 | 1.14 |
16 | 873 | 18 | 2.06 |
17 | 1197 | 25 | 2.09 |
18 | 270 | 10 | 3.70 |
19 | 1472 | 22 | 1.49 |
20 | 544 | 14 | 2.57 |
21 | 234 | 35 | 14.96 |
22 | 488 | 6 | 1.23 |
X | 842 | 26 | 3.09 |
Y | 71 | 1 | 1.41 |
Structure | Number | Percentage |
---|---|---|
Brain * | 486 | 2.77 |
DFC | 601 | 3.43 |
OFC | 474 | 2.7 |
VFC | 418 | 2.38 |
ITC | 415 | 2.37 |
HIP | 426 | 2.43 |
CBC | 477 | 2.72 |
GO_ID | Description | p-Value Bonferroni |
---|---|---|
9987 | DNA demethylation | 1.72 × 10−19 |
43170 | histone deacetylation | 3.45 × 10−17 |
44260 | histone H3-K4 methylation | 6.94 × 10−16 |
19538 | protein phosphorylation | 3.03 × 10−13 |
44267 | protein polyubiquitination | 1.71 × 10−12 |
44237 | ATP synthesis coupled electron transport | 1.98 × 10−12 |
8152 | 5-methylcytosine catabolic process | 5.44 × 10−11 |
6464 | MAPK cascade | 2.69 × 10−10 |
43687 | post-translational protein acetylation | 4.42 × 10−10 |
43412 | histone H3-K9 deacetylation | 7.87 × 10−10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Ortiz, A.; Montoya-Villegas, J.C.; García-Vallejo, F.; Mina-Paz, Y. Integrated Quantitative Neuro-Transcriptome Analysis of Several Brain Areas in Human Trisomy 21. Genes 2022, 13, 628. https://doi.org/10.3390/genes13040628
Rodríguez-Ortiz A, Montoya-Villegas JC, García-Vallejo F, Mina-Paz Y. Integrated Quantitative Neuro-Transcriptome Analysis of Several Brain Areas in Human Trisomy 21. Genes. 2022; 13(4):628. https://doi.org/10.3390/genes13040628
Chicago/Turabian StyleRodríguez-Ortiz, Alejandra, Julio César Montoya-Villegas, Felipe García-Vallejo, and Yecid Mina-Paz. 2022. "Integrated Quantitative Neuro-Transcriptome Analysis of Several Brain Areas in Human Trisomy 21" Genes 13, no. 4: 628. https://doi.org/10.3390/genes13040628
APA StyleRodríguez-Ortiz, A., Montoya-Villegas, J. C., García-Vallejo, F., & Mina-Paz, Y. (2022). Integrated Quantitative Neuro-Transcriptome Analysis of Several Brain Areas in Human Trisomy 21. Genes, 13(4), 628. https://doi.org/10.3390/genes13040628