Technological Advances: CEBPA and FLT3 Internal Tandem Duplication Mutations Can be Reliably Detected by Next Generation Sequencing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical Specimens
2.2. TruSight Myeloid (TSM) Panel
2.3. VariantPlex Myeloid Panel
2.4. Myeloid Solution Panel
2.5. SureSeq Panel
3. Results
3.1. Panel Content Comparision
3.2. Workflow Comparision
3.3. Depth of Coverage Comparision
3.4. Coverage Uniformity Comparision
3.5. Variant Detection Comparison
3.6. BAM Tracks Comparison
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Korn, C.; Mendez-Ferrer, S. Myeloid malignancies and the microenvironment. Blood 2017, 129, 811–822. [Google Scholar] [CrossRef] [Green Version]
- Arber, D.A.; Orazi, A.; Hasserjian, R.; Thiele, J.; Borowitz, M.J.; Le Beau, M.M.; Bloomfield, C.D.; Cazzola, M.; Vardiman, J.W. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016, 127, 2391–2405. [Google Scholar] [CrossRef] [PubMed]
- Tefferi, A.; Lasho, T.L.; Tischer, A.; Wassie, E.A.; Finke, C.M.; Belachew, A.A.; Ketterling, R.P.; Hanson, C.A.; Pardanani, A.D. The prognostic advantage of CALReticulin mutations in myelofibrosis might be confined to type 1 or type 1-like CALR variants. Blood 2014, 124, 2465–2466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caponetti, G.C.; Bagg, A. Mutations in myelodysplastic syndromes: Core abnormalities and CHIPping away at the edges. Int. J. Lab. Hematol. 2020, 42, 671–684. [Google Scholar] [CrossRef] [PubMed]
- Sabour, L.; Sabour, M.; Ghorbian, S. Clinical Applications of Next-Generation Sequencing in Cancer Diagnosis. Pathol. Oncol. Res. 2017, 23, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Dohner, H.; Estey, E.; Grimwade, D.; Amadori, S.; Appelbaum, F.R.; Büchner, T.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Larson, R.A.; et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 2017, 129, 424–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yanada, M.; Matsuo, K.; Suzuki, T.; Kiyoi, H.; Naoe, T. Prognostic significance of FLT3 internal tandem duplication and tyrosine kinase domain mutations for acute myeloid leukemia: A meta-analysis. Leukemia 2005, 19, 1345–1349. [Google Scholar] [CrossRef] [Green Version]
- Daver, N.; Venugopal, S.; Ravandi, F. FLT3 mutated acute myeloid leukemia: 2021 treatment algorithm. Blood Cancer J. 2021, 11, 104. [Google Scholar] [CrossRef] [PubMed]
- Pastore, F.; Kling, D.; Hoster, E.; Dufour, A.; Konstandin, N.P.; Schneider, S.; Sauerland, M.C.; Berdel, W.E.; Buechner, T.; Woermann, B.; et al. Long-term follow-up of cytogenetically normal CEBPA-mutated AML. J. Hematol. Oncol. 2014, 7, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bacher, U.; Schnittger, S.; Macijewski, K.; Grossmann, V.; Kohlmann, A.; Alpermann, T.; Kowarsch, A.; Nadarajah, N.; Kern, W.; Haferlach, C.; et al. Multilineage dysplasia does not influence prognosis in CEBPA-mutated AML, supporting the WHO proposal to classify these patients as a unique entity. Blood 2012, 119, 4719–4722. [Google Scholar] [CrossRef] [PubMed]
- Grossmann, V.; Schnittger, S.; Schindela, S.; Klein, H.U.; Eder, C.; Dugas, M.; Kern, W.; Haferlach, T.; Haferlach, C.; Kohlmann, A. Strategy for robust detection of insertions, deletions, and point mutations in CEBPA, a GC-rich content gene, using 454 next-generation deep-sequencing technology. J. Mol. Diagn. 2011, 13, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Behdad, A.; Weigelin, H.C.; Elenitoba-Johnson, K.S.; Betz, B.L. A clinical grade sequencing-based assay for CEBPA mutation testing: Report of a large series of myeloid neoplasms. J. Mol. Diagn. 2015, 17, 76–84. [Google Scholar] [CrossRef]
- Aguilera-Diaz, A.; Vazquez, I.; Ariceta, B.; Mañú, A.; Blasco-Iturri, Z.; Palomino-Echeverría, S.; José Larrayoz, M.; García-Sanz, R.; Prieto-Conde, M.I.; del Carmen Chillón, M.; et al. Assessment of the clinical utility of four NGS panels in myeloid malignancies. Suggestions for NGS panel choice or design. PLoS ONE 2020, 15, e0227986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahluwalia, M.; Mondal, A.; Sahajpal, N.; Njau, A.; Jones, K.; Ahluwalia, P.K.; Jilani, Y.; Kolhe, R. Utility and validation of a comprehensive cost-effective targeted DNA panel including FLT3-ITDs, CALR and CEBPA on a next-generation sequencing (NGS) platform for hematological malignancies. Am. Assoc. Cancer Res. 2020, 80, 816. [Google Scholar]
- Graham Speight, L.G.; Uddin, E.; Cross, N. The Accurate Detection by Next-Generation Sequencing (NGS) of Difficult to Sequence Genes (CALR, CEBPA, FLT3) Associated with Myeloid Disorders Using a Hybridisation-Based Enrichment Approach. Cancer Genet. 2017, 214, 50–51. [Google Scholar] [CrossRef]
- Muzzey, D.; Evans, E.A.; Lieber, C. Understanding the Basics of NGS: From Mechanism to Variant Calling. Curr. Genet. Med. Rep. 2015, 3, 158–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yohe, S.; Thyagarajan, B. Review of Clinical Next-Generation Sequencing. Arch. Pathol. Lab. Med. 2017, 141, 1544–1557. [Google Scholar] [CrossRef] [Green Version]
- Ng, C.W.S.; Kosmo, B.; Lee, P.L.; Lee, C.K.; Guo, J.; Chen, Z.; Chiu, L.; Lee, H.K.; Ho, S.; Zhou, J.; et al. CEBPA mutational analysis in acute myeloid leukaemia by a laboratory-developed next-generation sequencing assay. J. Clin. Pathol. 2018, 71, 522–531. [Google Scholar] [CrossRef] [PubMed]
- Van Deusen, B.; Bessette, M.; Johnson, L.; Berlin, A.; Banos, M.; Griffin, L.; Reckase, E.; Stahl, J.; Licon, A.; Myers, J.W.; et al. Internal tandem duplications in FLT3 detected by anchored multiplex PCR and next-generation sequencing. Ann. Oncol. 2016, 27, vi403. [Google Scholar] [CrossRef]
- Travaglini, S.; Angelini, D.F.; Alfonso, V.; Guerrera, G.; Lavorgna, S.; Divona, M.; Nardozza, A.M.; Consalvo, M.I.; Fabiani, E.; De Bardi, M.; et al. Characterization of FLT3-ITD(mut) acute myeloid leukemia: Molecular profiling of leukemic precursor cells. Blood Cancer J. 2020, 10, 85. [Google Scholar] [CrossRef]
- Kim, Y.H.; Song, Y.; Kim, J.K.; Kim, T.M.; Sim, H.W.; Kim, H.L.; Jang, H.; Kim, Y.-W.; Hong, K.-M. False-negative errors in next-generation sequencing contribute substantially to inconsistency of mutation databases. PLoS ONE 2019, 14, e0222535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuderer, N.M.; Burton, K.A.; Blau, S.; Rose, A.L.; Parker, S.; Lyman, G.H.; Blau, C.A. Comparison of 2 Commercially Available Next-Generation Sequencing Platforms in Oncology. JAMA Oncol. 2017, 3, 996–998. [Google Scholar] [CrossRef] [PubMed]
Gene | TruSight Myeloid | VariantPlex | SureSeq | Myeloid Solution | Exon/s Selected |
---|---|---|---|---|---|
ASXL1 | (12) | (1–13) | (12) | (9,11,12,14) | 12 |
NPM1 | (12) | (12) | (12) | (11,12) | 12 |
MPL | (10) | (10,12) | (10) | (10) | 10 |
CALR | (9) | (8,9) | (9) | (9) | 9 |
IDH1 | (4) | (3,4) | (4) | (4) | 4 |
IDH2 | (4) | (4,6) | (4–5) | (4) | 4 |
JAK2 | (12,14) | (12–16,19–25) | (12,14) | all | 12,14 |
RUNX1 | all | (1–3,5–9) | all | all | 6 |
KRAS | (2,3) | (2–4) | (2,3) | (2,3) | 2,3 |
NRAS | (2,3) | (2–5) | (2,3) | (2,3) | 2,3 |
U2AF1 | (2,6) | (2,6,7) | (2,6) | (2,6) | 2,6 |
TP53 | (2–11) | (1–11) | (2–11) | (2–11) | 5–8,11 |
TET2 | (3–11) | (3–11) | (2–11) | all | 3,10,11 |
WT1 | (7,9) | (1–9) | (7,9) | (6–10) | 7,9 |
FLT3 | (14,15,20) | (8–17,19–21) | (13–15,20) | (13–15,20) | 14,15,20 |
KIT | (2,8–11,13,17) | (1,2,5,8–15,17,18) | (2,8–11,13,17) | (2,8–11,13,17,18) | 9,11,13,17 |
CEBPA | 1 | 1 | 1 | 1 | 1 |
DNMT3A | all | all | all | all | 16,18,23 |
ETV6 | all | all | all | all | 1,5,6 |
ABL1 | (4–6) | (4–10) | (4–6) | (4–9) | NS-ROI * |
ANKRD26 | 1 (c.-113-c.-134) | NS-NC ** | |||
ATRX | (8–10,17–31) | (8–11,17–32) | (8–10,17–31) | NS-NC | |
BCOR | all | (2–15) | all | NS-NC | |
BCORL1 | all | all | all | NS-NC | |
BRAF | (15) | (3,10–13,15) | (15) | (15) | NS-ROI |
BTK | (15) | NS-NC | |||
CBL | (8,9) | (2–5,7–9,16) | (8,9) | (8,9) | NS-ROI |
CBLB | (9,10) | (3,9,10) | NS-NC | ||
CBLC | (9,10) | (9,10) | NS-NC | ||
CCND2 | (5) | NS-NC | |||
CDKN2A | all | all | all | NS-NC | |
CSF3R | (14–17) | (10,14–18) | (13–18) | all | NS-ROI |
CUX1 | all | (1–24) | NS-NC | ||
CXCR4 | (1,2) | NS-NC | |||
DCK | (2,3) | NS-NC | |||
DDX41 | (1–17) | NS-NC | |||
DHX15 | (3) | NS-NC | |||
ETNK1 | (3) | NS-NC | |||
EZH2 | all | (2–20) | all | all | NS-ROI |
FBXW7 | (9–11) | (1–11) | (9–11) | NS-NC | |
GATA1 | (2) | (2) | (2) | NS-NC | |
GATA2 | (2–6) | (2–6) | (2–6) | NS-NC | |
GNAS | (8,9) | (8–11) | (8–10) | NS-NC | |
HRAS | (2,3) | (2–4) | (2,3) | (2,3) | NS-ROI |
IKZF1 | all | (2–5,7) | all | NS-NC | |
JAK3 | (13) | (3,11,13,15,18,19) | (13) | NS-NC | |
KDM6A | all | all | NS-NC | ||
KMT2A | (1–36) | (5–8) | NS-NC | ||
LUC7L2 | (1–10) | NS-NC | |||
MAP2K1 | (2,3) | NS-NC | |||
MLL | (5–8) | NS-NC | |||
MYC | (1–3) | NS-NC | |||
MYD88 | (3–5) | (3–5) | (3–5) | NS-NC | |
NF1 | (1–57) | NS-NC | |||
NOTCH1 | (26–28,34) | (26–28,34,c.*370-c.*380) | (26–28,34) | NS-NC | |
PDGFRA | (12,14,18) | (12,14,15,18) | (12,14,18) | NS-NC | |
PHF6 | all | (2–10) | all | NS-NC | |
PPM1D | (6) | NS-NC | |||
PTEN | (5,7) | (1–9) | (5,7) | NS-NC | |
PTPN11 | (3,13) | (3,4,7,8,11–13) | (3,13) | (3,7–13) | NS-ROI |
RAD21 | all | (2–14) | NS-NC | ||
RBBP6 | (p.1444, p.1451, p.1569, p.1654, p.1673) | NS-NC | |||
SETBP1 | (4 partial) | (4 (p.799-p.950)) | (4) | (4) | NS-NC |
SF3B1 | (13–16) | (13–21) | (13–16) | (10–16) | NS-ROI |
SH2B3 | (2–8) | NS-NC | |||
SLC29A1 | (4,13) | NS-NC | |||
SMC1A | (2,11,16,17) | (1–25) | NS-NC | ||
SMC3 | (10,13,19,23,25,28) | (10,13,19,23,25,28) | NS-NC | ||
SRSF2 | (1) | (1,2) | (1) | (1) | NS-ROI |
STAG2 | all | (2–33) | NS-NC | ||
STAT3 | (20,21,32) | NS-NC | |||
U2AF2 | (1–12) | NS-NC | |||
XPO1 | (15,16,18) | NS-NC | |||
ZRSR2 | all | all | all | all | NS-ROI |
Library/Sequencing | TruSight Myeloid | VariantPlex | Myeloid Solution | SureSeq |
---|---|---|---|---|
Chemistry | Amplion Sequencing | Anchored Multiplex PCR | Hybridization Capture + post PCR | Hybridization Capture |
Preparation Time | 1.5 days | 2 days | 2 days | 2.5 days |
Customization | Not Available | Available | Available | Available |
Instrument | NextSeq | NextSeq | MiSeq | MiSeq |
Sequencing Cycles | 2 × 151 bp | 2 × 151 bp | 2 × 300 bp | 2 × 151 bp |
Sequencing Time | 27 h | 27 h | 65 h | 24 h |
GENE-EXON | TruSight Myeloid | VariantPlex | Myeloid Solution | SureSeq |
---|---|---|---|---|
ASXL1-E12 | non-uniform | non-uniform | uniform | non-uniform |
CALR-E9 | non-uniform | non-uniform | uniform | uniform |
CEBPA-E1 | non-uniform | non-uniform | non-uniform | non-uniform |
DNMT3A-E16 | uniform | non-uniform | non-uniform | uniform |
DNMT3A-E18 | non-uniform | non-uniform | uniform | uniform |
DNMT3A-E23 | non-uniform | non-uniform | non-uniform | uniform |
ETV6-E1 | non-uniform | non-uniform | uniform | non-uniform |
ETV6-E5 | non-uniform | non-uniform | non-uniform | uniform |
ETV6-E6 | non-uniform | non-uniform | uniform | uniform |
FLT3-E14 | non-uniform | non-uniform | uniform | non-uniform |
FLT3-E15 | non-uniform | non-uniform | uniform | non-uniform |
FLT3-E20 | non-uniform | non-uniform | uniform | uniform |
IDH1-E4 | non-uniform | non-uniform | uniform | uniform |
IDH2-E4 | uniform | non-uniform | uniform | uniform |
JAK2-E12 | non-uniform | uniform | non-uniform | uniform |
JAK2-E14 | uniform | non-uniform | uniform | non-uniform |
KIT-E9 | non-uniform | uniform | uniform | uniform |
KIT-E11 | non-uniform | non-uniform | uniform | uniform |
KIT-E13 | uniform | non-uniform | uniform | uniform |
KIT-E17 | non-uniform | non-uniform | non-uniform | uniform |
KRAS-E2 | non-uniform | non-uniform | uniform | uniform |
KRAS-E3 | uniform | uniform | non-uniform | uniform |
MPL-E10 | non-uniform | non-uniform | non-uniform | uniform |
NPM1-E12 | uniform | non-uniform | non-uniform | uniform |
NRAS-E2 | non-uniform | non-uniform | uniform | uniform |
NRAS-E3 | non-uniform | uniform | uniform | uniform |
RUNX1-E6 | uniform | non-uniform | uniform | uniform |
TET2-E3 | non-uniform | uniform | uniform | uniform |
TET2-E10 | uniform | non-uniform | uniform | uniform |
TET2-E11 | uniform | non-uniform | uniform | non-uniform |
TP53-E5 | uniform | non-uniform | uniform | uniform |
TP53-E6 | uniform | non-uniform | uniform | uniform |
TP53-E7 | non-uniform | non-uniform | uniform | non-uniform |
TP53-E8 | uniform | non-uniform | uniform | uniform |
TP53-E11 | uniform | non-uniform | uniform | non-uniform |
U2AF1-E2 | non-uniform | non-uniform | uniform | non-uniform |
U2AF1-E6 | non-uniform | non-uniform | uniform | uniform |
WT1-E7 | non-uniform | non-uniform | uniform | non-uniform |
WT1-E9 | non-uniform | non-uniform | non-uniform | uniform |
Total Uniform | 13 | 5 | 29 | 28 |
Sample | Gene | cDNA change | Protein Change | TSM | VP | MS | SS |
---|---|---|---|---|---|---|---|
S1 | FLT3 | c.2503G>T | p.D835Y | 0.44 | 0.46 | 0.46 | 0.42 |
S1 | WT1 | c.1048-2A>C | 0.93 | 0.94 | 0.91 | 0.91 | |
S1 | NPM1 | c.859_860insTCTG | p.W288Cfs | 0.17 | 0.29 | 0.37 | 0.29 |
S2 | DNMT3A | c.2645G>A | p.R693H | 0.46 | 0.45 | 0.46 | 0.44 |
S2 | FLT3 | c.1800_1801ins21 | p.D600_L601ins7 | 0.30 | 0.34 | 0.30 | 0.18 |
S2 | NPM1 | c.859_860insTCTG | p.W288Cfs | 0.10 | 0.40 | 0.35 | 0.44 |
S2 | U2AF1 | c.101C>A | p.S34Y | 0.44 | 0.43 | 0.47 | 0.38 |
S3 | CEBPA | c.890G>C | p.R297P | 0.39 | 0.41 | 0.36 | 0.44 |
S3 | FLT3 | ITD 48bp | ND | 0.08 | 0.06 | 0.09 | |
S4 | CSF3R | c.2134_2135insTT | p.H739Lfs*91 | 0.41 | 0.45 | 0.47 | 0.47 |
S4 | FLT3 | c.1803_1804ins18 | p.L601_K602ins6 | 0.07 | 0.33 | 0.43 | 0.23 |
S4 | TET2 | c.4524_4525insA | p.Q1510Tfs*68 | 0.32 | 0.42 | 0.47 | 0.40 |
S4 | TET2 | c.4716_4717insT | p.P1573Sfs*5 | 0.25 | 0.40 | 0.45 | 0.47 |
S4 | U2AF1 | c.101C>T | p.S34F | 0.44 | 0.45 | 0.42 | 0.42 |
S5 | DNMT3A | c.2285delG | p.G539Afs*17 | 0.99 | 0.98 | 0.96 | 0.92 |
S5 | IDH2 | c.515G>A | p.R172K | 0.51 | 0.48 | 0.48 | 0.45 |
S5 | FLT3 | ITD 45bp | ND | 0.42 | 0.51 | 0.53 | |
S6 | DNMT3A | c.2645G>A | p.R659H | 0.46 | 0.45 | 0.46 | 0.43 |
S6 | NPM1 | c.860_861insCTGC | p.W288Cfs | 0.27 | 0.39 | 0.38 | 0.35 |
S6 | TET2 | c.3479G>A | p.G1160E | 0.50 | 0.52 | 0.48 | 0.44 |
S6 | ZRSR2 | c.284C>T | p.A95V | 0.50 | 0.48 | 0.52 | 0.40 |
S6 | FLT3 | ITD 75bp | ND | 0.44 | 0.45 | 0.46 | |
S7 | DNMT3A | c.2128T>A | p.C710S | 0.29 | 0.14 | 0.16 | 0.16 |
S7 | FLT3 | c.1782_1783ins33 | p.F594_R595ins11 | 0.07 | 0.11 | 0.13 | 0.14 |
S8 | IDH2 | c.515G>A | p.R172K | 0.39 | 0.39 | 0.38 | 0.41 |
S8 | TP53 | c.838A>G | p.R280G | 0.61 | 0.67 | 0.58 | 0.59 |
S9 | ASXL1 | c.1926_1927insG | p.G646Wfs*12 | 0.10 | 0.05 | 0.09 | 0.11 |
S9 | ASXL1 | c.4120G>C | p.V1374L | 0.13 | 0.12 | 0.11 | 0.10 |
S9 | IDH2 | c.419G>A | p.R88Q | 0.12 | 0.10 | 0.13 | 0.10 |
S9 | RUNX1 | c.405G>T | p.R135S | 0.11 | 0.10 | 0.11 | 0.09 |
S9 | FLT3 | ITD 51bp | ND | 0.12 | 0.10 | 0.15 | |
S9 | SRSF2 | c.284_307del | p.P95_R102del | ND | 0.11 | 0.12 | 0.10 |
S10 | CEBPA | c.901G>A | p.D301N | 0.31 | 0.54 | 0.55 | 0.58 |
S10 | CEBPA | c.899G>A | p.R300H | 0.31 | 0.55 | 0.56 | 0.54 |
S11 | CEBPA | c.68_69insC | p.H24Afs*84 | 0.11 | 0.06 | 0.10 | 0.13 |
S12 | CEBPA | c.1020_1021insGC | p.I341Afs | 0.36 | 0.48 | 0.44 | 0.41 |
S12 | CEBPA | 573C>T | p.H191H | ND | 0.50 | 0.48 | 0.47 |
S12 | FLT3 | ITD 107bp | ND | 0.38 | 0.40 | 0.41 | |
S13 | CEBPA | c.939_940insAAG | p.K313_V314insK | 0.25 | 0.40 | 0.41 | 0.37 |
S13 | CEBPA | c.247del | p.Q83Sfs*77 | 0.39 | 0.42 | 0.40 | 0.41 |
S13 | TET2 | c.895G>T | p.D299Y | 0.48 | 0.51 | 0.50 | 0.46 |
S13 | TET2 | c.3949A>G | p.K1317E | 0.48 | 0.51 | 0.52 | 0.45 |
S14 | DNMT3A | c.2644C>T | p.R882C | 0.34 | 0.34 | 0.36 | 0.39 |
S14 | TP53 | c.832C>T | p.P258S | 0.54 | 0.49 | 0.56 | 0.54 |
S14 | CEBPA | c.539delC | p.P180fs*138 | ND | 0.34 | 0.33 | 0.34 |
S15 | CEBPA | c.383dupC | p.P128fs*161 | ND | 0.32 | 0.32 | 0.33 |
S15 | FLT3 | ITD 23bp | ND | 0.52 | 0.55 | 0.23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akabari, R.; Qin, D.; Hussaini, M. Technological Advances: CEBPA and FLT3 Internal Tandem Duplication Mutations Can be Reliably Detected by Next Generation Sequencing. Genes 2022, 13, 630. https://doi.org/10.3390/genes13040630
Akabari R, Qin D, Hussaini M. Technological Advances: CEBPA and FLT3 Internal Tandem Duplication Mutations Can be Reliably Detected by Next Generation Sequencing. Genes. 2022; 13(4):630. https://doi.org/10.3390/genes13040630
Chicago/Turabian StyleAkabari, Ratilal, Dahui Qin, and Mohammad Hussaini. 2022. "Technological Advances: CEBPA and FLT3 Internal Tandem Duplication Mutations Can be Reliably Detected by Next Generation Sequencing" Genes 13, no. 4: 630. https://doi.org/10.3390/genes13040630
APA StyleAkabari, R., Qin, D., & Hussaini, M. (2022). Technological Advances: CEBPA and FLT3 Internal Tandem Duplication Mutations Can be Reliably Detected by Next Generation Sequencing. Genes, 13(4), 630. https://doi.org/10.3390/genes13040630