Phenotype Expansion for Atypical Gaucher Disease Due to Homozygous Missense PSAP Variant in a Large Consanguineous Pakistani Family
Abstract
:1. Introduction
2. Methods
2.1. Family History and Clinical Evaluation
2.2. Exome Sequencing and Bioinformatics Analysis
2.3. Linkage Analysis
2.4. Three-Dimensional Protein Modeling
3. Results
3.1. Clinical Description
3.2. Exome and Sanger Sequencing Results
3.3. In Silico Analysis
3.4. Three-Dimensional Modeling
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tajima, A.; Yokoi, T.; Ariga, M.; Ito, T.; Kaneshiro, E.; Eto, Y.; Ida, H. Clinical and genetic study of Japanese patients with type 3 Gaucher disease. Mol. Genet. Metab. 2009, 97, 272–277. [Google Scholar] [CrossRef] [PubMed]
- Mistry, P.; Smith, S.; Ali, M.; Cox, T.; Hatton, C.; McIntyre, N. Genetic diagnosis of Gaucher’s disease. Lancet 1992, 339, 889–892. [Google Scholar] [CrossRef]
- Graves, P.N.; Grabowski, G.A.; Eisner, R.; Palese, P.; Smith, F.I. Gaucher Disease Type 1: Cloning and Characterization of a cDNA Encoding Acid β-Glucosidase from an Ashkenazi Jewish Patient. DNA 1988, 7, 521–528. [Google Scholar] [CrossRef] [PubMed]
- Chérin, P.; Rose, C.; De Roux-Serratrice, C.; Tardy, D.; Dobbelaere, D.; Grosbois, B.; Hachulla, E.; Jaussaud, R.; Javier, R.-M.; Noël, E.; et al. The neurological manifestations of Gaucher disease type 1: The French Observatoire on Gaucher disease (FROG). J. Inherit. Metab. Dis. 2010, 33, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Tylki-Szymańska, A.; Czartoryska, B.; Vanier, M.-T.; Poorthuis, B.; Groener, J.; Ługowska, A.; Millat, G.; Vaccaro, A.; Jurkiewicz, E. Non-neuronopathic Gaucher disease due to saposin C deficiency. Clin. Genet. 2007, 72, 538–542. [Google Scholar] [CrossRef]
- Schnabel, D.; Schröder, M.; Sandhoff, K. Mutation in the sphingolipid activator protein 2 in a patient with a variant of Gaucher disease. FEBS Lett. 1991, 284, 57–59. [Google Scholar] [CrossRef] [Green Version]
- Diaz-Font, A.; Cormand, B.; Santamaria, R.; Vilageliu, L.; Grinberg, D.; Chabás, A. A mutation within the saposin D domain in a Gaucher disease patient with normal glucocerebrosidase activity. Qual. Life Res. 2005, 117, 275–277. [Google Scholar] [CrossRef]
- Amsallem, D.; Rodriguez, D.; Vanier, M.T. Third case of Gaucher disease with sap-C deficiency and evaluation of twelve months’ therapy by miglustat. J. Inherit. Metab. Dis. 2005, 28, 152–155. [Google Scholar]
- Vanier, M.T.; Millat, G. Are sphingolipid activator deficiencies underdiagnosed? J. Clin. Pharmacol. Ther. 2009, 47 (Suppl. 1), S147–S148. [Google Scholar]
- Kang, L.; Zhan, X.; Ye, J.; Han, L.; Qiu, W.; Gu, X.; Zhang, H. A rare form of Gaucher disease resulting from saposin C deficiency. Blood Cells Mol. Dis. 2017, 68, 60–65. [Google Scholar] [CrossRef]
- Green, M.R.; Sambrook, J. Isolation of High-Molecular-Weight DNA Using Organic Solvents. Cold Spring Harb. Protoc. 2017, 2017, 356–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 2010, 26, 589–595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, K.; Li, M.; Hakonarson, H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010, 38, e164. [Google Scholar] [CrossRef]
- Liu, X.; Jian, X.; Boerwinkle, E. dbNSFP: A lightweight database of human nonsynonymous SNPs and their functional predictions. Hum. Mutat. 2011, 32, 894–899. [Google Scholar] [CrossRef]
- Karczewski, K.J.; Francioli, L.C.; MacArthur, D.G. The mutational constraint spectrum quantified from variation in 141,456 humans. Yearb. Paediatr. Endocrinol. 2020, 581, 434–443. [Google Scholar] [CrossRef]
- Laskowski, R.A.; MacArthur, M.W.; Moss, D.S.; Thornton, J.M. PROCHECK: A program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 1993, 26, 283–291. [Google Scholar] [CrossRef]
- Oza, A.M.; DiStefano, M.T.; Hemphill, S.E.; Cushman, B.J.; Grant, A.R.; Siegert, R.K.; Shen, J.; Chapin, A.; Boczek, N.J.; Schimmenti, L.A.; et al. Expert specification of the ACMG/AMP variant interpretation guidelines for genetic hearing loss. Hum. Mutat. 2018, 39, 1593–1613. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–423. [Google Scholar] [CrossRef] [Green Version]
- Lathrop, G.M.; Lalouel, J.M.; Julier, C.; Ott, J. Strategies for multilocus linkage analysis in humans. Proc. Natl. Acad. Sci. USA 1984, 81, 3443–3446. [Google Scholar] [CrossRef] [Green Version]
- Ahn, V.E.; Leyko, P.; Alattia, J.-R.; Chen, L.; Privé, G.G. Crystal structures of saposins A and C. Protein Sci. 2006, 15, 1849–1857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sloterdijk, P.; Voelker, S. Modelle; Brill|Fink: Leiden, The Netherlands, 2019. [Google Scholar] [CrossRef]
- Christomanou, H.; Aignesberger, A.; Linke, R.P. Immunochemical characterization of two activator proteins stimulating enzymic sphingomyelin degradation in vitro. Absence of one of them in a human Gaucher disease variant. Biol. Chem. Hoppe Seyler 1986, 367, 879–890. [Google Scholar] [CrossRef] [PubMed]
- Mattošová, S.; Chandoga, J.; Hlavatá, A.; Saligová, J.; Maceková, D. Spectrum of GBA mutations in patients with Gaucher disease from Slovakia: Identification of five novel mutations. Isr. Med. Assoc. J. 2015, 17, 166–170. [Google Scholar] [PubMed]
- Tamargo, R.J.; Velayati, A.; Goldin, E.; Sidransky, E. The role of saposin C in Gaucher disease. Mol. Genet. Metab. 2012, 106, 257–263. [Google Scholar] [CrossRef] [Green Version]
- Motta, M.; Camerini, S.; Tatti, M.; Casella, M.; Torreri, P.; Crescenzi, M.; Tartaglia, M.; Salvioli, R. Gaucher disease due to saposin C deficiency is an inherited lysosomal disease caused by rapidly degraded mutant proteins. Hum. Mol. Genet. 2014, 23, 5814–5826. [Google Scholar] [CrossRef] [Green Version]
- Pàmpols, T.; Pineda, M.; Girós, M.L.; Ferrer, I.; Cusi, V.; Chabás, A.; Sanmarti, F.X.; Vanier, M.T.; Christomanou, H. Neuronopathic juvenile glucosylceramidosis due to sap-C deficiency: Clinical course, neuropathology and brain lipid composition in this Gaucher disease variant. Acta Neuropathol. 1999, 97, 91–97. [Google Scholar] [CrossRef]
- Lieberman, R.L. A Guided Tour of the Structural Biology of Gaucher Disease: Acid-β-Glucosidase and Saposin C. Enzym. Res. 2011, 2011, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Akil, O.; Lustig, L.R. Severe vestibular dysfunction and altered vestibular innervation in mice lacking prosaposin. Neurosci. Res. 2012, 72, 296–305. [Google Scholar] [CrossRef] [Green Version]
Patient | Gender | Clinical Features | cDNA Variant (Allele 1/Allele 2) | Protein Variant (Allele 1/Allele 2) | Exon | Origin | Reference |
---|---|---|---|---|---|---|---|
1 | Female | Hepatosplenomegaly, Seizure | c.1145G>T/ unknown | p.(Cys382Phe)/ unknown | 10 | Sweden | [6] |
2 | Male | Hepatosplenomegaly, Seizure, Ataxia, tremor, ophthalmoplegia | c.1144T>G/ c.1288 C>T | p.(Cys382Gly)/ p.(Gln430X) | 10, 11 | Spain | [7] |
3 | Female | Hepatosplenomegaly, intellectual decline, epilepsy | c.1A>G/ c.943T>A | p.(Met1Val)/ p.(Cys315Ser) | 1, 9 | France | [8] |
4 | Male | Hepatosplenomegaly, osteopenia | c.1A>T/ c.1046 T>C | p.(Met1Leu)/ p.(Leu349Pro) | 1, 10 | Poland | [5] |
5 | Female | Hepatosplenomegaly, osteopenia | c.1A>T/ c.1046T>C | p.(Met1Leu)/ p.(Leu349Pro) | 1, 10 | Poland | [5] |
6 | Female | Hepatosplenomegaly | c.1024_1044del/ c.1024_1044del | p.(Phe342_Lys348del)/ p.(Phe342_Lys348del) | 10, 10 | India (Sikh) | [9] |
7 | Male | Hepatosplenomegaly, thrombocytopenia, anemia, abnormal electroencephalogram | c.1133C>G/ delE2–E7 | p.(Pro378Arg)/nonsense mediated mRNA decay | 10, delE2–E7 | China | [10] |
8 | Female IV:1 | Hepatosplenomegaly, thrombocytopenia, kyphosis, Myopia (late onset), vestibular dysfunction, hearing impairment | c.1076A>C/ c.1076A>C | p.(Glu359Ala)/ p.(Glu359Ala) | 10, 10 | Pakistan | Present study |
9 | Female IV:4 | Hepatosplenomegaly, thrombocytopenia, kyphosis, vestibular dysfunction, hearing impairment | c.1076A>C/ c.1076A>C | p.(Glu359Ala)/ p.(Glu359Ala) | 10, 10 | Pakistan | Present study |
10 | Male IV:5 | Hepatosplenomegaly, thrombocytopenia, kyphosis, Myopia (late onset), vestibular dysfunction, hearing impairment | c.1076A>C/ c.1076A>C | p.(Glu359Ala)/ p.(Glu359Ala) | 10, 10 | Pakistan | Present study |
11 | Female IV:7 | Hepatosplenomegaly, thrombocytopenia, kyphosis, vestibular dysfunction, hearing impairment | c.1076A>C/ c.1076A>C | p.(Glu359Ala)/ p.(Glu359Ala) | 10, 10 | Pakistan | Present study |
Parameters | Individual IV:1 | Individual IV:4 | Individual IV:5 | Individual IV:7 |
---|---|---|---|---|
Age (yrs) | 12 | 14 | 20 | 19 |
Sex | Female | Female | Male | Female |
Height (cm) | 139 | 145 | 168 | 162 |
Weight (kg) | 38 | 42 | 69 | 61 |
Platelets count/mm3 | 95,000 | 100,000 | 88,000 | 90,000 |
Liver Size (cm) | 15.4 | 15.8 | 17.2 | 16.0 |
Spleen Size (cm) | 13.4 | 13.7 | 14 | 13.9 |
Hearing Impairment | Profound | Profound | Profound | Profound |
Vestibular dysfunction | Yes | Yes | Yes | Yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liaqat, K.; Hussain, S.; Acharya, A.; Nasir, A.; Bharadwaj, T.; Ansar, M.; Basit, S.; Schrauwen, I.; Ahmad, W.; Leal, S.M. Phenotype Expansion for Atypical Gaucher Disease Due to Homozygous Missense PSAP Variant in a Large Consanguineous Pakistani Family. Genes 2022, 13, 662. https://doi.org/10.3390/genes13040662
Liaqat K, Hussain S, Acharya A, Nasir A, Bharadwaj T, Ansar M, Basit S, Schrauwen I, Ahmad W, Leal SM. Phenotype Expansion for Atypical Gaucher Disease Due to Homozygous Missense PSAP Variant in a Large Consanguineous Pakistani Family. Genes. 2022; 13(4):662. https://doi.org/10.3390/genes13040662
Chicago/Turabian StyleLiaqat, Khurram, Shabir Hussain, Anushree Acharya, Abdul Nasir, Thashi Bharadwaj, Muhammad Ansar, Sulman Basit, Isabelle Schrauwen, Wasim Ahmad, and Suzanne M. Leal. 2022. "Phenotype Expansion for Atypical Gaucher Disease Due to Homozygous Missense PSAP Variant in a Large Consanguineous Pakistani Family" Genes 13, no. 4: 662. https://doi.org/10.3390/genes13040662
APA StyleLiaqat, K., Hussain, S., Acharya, A., Nasir, A., Bharadwaj, T., Ansar, M., Basit, S., Schrauwen, I., Ahmad, W., & Leal, S. M. (2022). Phenotype Expansion for Atypical Gaucher Disease Due to Homozygous Missense PSAP Variant in a Large Consanguineous Pakistani Family. Genes, 13(4), 662. https://doi.org/10.3390/genes13040662