In Silico Analysis of the L-2-Hydroxyglutarate Dehydrogenase Gene Mutations and Their Biological Impact on Disease Etiology
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Structural Analysis
3.2. Active Site Predication
3.3. Protein–Protein Interaction
3.4. Protein–Substrate Docking
3.5. Molecular Simulation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Muzammal, M.; Ali, M.Z.; Brugger, B.; Blatterer, J.; Ahmad, S.; Taj, S.; Shah, S.K.; Khan, S.; Enzinger, C.; Petek, E.; et al. A novel protein truncating mutation in L2HGDH causes L-2-hydroxyglutaric aciduria in a consanguineous Pakistani family. Metab. Brain Dis. 2022, 37, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Duran, M.; Kamerling, J.P.; Bakker, H.D.; van Gennip, A.H.; Wadman, S.K. L-2-Hydroxyglutaric aciduria: An inborn error of metabolism? J. Inherit. Metab. Dis. 1980, 3, 109–112. [Google Scholar] [CrossRef] [PubMed]
- Steenweg, M.E.; Jakobs, C.; Errami, A.; van Dooren, S.J.; Adeva Bartolome, M.T.; Aerssens, P.; Augoustides-Savvapoulou, P.; Baric, I.; Baumann, M.; Bonafe, L.; et al. An overview of L-2-hydroxyglutarate dehydrogenase gene (L2HGDH) variants: A genotype-phenotype study. Hum. Mutat. 2010, 31, 380–390. [Google Scholar] [CrossRef] [PubMed]
- Barth, P.G.; Hoffmann, G.F.; Jaeken, J.; Lehnert, W.; Hanefeld, F.; van Gennip, A.H.; Duran, M.; Valk, J.; Schutgens, R.B.; Trefz, F.K.; et al. L-2-hydroxyglutaric acidemia: A novel inherited neurometabolic disease. Ann. Neurol. 1992, 32, 66–71. [Google Scholar] [CrossRef]
- Du, X.; Hu, H. The roles of 2-Hydroxyglutarate. Front. Cell Dev. Biol. 2021, 9, 486. [Google Scholar] [CrossRef]
- Kranendijk, M.; Struys, E.A.; Salomons, G.S.; Van der Knaap, M.S.; Jakobs, C. Progress in understanding 2-hydroxyglutaric acidurias. J. Inherit. Metab. Dis. 2012, 35, 571–587. [Google Scholar] [CrossRef] [Green Version]
- Jellouli, N.K.; Hadj Salem, I.; Ellouz, E.; Kamoun, Z.; Kamoun, F.; Tlili, A.; Kaabachi, N.; Triki, C.; Fakhfakh, F.; Ben Dridi, M.F.; et al. Founder effect confirmation of c.241A>G mutation in the L2HGDH gene and characterization of oxidative stress parameters in six Tunisian families with L-2-hydroxyglutaric aciduria. J. Hum. Genet. 2014, 59, 216–222. [Google Scholar] [CrossRef]
- Haliloglu, G.; Jobard, F.; Oguz, K.K.; Anlar, B.; Akalan, N.; Coskun, T.; Sass, J.O.; Fischer, J.; Topcu, M. L-2-hydroxyglutaric aciduria and brain tumors in children with mutations in the L2HGDH gene: Neuroimaging findings. Neuropediatrics 2008, 39, 119–122. [Google Scholar] [CrossRef]
- Olgac, A.; Tekin, O.L.; Ezgu, F.S.; Biberoglu, G.; Tumer, L. A 7-year-old Boy with Hand Tremors and a Novel Mutation for L-2-hydroxyglutaric Aciduria. Balkan J. Med. Genet. 2019, 22, 93–96. [Google Scholar] [CrossRef] [Green Version]
- Muthusamy, K.; Sudhakar, S.V.; Christudass, C.S.; Chandran, M.; Thomas, M.; Gibikote, S. Clinicoradiological Spectrum of L-2-Hydroxy Glutaric Aciduria: Typical and Atypical Findings in an Indian Cohort. J. Clin. Imaging. Sci. 2019, 9, 3. [Google Scholar] [CrossRef]
- Kular, S. Findings on serial MRI in a childhood case of L2-hydroxyglutaric aciduria. Radiol. Case Rep. 2020, 15, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Seijo-Martinez, M.; Navarro, C.; Castro del Rio, M.; Vila, O.; Puig, M.; Ribes, A.; Butron, M. L-2-hydroxyglutaric aciduria: Clinical, neuroimaging, and neuropathological findings. Arch. Neurol. 2005, 62, 666–670. [Google Scholar] [CrossRef] [PubMed]
- Topcu, M.; Jobard, F.; Halliez, S.; Coskun, T.; Yalcinkayal, C.; Gerceker, F.O.; Wanders, R.J.; Prud’homme, J.F.; Lathrop, M.; Ozguc, M.; et al. L-2-Hydroxyglutaric aciduria: Identification of a mutant gene C14orf160, localized on chromosome 14q22.1. Hum. Mol. Genet. 2004, 13, 2803–2811. [Google Scholar] [CrossRef] [PubMed]
- Hanefeld, F.; Kruse, B.; Bruhn, H.; Frahm, J. In Vivo Proton Magnetic Resonance Spectroscopy of the Brain in a Patient with L-2-Hydroxyglutaric Acidemia. Pediatric Res. 1994, 35, 614–616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hijikata, A.; Tsuji, T.; Shionyu, M.; Shirai, T. Decoding disease-causing mechanisms of missense mutations from supramolecular structures. Sci. Rep. 2017, 7, 8541. [Google Scholar] [CrossRef]
- Zhou, X.; Iversen, E.S., Jr.; Parmigiani, G. Classification of Missense Mutations of Disease Genes. J. Am. Stat. Assoc. 2005, 100, 51–60. [Google Scholar] [CrossRef] [Green Version]
- Agrahari, A.K.; Pieroni, E.; Gatto, G.; Kumar, A. The impact of missense mutation in PIGA associated to paroxysmal nocturnal hemoglobinuria and multiple congenital anomalies-hypotonia-seizures syndrome 2: A computational study. Heliyon 2019, 5, e02709. [Google Scholar] [CrossRef] [Green Version]
- Agrahari, A.K.; Kumar, A.; Siva, R.; Zayed, H.; George, P.D.C. Substitution impact of highly conserved arginine residue at position 75 in GJB1 gene in association with X-linked Charcot-Marie-tooth disease: A computational study. J. Theor. Biol. 2018, 437, 305–317. [Google Scholar] [CrossRef]
- Ullah, M.I.; Nasir, A.; Ahmad, A.; Harlalka, G.V.; Ahmad, W.; Hassan, M.J.; Baple, E.L.; Crosby, A.H.; Chioza, B.A. Identification of novel L2HGDH mutation in a large consanguineous Pakistani family- a case report. BMC Med. Genet. 2018, 19, 25. [Google Scholar] [CrossRef]
- Sass, J.O.; Jobard, F.; Topcu, M.; Mahfoud, A.; Werle, E.; Cure, S.; Al-Sannaa, N.; Alshahwan, S.A.; Bataillard, M.; Cimbalistiene, L.; et al. L-2-hydroxyglutaric aciduria: Identification of ten novel mutations in the L2HGDH gene. J. Inherit. Metab. Dis. 2008, 31 (Suppl. S2), S275–S279. [Google Scholar] [CrossRef]
- Stenson, P.D.; Ball, E.V.; Mort, M.; Phillips, A.D.; Shiel, J.A.; Thomas, N.S.; Abeysinghe, S.; Krawczak, M.; Cooper, D.N. Human Gene Mutation Database (HGMD): 2003 update. Hum. Mutat. 2003, 21, 577–581. [Google Scholar] [CrossRef] [PubMed]
- Zafeiriou, D.I.; Ververi, A.; Salomons, G.S.; Vargiami, E.; Haas, D.; Papadopoulou, V.; Kontopoulos, E.; Jakobs, C. L-2-Hydroxyglutaric aciduria presenting with severe autistic features. Brain Dev. 2008, 30, 305–307. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Yan, R.; Roy, A.; Xu, D.; Poisson, J.; Zhang, Y. The I-TASSER Suite: Protein structure and function prediction. Nat. Methods 2015, 12, 7–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [Green Version]
- Binkowski, T.A.; Naghibzadeh, S.; Liang, J. CASTp: Computed Atlas of Surface Topography of proteins. Nucleic. Acids. Res. 2003, 31, 3352–3355. [Google Scholar] [CrossRef] [Green Version]
- Kozakov, D.; Hall, D.R.; Xia, B.; Porter, K.A.; Padhorny, D.; Yueh, C.; Beglov, D.; Vajda, S. The ClusPro web server for protein-protein docking. Nat. Protoc. 2017, 12, 255–278. [Google Scholar] [CrossRef]
- Franceschini, A.; Szklarczyk, D.; Frankild, S.; Kuhn, M.; Simonovic, M.; Roth, A.; Lin, J.; Minguez, P.; Bork, P.; von Mering, C.; et al. STRING v9.1: Protein-protein interaction networks, with increased coverage and integration. Nucleic. Acids. Res. 2013, 41, D808–D815. [Google Scholar] [CrossRef] [Green Version]
- Gaillard, T. Evaluation of AutoDock and AutoDock Vina on the CASF-2013 Benchmark. J. Chem. Inf. Model. 2018, 58, 1697–1706. [Google Scholar] [CrossRef]
- Jejurikar, B.L.; Rohane, S.H. Drug Designing in Discovery Studio. Asian J. Res. Chem. 2021, 14, 135–138. [Google Scholar] [CrossRef]
- Larnaout, A.; Amouri, R.; Kefi, M.; Hentati, F. L-2-hydroxyglutaric aciduria: Clinical and molecular study in three Tunisian families. Identification of a new mutation and inter-familial phenotype variability. J. Inherit. Metab. Dis. 2008, 31 (Suppl. S2), S375–S379. [Google Scholar] [CrossRef]
- Yamamoto, T.; Yoshioka, S.; Tsurusaki, Y.; Shino, S.; Shimojima, K.; Shigematsu, Y.; Takeuchi, Y.; Matsumoto, N. White matter abnormalities in an adult patient with l-2-hydroxyglutaric aciduria. Brain Dev. 2016, 38, 142–144. [Google Scholar] [CrossRef] [PubMed]
- Rzem, R.; Veiga-da-Cunha, M.; Noel, G.; Goffette, S.; Nassogne, M.C.; Tabarki, B.; Scholler, C.; Marquardt, T.; Vikkula, M.; Van Schaftingen, E. A gene encoding a putative FAD-dependent L-2-hydroxyglutarate dehydrogenase is mutated in L-2-hydroxyglutaric aciduria. Proc. Natl. Acad. Sci. USA 2004, 101, 16849–16854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vilarinho, L.; Cardoso, M.L.; Gaspar, P.; Barbot, C.; Azevedo, L.; Diogo, L.; Santos, M.; Carrilho, I.; Fineza, I.; Kok, F.; et al. Novel L2HGDH mutations in 21 patients with L-2-hydroxyglutaric aciduria of Portuguese origin. Hum. Mutat. 2005, 26, 395–396. [Google Scholar] [CrossRef] [PubMed]
- Tai, H.; Zhang, Z. A novel compound heterozygous mutation in a Chinese boy with L-2-hydroxyglutaric aciduria: A case study. BMC Neurol. 2015, 15, 117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, Y.; Tang, G.; Wen, P.; Wang, G.; Zhao, C.; Chen, Z.; Zhang, X.; Liu, X.; Cui, D.; Li, C. Analysis of L2HGDH gene mutation in a patient with 2-hydroxyglutaric aciduria. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 2016, 33, 48–52. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.; Ma, X.W.; Yang, X.; Zhang, W.Q.; Yan, L.; Wang, Y.X.; Liu, X.; Wang, Y.; Feng, Z.C. Two novel L2HGDH mutations identified in a rare Chinese family with L-2-hydroxyglutaric aciduria. BMC Med. Genet. 2018, 19, 167. [Google Scholar] [CrossRef]
- O’Connor, G.; King, M.; Salomons, G.; Jakobs, C.; Hardiman, O. A novel mutation as a cause of L-2-hydroxyglutaric aciduria. J. Neurol. 2009, 256, 672–673. [Google Scholar] [CrossRef] [Green Version]
- Saifullina, E.V.; Zakharova, E.Y.; Kurkina, M.V.; Magzhanov, R.V.; Gaisina, E.V.; Zakirova, E.N. L-2-hydroxyglutaric aciduria caused by a new mutation in the L2HGDH gene. Zh. Nevrol. Psikhiatr. Im. S. S. Korsakova. 2017, 117, 81–85. [Google Scholar] [CrossRef]
- Penderis, J.; Calvin, J.; Abramson, C.; Jakobs, C.; Pettitt, L.; Binns, M.M.; Verhoeven, N.M.; O’Driscoll, E.; Platt, S.R.; Mellersh, C.S. L-2-hydroxyglutaric aciduria: Characterisation of the molecular defect in a spontaneous canine model. J. Med. Genet. 2007, 44, 334–340. [Google Scholar] [CrossRef] [Green Version]
- Ma, S.; Sun, R.; Jiang, B.; Gao, J.; Deng, W.; Liu, P.; He, R.; Cui, J.; Ji, M.; Yi, W.; et al. L2hgdh Deficiency Accumulates l-2-Hydroxyglutarate with Progressive Leukoencephalopathy and Neurodegeneration. Mol. Cell Biol. 2017, 37, e00492-16. [Google Scholar] [CrossRef] [Green Version]
- Wendler, K.; Thar, J.; Zahn, S.; Kirchner, B. Estimating the hydrogen bond energy. J. Phys. Chem. A 2010, 114, 9529–9536. [Google Scholar] [CrossRef] [PubMed]
- Stahlberg, J.; Jonsson, B.; Horvath, C. Combined effect of coulombic and van der Waals interactions in the chromatography of proteins. Anal. Chem. 1992, 64, 3118–3124. [Google Scholar] [CrossRef] [PubMed]
- Barratt, E.; Bingham, R.J.; Warner, D.J.; Laughton, C.A.; Phillips, S.E.; Homans, S.W. Van der Waals interactions dominate ligand-protein association in a protein binding site occluded from solvent water. J. Am. Chem. Soc. 2005, 127, 11827–11834. [Google Scholar] [CrossRef] [PubMed]
- Roth, C.M.; Neal, B.L.; Lenhoff, A.M. Van der Waals interactions involving proteins. Biophys J. 1996, 70, 977–987. [Google Scholar] [CrossRef] [Green Version]
Missense Mutation and Their Similarity Index with Wild Type Protein 3D Structure | Number of Bonds | H Bond | C-H Bond | Unfavorable Bond | Van Der Waals Forces | Wild-Type Amino Acid | Substituted Amino Acid | References | |
---|---|---|---|---|---|---|---|---|---|
Wild type | 5 | 5 | - | - | - | - | - | - | |
Missense Variants | |||||||||
Met1Leu | 81.64% | 14 | 6 | - | - | 8 | Nonpolar/Neutral | Nonpolar/Neutral | [3] |
Met1Val | 80.78% | 13 | 3 | - | - | 10 | Nonpolar/Neutral | Nonpolar/Neutral | [3] |
Ala62Asp | 80.13% | 10 | 3 | - | 1 | 6 | Nonpolar/Neutral | Acidic polar/Negative | [30] |
Ala140Pro | 79.27% | 12 | 4 | - | 1 | 7 | Nonpolar/Neutral | Nonpolar/Neutral | [20] |
Ala184Val | 82.94% | 15 | 3 | - | 1 | 11 | Nonpolar/Neutral | Nonpolar/Neutral | [3] |
Ala406Val | 78.83% | 11 | 2 | - | - | 9 | Nonpolar/Neutral | Nonpolar/Neutral | [3] |
Cys179Arg | 80.78% | 13 | 2 | - | 1 | 10 | Nonpolar/Neutral | Basic polar/Positive | [3] |
Cys258Arg | 84.45% | 12 | 3 | 1 | 1 | 7 | Nonpolar/Neutral | Basic polar/Positive | [31] |
Glu176Asp | 84.67% | 13 | 4 | 1 | 1 | 7 | Acidic polar/Negative | Acidic polar/Negative | [3] |
Glu176Gly | 80.13% | 15 | 4 | 1 | - | 10 | Acidic polar/Negative | Nonpolar/Neutral | [32] |
Glu336Lys | 87.26% | 16 | 2 | 2 | - | 12 | Acidic polar/Negative | Basic polar/Positive | [3] |
Gly55Asp | 81.21% | 11 | 3 | - | - | 8 | Nonpolar/Neutral | Acidic polar/Negative | [13] |
Gly57Arg | 81.64% | 15 | 4 | - | - | 11 | Nonpolar/Neutral | Basic polar/Positive | [33] |
Gly116Asp | 79.05% | 13 | 6 | - | - | 7 | Nonpolar/Neutral | Acidic polar/Negative | [3] |
Gly156Val | 80.13% | 13 | 6 | - | - | 7 | Nonpolar/Neutral | Nonpolar/Neutral | [20] |
Gly181Val | 80.13% | 13 | 2 | 1 | 2 | 8 | Nonpolar/Neutral | Nonpolar/Neutral | [34] |
Gly211Asp | 80.56% | 16 | 5 | 2 | - | 9 | Nonpolar/Neutral | Acidic polar/Negative | [3] |
Gly211Val | 82.94% | 14 | 3 | 1 | 1 | 9 | Nonpolar/Neutral | Nonpolar/Neutral | [22] |
Gly260Ala | 82.51% | 9 | 3 | - | 1 | 5 | Nonpolar/Neutral | Nonpolar/Neutral | [3] |
Gly260Val | 79.70% | 14 | 3 | - | - | 11 | Nonpolar/Neutral | Nonpolar/Neutral | [3] |
His98Arg | 80.13% | 15 | 5 | - | 1 | 9 | Basic polar/Positive, 10%, Neutral, 90% | Basic polar/Positive | [33] |
His98Tyr | 80.13% | 14 | 4 | - | 1 | 9 | Basic polar/Positive, 10%, Neutral, 90% | Polar/Neutral | [13] |
His434Pro | 79.05% | 14 | 5 | 1 | - | 8 | Basic polar/Positive, 10%Neutral, 90% | Nonpolar /Neutral | [33] |
Lys81Glu | 80.99% | 10 | 1 | 1 | - | 8 | Basic polar/Positive | Acidic polar | [32] |
Lys246Asn | 80.13% | 11 | 2 | - | - | 9 | Basic polar/Positive | Polar/Neutral | [3] |
Leu149Arg | 80.13% | 14 | 3 | 1 | - | 10 | Nonpolar/Neutral | Basic polar/Positive | [20] |
Pro302Leu | 81.86% | 14 | 3 | - | 1 | 10 | Nonpolar/Neutral | Nonpolar/Neutral | [13] |
Arg282Gln | 80.13% | 13 | 6 | 1 | - | 6 | Basic polar/Positive | Polar/Neutral | [35] |
Arg282Trp | 80.13% | 13 | 5 | 1 | - | 7 | Basic polar/Positive | Nonpolar/Neutral | [3] |
Ser263Leu | 80.13% | 10 | 2 | - | - | 8 | Polar/Neutral | Nonpolar/Neutral | [20] |
Ser440Tyr | 78.19% | 16 | 4 | - | 2 | 10 | Polar/Neutral | Polar/Neutral | [20] |
Val296Glu | 78.62% | 12 | 2 | - | - | 10 | Nonpolar/Neutral | Acidic polar/Negative | [8] |
Tyr195Cys | 79.91% | 12 | 2 | 1 | 9 | Polar/Neutral | Nonpolar/Neutral | [20] | |
Tyr367Cys | 80.35% | 11 | 5 | - | - | 6 | Polar/Neutral | Nonpolar/Neutral | [3] |
Cys187Tyr | 57.02% | 13 | 2 | 1 | 1 | 9 | Nonpolar/Neutral | Polar/Neutral | - |
Gly60Arg | 79.05% | 15 | 1 | 1 | 2 | 12 | Nonpolar/Neutral | Basic polar/Positive | [19] |
Thr123Cys | 80.35% | 14 | 3 | 1 | - | 10 | Polar/Neutral | Nonpolar/Neutral | [9] |
Pro441Arg | 81.86% | 14 | 3 | 2 | - | 9 | Nonpolar/Neutral | Basic polar/Positive | [3] |
Lys136Arg | 80.78% | 13 | 4 | - | - | 9 | Basic polar/Positive | Basic polar/Positive | [36] |
Nonsense Variants | |||||||||
Glu268* | 63.43% | 10 | 1 | 1 | 1 | 7 | - | - | [20] |
Gly128* | 37.50% | 14 | 2 | 1 | 1 | 10 | - | - | [3] |
Gln197* | 51.27% | 8 | 3 | 1 | 1 | 3 | - | - | [33] |
Gln204* | 73.53% | 9 | 2 | - | - | 7 | - | - | [3] |
Arg70* | 10.00% | 10 | 3 | - | - | 7 | - | - | [33] |
Arg251* | 74.90% | 10 | 4 | - | - | 6 | - | - | [20] |
Arg277* | 76.90% | 9 | 3 | - | 1 | 5 | - | - | [3] |
Arg335* | 75.82% | 13 | 5 | - | - | 8 | - | - | [13] |
Ser263* | 74.90% | 14 | 4 | - | - | 10 | - | - | [37] |
Tyr153* | 32.03% | 12 | 3 | - | 1 | 8 | - | - | [13] |
Tyr301* | 65.78% | 11 | - | - | - | 11 | - | - | [3] |
Cys113* | 39.82% | 10 | 4 | - | 1 | 5 | - | - | - |
Trp324* | 76.23% | 9 | 2 | - | - | 7 | - | - | [38] |
Size of Pocket | Residues and Their Number in Active Site Pockets |
---|---|
1st | 5Leu, 6Arg, 7Tyr, 8leu, 16Arg, 19Phe, 22GLy, 23Ser, 24Pro, 26Ala, 42Arg, 44Ala, 45Ser, 83Lys, 207Gln, 210Gly, 211Gly, 212Ser, 213val, 214Leu, 215Thr, 216Asn, 217Phe |
2nd | 54Val, 55Gly, 57Gly, 58Ile, 59val, 60Gly, 79Leu, 80Glu, 81Lys, 82Glu, 84Asp, 85Leu, 87Val, 88His, 89Gln*, 91Gly, 92His, 93Asn, 95Gly, 96Val, 102Tyr, 103Tyr, 104Lys, 107Ser, 148Arg, 151Ala, 152Leu, 155Lys, 195Tyr*, 217Phe, 218Glu, 219Val, 220Lys, 258Cys, 259Ala, 260Gly, 261Leu, 262Tyr, 263Ser, 265Arg, 266Ile, 269Leu, 280Pro, 281Phe, 282Arg, 283Gly, 285Tyr, 301Tyr, 304Pro, 305Asp, 306Ser, 309Pro, 310Phe, 314His, 326Gly, 328Asn, 329Ala, 334Lys, 367Tyr, 402Ala*, 403Gly*, 404Val*, 405Arg, 406Ala, 407Gln, 415Leu, 416Val, 417Glu, 418Asp, 419Phe, 435Val, 436Arg, 437Asn, 438Ala, 439Pro, 440Ser, 441Pro, 442Ala, 434Ala |
3rd | 90Thr, 91Gly, 94Ser, 95Gly, Ser130, 131Tyr, 132Lys, 192Ile, 193Val, 194Asp, 195Tyr, 197Gln, 318Arg, 319Met, 324Trp |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muzammal, M.; Di Cerbo, A.; Almusalami, E.M.; Farid, A.; Khan, M.A.; Ghazanfar, S.; Al Mohaini, M.; Alsalman, A.J.; Alhashem, Y.N.; Al Hawaj, M.A.; et al. In Silico Analysis of the L-2-Hydroxyglutarate Dehydrogenase Gene Mutations and Their Biological Impact on Disease Etiology. Genes 2022, 13, 698. https://doi.org/10.3390/genes13040698
Muzammal M, Di Cerbo A, Almusalami EM, Farid A, Khan MA, Ghazanfar S, Al Mohaini M, Alsalman AJ, Alhashem YN, Al Hawaj MA, et al. In Silico Analysis of the L-2-Hydroxyglutarate Dehydrogenase Gene Mutations and Their Biological Impact on Disease Etiology. Genes. 2022; 13(4):698. https://doi.org/10.3390/genes13040698
Chicago/Turabian StyleMuzammal, Muhammad, Alessandro Di Cerbo, Eman M. Almusalami, Arshad Farid, Muzammil Ahmad Khan, Shakira Ghazanfar, Mohammed Al Mohaini, Abdulkhaliq J. Alsalman, Yousef N. Alhashem, Maitham A. Al Hawaj, and et al. 2022. "In Silico Analysis of the L-2-Hydroxyglutarate Dehydrogenase Gene Mutations and Their Biological Impact on Disease Etiology" Genes 13, no. 4: 698. https://doi.org/10.3390/genes13040698
APA StyleMuzammal, M., Di Cerbo, A., Almusalami, E. M., Farid, A., Khan, M. A., Ghazanfar, S., Al Mohaini, M., Alsalman, A. J., Alhashem, Y. N., Al Hawaj, M. A., & Alsaleh, A. A. (2022). In Silico Analysis of the L-2-Hydroxyglutarate Dehydrogenase Gene Mutations and Their Biological Impact on Disease Etiology. Genes, 13(4), 698. https://doi.org/10.3390/genes13040698