The Role of Functional Polymorphisms in the Extracellular Matrix Modulation-Related Genes on Dupuytren’s Contracture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Study Population
2.3. Candidate Polymorphisms
2.4. DNA Extraction and Genotyping
2.5. Statistical Analysis
3. Results
3.1. Sample Characteristics
3.2. Case-Control Analysis
3.3. The Previous Onset of the Disease and Positive Family History
3.4. Risk Factor Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gabbiani, G.; Majno, G. Dupuytren’s Contracture: Fibroblast Contraction? An Ultrastructural Study. Am. J. Pathol. 1972, 66, 131–146. [Google Scholar] [PubMed]
- Zhang, A.Y.; Kargel, J.S. The Basic Science of Dupuytren Disease. Hand Clin. 2018, 34, 301–305. [Google Scholar] [CrossRef] [PubMed]
- Tripoli, M.; Cordova, A.; Moschella, F. Update on the Role of Molecular Factors and Fibroblasts in the Pathogenesis of Dupuytren’s Disease. J. Cell Commun. Signal. 2016, 10, 315–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hindocha, S. Risk Factors, Disease Associations, and Dupuytren Diathesis. Hand Clin. 2018, 34, 307–314. [Google Scholar] [CrossRef]
- DiBenedetti, D.B.; Nguyen, D.; Zografos, L.; Ziemiecki, R.; Zhou, X. Prevalence, Incidence, and Treatments of Dupuytren’s Disease in the United States: Results from a Population-Based Study. Hand 2011, 6, 149–158. [Google Scholar] [CrossRef] [Green Version]
- Lanting, R.; Van Den Heuvel, E.R.; Westerink, B.; Werker, P.M.N. Prevalence of Dupuytren Disease in the Netherlands. Plast. Reconstr. Surg. 2013, 132, 394–403. [Google Scholar] [CrossRef]
- Becker, K.; Tinschert, S.; Lienert, A.; Bleuler, P.E.; Staub, F.; Meinel, A.; Rößler, J.; Wach, W.; Hoffmann, R.; Kühnel, F.; et al. The Importance of Genetic Susceptibility in Dupuytren’s Disease. Clin. Genet. 2015, 87, 483–487. [Google Scholar] [CrossRef]
- Ng, M.; Thakkar, D.; Southam, L.; Werker, P.; Ophoff, R.; Becker, K.; Nothnagel, M.; Franke, A.; Nürnberg, P.; Espirito-Santo, A.I.; et al. A Genome-Wide Association Study of Dupuytren Disease Reveals 17 Additional Variants Implicated in Fibrosis. Am. J. Hum. Genet. 2017, 101, 417–427. [Google Scholar] [CrossRef] [Green Version]
- Dolmans, G.H.; Werker, P.M.; Hennies, H.C.; Furniss, D.; Festen, E.A.; Franke, L.; Becker, K.; Van Der Vlies, P.; Wolffenbuttel, B.H.; Tinschert, S.; et al. Wnt Signaling and Dupuytren’s Disease. N. Engl. J. Med. 2011, 365, 307–317. [Google Scholar] [CrossRef] [Green Version]
- Luck, J.V. Dupuytren’s Contracture; a New Concept of the Pathogenesis Correlated with Surgical Management. J. Bone Jt. Surg. Am. 1959, 41-A, 635–664. [Google Scholar] [CrossRef]
- van Beuge, M.M.; ten Dam, E.J.P.M.; Werker, P.M.N.; Bank, R.A. Matrix and Cell Phenotype Differences in Dupuytren’s Disease. Fibrogenes. Tissue Repair 2016, 9, 9. [Google Scholar] [CrossRef] [Green Version]
- Ulrich, D.; Ulrich, F.; Piatkowski, A.; Pallua, N. Expression of Matrix Metalloproteinases and Their Inhibitors in Cords and Nodules of Patients with Dupuytren’s Disease. Arch. Orthop. Trauma Surg. 2009, 129, 1453–1459. [Google Scholar] [CrossRef] [PubMed]
- Verma, R.P.; Hansch, C. Matrix Metalloproteinases (MMPs): Chemical-Biological Functions and (Q)SARs. Bioorg. Med. Chem. 2007, 15, 2223–2268. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, C.; Vaidya, S.; Wadhwan, V.; Hitesh; Kaur, G.; Pathak, A. Seesaw of Matrix Metalloproteinases (MMPs). J. Cancer Res. Ther. 2016, 12, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, J.M.; Davidson, R.K.; Swingler, T.E.; Jones, E.R.; Corps, A.N.; Johnston, P.; Riley, G.P.; Chojnowski, A.J.; Clark, I.M. MMP-14 and MMP-2 Are Key Metalloproteases in Dupuytren’s Disease Fibroblast-Mediated Contraction. Biochim. Biophys. Acta-Mol. Basis Dis. 2012, 1822, 897–905. [Google Scholar] [CrossRef] [PubMed]
- Ratajczak-Wielgomas, K.; Gosk, J.; Rabczyński, J.; Augoff, K.; Podhorska-Okołów, M.; Gamian, A.; Rutowski, R. Expression of MMP-2, TIMP-2, TGF-Β1, and Decorin in Dupuytren’s Contracture. Connect. Tissue Res. 2012, 53, 469–477. [Google Scholar] [CrossRef] [PubMed]
- Johnston, P.; Bchir, M.B.; Chojnowski, A.J.; Bchir, M.B.; Davidson, R.K.; Riley, G.P.; Donell, S.T.; Clark, I.M. A Complete Expression Profile of Matrix-Degrading Metalloproteinases in Dupuytren’s Disease. J. Hand Surg. Am. 2007, 32, 343–351. [Google Scholar] [CrossRef] [Green Version]
- Alipour, H.; Raz, A.; Zakeri, S.; Dinparast Djadid, N. Therapeutic Applications of Collagenase (Metalloproteases): A Review. Asian Pac. J. Trop. Biomed. 2016, 6, 975–981. [Google Scholar] [CrossRef] [Green Version]
- Watt, A.J.; Hentz, V.R. Collagenase Clostridium Histolyticum: A Novel Nonoperative Treatment for Dupuytren’s Disease. Int. J. Clin. Rheumtol. 2011, 6, 123–133. [Google Scholar] [CrossRef]
- Al-Qattan, M.M. Factors in the Pathogenesis of Dupuytren’s Contracture. J. Hand Surg. Am. 2006, 31, 1527–1534. [Google Scholar] [CrossRef]
- Melrose, J. Keratan Sulfate (KS)-Proteoglycans and Neuronal Regulation in Health and Disease: The Importance of KS-Glycodynamics and Interactive Capability with Neuroregulatory Ligands. J. Neurochem. 2019, 149, 170–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huo, Y.N.; Yao, Y.F.; Yu, P. Pathogenic Mutations of TGFBI and CHST6 Genes in Chinese Patients with Avellino, Lattice, and Macular Corneal Dystrophies. J. Zhejiang Univ. Sci. B 2011, 12, 687–693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Itoh, Y.; Ng, M.; Wiberg, A.; Inoue, K.; Hirata, N.; Paiva, K.B.S.; Ito, N.; Dzobo, K.; Sato, N.; Gifford, V.; et al. A Common SNP Risk Variant MT1-MMP Causative for Dupuytren’s Disease Has a Specific Defect in Collagenolytic Activity. Matrix Biol. 2021, 97, 20–39. [Google Scholar] [CrossRef] [PubMed]
- Tai, J.; Sun, D.; Wang, X.; Kang, Z. Matrix Metalloproteinase-8 Rs11225395 Polymorphism Correlates with Colorectal Cancer Risk and Survival in a Chinese Han Population: A Case-Control Study. Aging (Albany. NY). 2020, 12, 19618–19627. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Chen, Y.; Hua, W.; Sun, X.; Chen, Y.; Liu, Y.; Fan, J.; Zhao, Y.; Zhao, L.; Xu, X.; et al. The MMP-8 Rs11225395 Promoter Polymorphism Increases Cancer Risk of Non-Asian Populations: Evidence from a Meta-Analysis. Biomolecules 2019, 9, 570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.Z.; Du, X.M.; Jing, Q.M.; Li, X.X.; Gu, R.X.; Wang, J.; Han, Y.L. Impact of Matrix Metalloproteinase-8 Gene Variations on the Risk of Thoracic Aortic Dissection in a Chinese Han Population. Mol. Biol. Rep. 2013, 40, 5953–5958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sherry, S.T.; Ward, M.H.; Kholodov, M.; Baker, J.; Phan, L.; Smigielski, E.M.; Sirotkin, K. dbSNP: The NCBI database of genetic variation. Nucleic Acids Res. 2001, 29, 308–311. [Google Scholar] [CrossRef] [Green Version]
- Owen, C.A.; Hu, Z.; Lopez-Otin, C.; Shapiro, S.D. Membrane-Bound Matrix Metalloproteinase-8 on Activated Polymorphonuclear Cells Is a Potent, Tissue Inhibitor of Metalloproteinase-Resistant Collagenase and Serpinase. J. Immunol. 2004, 172, 7791–7803. [Google Scholar] [CrossRef] [Green Version]
- Gueders, M.M.; Balbin, M.; Rocks, N.; Foidart, J.M.; Gosset, P.; Louis, R.; Shapiro, S.; Lopez-Otin, C.; Noël, A.; Cataldo, D.D. Matrix Metalloproteinase-8 Deficiency Promotes Granulocytic Allergen-Induced Airway Inflammation. J. Immunol. 2005, 175, 2589–2597. [Google Scholar] [CrossRef] [Green Version]
- Cancemi, P.; Aiello, A.; Accardi, G.; Caldarella, R.; Candore, G.; Caruso, C.; Ciaccio, M.; Cristaldi, L.; Di Gaudio, F.; Siino, V.; et al. The Role of Matrix Metalloproteinases (MMP-2 and MMP-9) in Ageing and Longevity: Focus on Sicilian Long-Living Individuals (LLIs). Mediat. Inflamm. 2020, 2020, 8635158. [Google Scholar] [CrossRef]
- Benson, L.S.; Williams, C.S.; Kahle, M. Dupuytren’s Contracture. J. Am. Acad. Orthop. Surg. 1998, 6, 24–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- An, H.S.; Southworth, S.R.; Thomas Jackson, W.; Russ, B. Cigarette Smoking and Dupuytren’s Contracture of the Hand. J. Hand Surg. Am. 1988, 13, 872–874. [Google Scholar] [CrossRef]
- Burge, P.; Hoy, G.; Regan, P.; Milne, R. Smoking, Alcohol and the Risk of Dupuytren’s Contracture. J. Bone Jt. Surg. Br. 1997, 79, 206–210. [Google Scholar] [CrossRef]
- Burke, F.D.; Proud, G.; Lawson, I.J.; McGeoch, K.L.; Miles, J.N.V. An Assessment of the Effects of Exposure to Vibration, Smoking, Alcohol and Diabetes on the Prevalence of Dupuytren’s Disease in 97,537 Miners. J. Hand Surg. Eur. Vol. 2007, 32, 400–406. [Google Scholar] [CrossRef]
- de la Caffinière, J.Y.; Wagner, R.; Etscheid, J.; Metzger, F. Manual labor and Dupuytren disease. The results of a computerized survey in the field of iron metallurgy. Ann. Chir. Main Organe Off. Soc. Chir. Main 1983, 2, 66–72. [Google Scholar] [CrossRef]
- Riesmeijer, S.A.; Werker, P.M.N.; Nolte, I.M. Ethnic Differences in Prevalence of Dupuytren Disease Can Partly Be Explained by Known Genetic Risk Variants. Eur. J. Hum. Genet. 2019, 27, 1876–1884. [Google Scholar] [CrossRef] [Green Version]
Characteristic. | DC (n = 116) | Control (n = 103) | p-Value |
---|---|---|---|
Age (years) | 60.24 (SD 10.665) | 58.85 (SD 14.012) | 0.415 1 |
Gender: | <0.001 2 | ||
Male | 97 (83.6%) | 65 (63.1%) | |
Female | 19 (16.4%) | 38 (36.9%) |
Gene | SNP; Position | Group | Genotype Frequency | p-Value | MAF | p-Value | ||
---|---|---|---|---|---|---|---|---|
MMP8 | rs11225395 | AA | AG | GG | 0.496 | A | 0.477 | |
G > A | DC | 25 (21.6%) | 60 (51.7%) | 31 (26.7%) | 47.4 | |||
Chr.11:102725749 | Control | 19 (18.4%) | 49 (47.6%) | 35 (34.0%) | 42.2 | |||
CHST6 | rs977987 | TT | GT | GG | 0.708 | T | 0.568 | |
G > T | DC | 25 (21.6%) | 55 (47.4%) | 36 (31.0%) | 45.3 | |||
Chr.16:75472695 | Control | 19 (18.4%) | 47 (45.6%) | 37 (35.9%) | 41.3 | |||
MMP14 | rs1042704 | AA | AG | GG | 0.422 | A | 0.635 | |
G > A | DC | 11 (9.5%) | 46 (39.7%) | 59 (50.9%) | 29.3 | |||
Chr.14:22843385 | Control | 5 (4.9%) | 43 (41.7%) | 55 (53.4%) | 25.7 |
Gene | SNP | Model | OR | 95% CI | p-Value |
---|---|---|---|---|---|
MMP8 | rs11225395 G > A | Genotype model: | |||
GG vs. AG and AA | 1.411 | 0.791–2.518 | 0.244 | ||
AA vs. AG and GG | 0.823 | 0.423–1.603 | 0.567 | ||
AG vs. GG and AA | 0.847 | 0.498–1.441 | 0.540 | ||
Allelic model: | |||||
G carrier vs. G noncarrier | 0.709 | 0.397–1.264 | 0.244 | ||
A carrier vs. A noncarrier | 1.215 | 0.624–2.365 | 0.567 | ||
CHST6 | rs977987 G > T | Genotype model: | |||
GG vs. TG and TT | 0.825 | 0.423–1.603 | 0.567 | ||
TT vs. TG and GG | 1.246 | 0.710–2.187 | 0.444 | ||
TG vs. GG and TT | 0.931 | 0.547–1.585 | 0.792 | ||
Allelic model: | |||||
G carrier vs. G noncarrier | 0.803 | 0.457–1.409 | 0.444 | ||
T carrier vs. T noncarrier | 1.215 | 0.625–2.365 | 0.567 | ||
MMP14 | rs1042704 G > A | Genotype model: | |||
GG vs. AG and AA | 1.107 | 0.651–1.883 | 0.708 | ||
AA vs. AG and GG | 0.487 | 0.163–1.452 | 0.197 | ||
AG vs. GG and AA | 1.091 | 0.635–1.872 | 0.753 | ||
Allelic model: | |||||
G carrier vs. G noncarrier | 0.903 | 0.531–1.537 | 0.708 | ||
A carrier vs. A noncarrier | 2.053 | 0.689–6.122 | 0.197 |
Gene | SNP | Age group | Genotypes | p-Value | ||
---|---|---|---|---|---|---|
MMP8 | rs11225395 | AA | AG | GG | 0.834 | |
≤56 | 12 (22.2%) | 29 (53.7%) | 13 (24.1%) | |||
>57 | 13 (21.0%) | 31 (50.0%) | 18 (29.0%) | |||
CHST6 | rs977987 | AA | AG | GG | 0.024 1 | |
≤56 | 24 (44.4%) | 22 (40.7%) | 8 (14.8%) | |||
>57 | 12 (19.3%) | 33 (53.2%) | 17 (27.4%) | |||
MMP14 | rs1042704 | AA | AG | GG | 0.040 1 | |
≤56 | 9 (16.8%) | 19 (35.1%) | 26 (48.1%) | |||
>57 | 2 (3.2%) | 27 (43.5%) | 33 (53.3%) |
Gene | SNP | Model | OR | 95% CI | p-Value |
---|---|---|---|---|---|
CHST6 | rs977987 | Genotype model: | |||
GG vs. GT and TT | 0.712 | 0.290–1.751 | 0.459 | ||
TT vs. GT and GG | 1.691 | 1.465–3.737 | 0.044 1 | ||
GT vs. TT and GG | 0.800 | 0.385–1.664 | 0.550 | ||
Allelic model: | |||||
G carrier vs. G noncarrier | 0.591 | 0.268–0.831 | 0.029 1 | ||
T carrier vs. T noncarrier | 1.404 | 1.571–3.453 | 0.036 1 | ||
MMP14 | rs1042704 | Genotype model: | |||
GG vs. GA and AA | 1.077 | 0.519–2.235 | 0.842 | ||
AA vs. GA and GG | 2.160 | 2.160–7.824 | 0.024 1 | ||
GA vs. GG and AA | 0.704 | 0.332–1.491 | 0.359 | ||
Allelic model: | |||||
G carrier vs. G noncarrier | 0.463 | 0.278–0.678 | 0.024 1 | ||
A carrier vs. A noncarrier | 0.929 | 0.448–1.927 | 0.842 |
Age Group | Family History in DC | OR | 95 % CI | p-Value | |
---|---|---|---|---|---|
Positive (n = 33) | Negative (n = 83) | ||||
≤56 >57 | 21 (38.9%) 12 (19.4%) | 33 (61.1%) 50 (80.6%) | 2439 | 1.055–5.642 | 0.035 1 |
Parameters | Reference Values | Odds Ratio | 95% CI | p-Value |
---|---|---|---|---|
Smoking | Non-smoking | 2.084 | 1.114–3.898 | 0.020 1 |
Manual labor | Non-manual labor | 2.615 | 1.482–4.615 | 0.001 1 |
Smoking + manual labor | Non-smoking + non-manual labor | 13.174 | 3.029–57.290 | <0.001 1 |
MMP14 rs1042704 A allele + smoking + manual labor | MMP14 rs1042704 G allele + non-smoking + non-manual labor | 14.000 | 1.807–108.450 | 0.010 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samulenas, G.; Insodaite, R.; Kunceviciene, E.; Poceviciute, R.; Masionyte, L.; Zitkeviciute, U.; Pilipaityte, L.; Smalinskiene, A. The Role of Functional Polymorphisms in the Extracellular Matrix Modulation-Related Genes on Dupuytren’s Contracture. Genes 2022, 13, 743. https://doi.org/10.3390/genes13050743
Samulenas G, Insodaite R, Kunceviciene E, Poceviciute R, Masionyte L, Zitkeviciute U, Pilipaityte L, Smalinskiene A. The Role of Functional Polymorphisms in the Extracellular Matrix Modulation-Related Genes on Dupuytren’s Contracture. Genes. 2022; 13(5):743. https://doi.org/10.3390/genes13050743
Chicago/Turabian StyleSamulenas, Gediminas, Ruta Insodaite, Edita Kunceviciene, Roberta Poceviciute, Lorena Masionyte, Urte Zitkeviciute, Loreta Pilipaityte, and Alina Smalinskiene. 2022. "The Role of Functional Polymorphisms in the Extracellular Matrix Modulation-Related Genes on Dupuytren’s Contracture" Genes 13, no. 5: 743. https://doi.org/10.3390/genes13050743
APA StyleSamulenas, G., Insodaite, R., Kunceviciene, E., Poceviciute, R., Masionyte, L., Zitkeviciute, U., Pilipaityte, L., & Smalinskiene, A. (2022). The Role of Functional Polymorphisms in the Extracellular Matrix Modulation-Related Genes on Dupuytren’s Contracture. Genes, 13(5), 743. https://doi.org/10.3390/genes13050743