Pitaya Genome and Multiomics Database (PGMD): A Comprehensive and Integrative Resource of Selenicereus undatus
Abstract
:1. Introduction
2. Data Records and Methods
2.1. Data Records
2.2. Data Processing
2.3. Database Construction
2.4. Code Availability
3. Results
3.1. Major Datasets
3.2. Uses
3.3. Technical Validation and Data Visualization
3.4. Genomic Data Validation
3.5. Gene Expression, miRNA and Multiomics Data Processing and Visualization
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Korotkova, N.; Aquino, D.; Arias, S.; Eggli, U.; Franck, A.; Gómez-Hinostrosa, C.; Guerrero, P.C.; Hernández, H.M.; Kohlbecker, A.; Köhler, M.; et al. Cactaceae at Caryophyllales. org- a dynamic online species-level taxonomic backbone for the family. Willdenowia 2021, 51, 251–270. [Google Scholar] [CrossRef]
- Ortiz-Hernández, Y.D.; Carrillo-Salazar, J.A. Pitahaya (Hylocereus ssp.): A short review. Comun. Sci. 2012, 3, 220–237. [Google Scholar]
- Zheng, J.F.; Meinhardt, L.W.; Goenaga, R.; Zhang, D.P.; Yin, Y.B. The chromosome-level genome of dragon fruit reveals whole-genome duplication and chromosomal co-localization of betacyanin biosynthetic genes. Hortic. Res. 2021, 8, 63. [Google Scholar] [CrossRef]
- Chen, J.Y.; Xie, F.F.; Cui, Y.Z.; Chen, C.B.; Lu, W.J.; Hu, X.D.; Hua, Q.Z.; Zhao, J.; Wu, Z.J.; Gao, D.; et al. A chromosome-scale genome sequence of pitaya (Hylocereus undatus) provides novel insights into the genome evolution and regulation of betalain biosynthesis. Hortic. Res. 2021, 8, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.F.; Hua, Q.Z.; Chen, C.B.; Zhang, Z.K.; Zhang, R.; Zhao, J.T.; Hu, G.B.; Chen, J.Y.; Qin, Y.H. Genome-wide characterization of R2R3-MYB transcription factors in pitaya reveals a R2R3-MYB repressor HuMYB1 involved in fruit ripening through regulation of betalain biosynthesis by repressing betalain biosynthesis-related genes. Cells 2021, 10, 1949. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.F.; Hua, Q.Z.; Chen, C.B.; Zhang, L.L.; Zhang, Z.K.; Chen, J.Y.; Zhang, R.; Zhao, J.S.; Hu, G.B.; Zhao, J.T.; et al. Transcriptomics-based identification and characterization of glucosyltransferases involved in betalain biosynthesis in Hylocereus megalanthus. Plant Physiol. Bioch. 2020, 152, 112–124. [Google Scholar] [CrossRef]
- Hua, Q.Z.; Chen, C.J.; Chen, Z.; Chen, P.K.; Ma, Y.W.; Wu, J.Y.; Zheng, J.; Hu, G.B.; Zhao, J.T.; Qin, Y.H. Transcriptomic analysis reveals key genes related to betalain biosynthesis in pulp coloration of Hylocereus polyrhizus. Front. Plant Sci. 2016, 6, 1179. [Google Scholar]
- Hua, Q.Z.; Zhou, Q.J.; Gan, S.S.; Wu, J.Y.; Chen, C.B.; Li, J.Q.; Ye, Y.X.; Zhao, J.T.; Hu, G.B.; Qin, Y.H. Proteomic analysis of Hylocereus polyrhizus reveals metabolic pathway changes. Int. J. Mol. Sci. 2016, 17, 1606. [Google Scholar] [CrossRef]
- Hua, Q.Z.; Chen, C.B.; Tel Zurb, N.; Wang, H.C.; Wu, J.Y.; Chen, J.Y.; Zhang, Z.K.; Zhao, J.T.; Hu, G.B.; Qin, Y.H. Metabolomic characterization of pitaya fruit from three red-skinned cultivars with different pulp colors. Plant Physiol. Bioch. 2018, 126, 117–125. [Google Scholar] [CrossRef]
- Cai, S.; Zhang, Z.Y.; Huang, S.Y.; Bai, X.; Huang, Z.Y.; Zhang, Y.P.J.; Huang, L.K.; Tang, W.Q.; Haughn, G.; You, S.J.; et al. CannabisGDB: A comprehensive genomic database for Cannabis Sativa L. Plant Biotechnol. J. 2021, 19, 1–3. [Google Scholar] [CrossRef]
- Li, H.; Yang, X.Y.; Zhang, Y.; Gao, Z.Y.; Liang, Y.T.; Chen, J.M.; Shi, T. Nelumbo genome database, an integrative resource for gene expression and variants of Nelumbo nucifera. Sci. Data 2021, 8, 38. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Q.Q.; Li, Z.Q.; Qu, M.M.; Xu, W.Y.; Su, Z.; Yang, J.T. LjaFGD: Lonicera japonica functional genomics database. J. Integr. Plant Biol. 2021, 63, 1422–1463. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.Y.W.; Zhang, L.; Zhou, Y.L.; Tu, M.L.; Wu, Z.Z.; Gui, D.P.; Ma, Y.P.; Wang, J.H.; Zhang, C.J. The Rhododendron Plant Genome Database (RPGD): A comprehensive online omics database for Rhododendron. BMC Genom. 2021, 22, 376. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.H.; Qiao, Y.S.; Ni, Z.Y.; Du, J.K.; Xiong, J.S.; Cheng, Z.M.; Chen, F. GDS: A genomic database for strawberries (Fragaria spp.). Horticulturae 2022, 8, 41. [Google Scholar] [CrossRef]
- NCBI Sequence Read Archive. 2021. Available online: https://identifiers.org/ncbi/insdc.Bioproject:PRJNA691451 (accessed on 20 April 2022).
- NCBI Sequence Read Archive. 2021. Available online: https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA664414 (accessed on 20 April 2022).
- NCBI Sequence Read Archive. 2021. Available online: https://www.ncbi.nlm.nih.gov/bioproject/PRJNA704510 (accessed on 20 April 2022).
- NCBI Sequence Read Archive. 2021. Available online: https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA725049 (accessed on 20 April 2022).
- NCBI Sequence Read Archive. 2019. Available online: https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA588519 (accessed on 20 April 2022).
- Figshare. 2021. Available online: https://figshare.com/articles/software/pitayaupload_tar/16570611 (accessed on 20 April 2022).
- Do Valle, Í.F.; Giampieri, E.; Simonetti, G.; Padella, A.; Manfrini, M.; Ferrari, A.; Papayannidis, C.; Zironi, I.; Garonzi, M.; Bernardi, S.; et al. Optimized pipeline of MuTect and GATK tools to improve the detection of somatic single nucleotide polymorphisms in whole-exome sequencing data. BMC Bioinform. 2016, 17, 27–35. [Google Scholar] [CrossRef] [Green Version]
- Pertea, M.; Kim, D.; Pertea, G.M.; Leek, J.T.; Salzberg, S.L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat. Protoc. 2016, 11, 1650–1667. [Google Scholar] [CrossRef]
- Houtgast, E.J.; Sima, V.M.; Bertels, K.; Al-Ars, Z. Hardware acceleration of BWA-MEM genomic short read mapping for longer read lengths. Comput. Biol. Chem. 2018, 75, 54–64. [Google Scholar] [CrossRef]
- Alonge, M.; Soyk, S.; Ramakrishnan, S.; Wang, X.G.; Goodwin, S.; Sedlazeck, F.J.; Lippman, Z.B.; Schatz, M.C. RaGOO: Fast and accurate reference-guided scaffolding of draft genomes. Genome Biol. 2019, 20, 224. [Google Scholar] [CrossRef] [Green Version]
- Li, H. Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics 2018, 34, 3094–3100. [Google Scholar] [CrossRef]
- Goel, M.; Sun, H.; Jiao, W.B.; Schneeberger, K. SyRI: Finding genomic rearrangements and local sequence differences from whole-genome assemblies. Genome Biol. 2019, 20, 277. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [Green Version]
- Buels, R.; Yao, E.; Diesh, C.M.; Hayes, R.D.; Munoz-Torres, M.; Helt, G.; Goodstein, D.M.; Elsik, C.G.; Lewis, S.E.; Stein, L.; et al. JBrowse: A dynamic web platform for genome visualization and analysis. Genome Biol. 2016, 17, 66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skinner, M.E.; Uzilov, A.V.; Stein, L.D.; Mungall, C.J.; Holmes, I.H. JBrowse: A next-generation genome browser. Genome Res. 2009, 19, 1630–1638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simao, F.A.; Waterhouse, R.M.; Ioannidis, P.; Kriventseva, E.V.; Zdobnov, E.M. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 2015, 31, 3210–3212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Li, F.; Xie, F.; Chen, J.; Hua, Q.; Chen, J.; Wu, Z.; Zhang, Z.; Zhang, R.; Zhao, J.; et al. Pitaya Genome and Multiomics Database (PGMD): A Comprehensive and Integrative Resource of Selenicereus undatus. Genes 2022, 13, 745. https://doi.org/10.3390/genes13050745
Chen C, Li F, Xie F, Chen J, Hua Q, Chen J, Wu Z, Zhang Z, Zhang R, Zhao J, et al. Pitaya Genome and Multiomics Database (PGMD): A Comprehensive and Integrative Resource of Selenicereus undatus. Genes. 2022; 13(5):745. https://doi.org/10.3390/genes13050745
Chicago/Turabian StyleChen, Canbin, Fangping Li, Fangfang Xie, Jiaxuan Chen, Qingzhu Hua, Jianye Chen, Zhijiang Wu, Zhike Zhang, Rong Zhang, Jietang Zhao, and et al. 2022. "Pitaya Genome and Multiomics Database (PGMD): A Comprehensive and Integrative Resource of Selenicereus undatus" Genes 13, no. 5: 745. https://doi.org/10.3390/genes13050745
APA StyleChen, C., Li, F., Xie, F., Chen, J., Hua, Q., Chen, J., Wu, Z., Zhang, Z., Zhang, R., Zhao, J., Hu, G., & Qin, Y. (2022). Pitaya Genome and Multiomics Database (PGMD): A Comprehensive and Integrative Resource of Selenicereus undatus. Genes, 13(5), 745. https://doi.org/10.3390/genes13050745