A target Capture Probe Set Useful for Deep- and Shallow-Level Phylogenetic Studies in Cactaceae
Abstract
:1. Introduction
2. Materials and Methods
2.1. Target Loci Selection, Probe Design, and Library Preparation
2.2. Sampling, DNA Extraction, and Library Preparation
2.3. Sequencing Assembly, Alignment, and Genetic Variability of Target Loci
2.4. Phylogenetic Inference
3. Results
3.1. Sequencing and Datasets
3.2. Phylogenetic Reconstructions
4. Discussion
4.1. Cactaceae591: A Lineage-Specific Probe Set to Perform Evolutionary Studies in Cactus
4.2. Notes on the Phylogenetic Relationships
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Guerrero, P.; Majure, L.C.; Cornejo-Romero, A.; Hernández-Hernández, T. Phylogenetic Relationships and Evolutionary Trends in the Cactus Family. J. Hered. 2018, 110, 4–21. [Google Scholar] [CrossRef] [PubMed]
- Franco, F.F.; Amaral, D.T.; Bonatelli, I.A.S.; Romeiro-Brito, M.; Telhe, M.C.; Moraes, E.M. Evolutionary Genetics of Cacti: Research Biases, Advances and Prospects. Genes 2022, 13, 452. [Google Scholar] [CrossRef] [PubMed]
- Ritz, C.M.; Martins, L.; Mecklenburg, R.; Goremykin, V.; Hellwig, F.H. The molecular phylogeny of Rebutia (Cactaceae) and its allies demonstrates the influence of paleogeography on the evolution of South American mountain cacti. Am. J. Bot. 2007, 94, 1321–1332. [Google Scholar] [CrossRef] [PubMed]
- Bárcenas, R.T.; Yesson, C.; Hawkins, J.A. Molecular systematics of the Cactaceae. Cladistics 2011, 27, 470–489. [Google Scholar] [CrossRef]
- Hernández-Hernández, T.; Hernández, H.M.; De-Nova, J.A.; Puente, R.; Eguiarte, L.E.; Magallón, S. Phylogenetic relationships and evolution of growth form in Cactaceae (Caryophyllales; Eudicotyledoneae). Am. J. Bot. 2011, 98, 44–61. [Google Scholar] [CrossRef] [Green Version]
- Vázquez-Sánchez, M.; Terrazas, T.; Arias, S.; Ochoterena, H. Molecular phylogeny, origin and taxonomic implications of the tribe Cacteae (Cactaceae). Syst. Biodivers. 2013, 11, 103–116. [Google Scholar] [CrossRef]
- Calvente, A.; Moraes, E.M.; Lavor, P.; Bonatelli, I.A.S.; Nacaguma, P.; Versieux, L.M.; Taylor, N.P.; Zappi, D.C. Phylogenetic analyses of Pilosocereus (Cactaceae) inferred from plastid and nuclear sequences. Bot. J. Linn. Soc. 2017, 183, 25–38. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Hernández, T.; Brown, J.; Schlumpberger, B.O.; Eguiarte, L.E.; Magallón, S. Beyond aridification: Multiple explanations for the elevated diversification of cacti in the New World Succulent Biome. New Phytol. 2014, 202, 1382–1397. [Google Scholar] [CrossRef] [Green Version]
- Maddison, W.P. Gene trees in species trees. Syst. Biol. 1997, 46, 523–536. [Google Scholar] [CrossRef]
- Seehausen, O.; Butlin, R.; Keller, I.; Wagner, C.E.; Boughman, J.W.; Hohenlohe, P.A.; Peichel, C.L.; Saetre, G.; Bank, C.; Brännström, A.; et al. Genomics and the origin of species. Nat. Rev. Genet. 2014, 15, 176–192. [Google Scholar] [CrossRef] [Green Version]
- Edwards, S.V.; Xi, Z.; Janke, A.; Faircloth, B.C.; McCormack, J.E.; Glenn, T.C.; Zhong, B.; Wu, S.; Lemmon, E.M.; Lemmon, A.R.; et al. Implementing and testing the multispecies coalescent model: A valuable paradigm for phylogenomics. Mol. Phylogenet. Evol. 2016, 94, 447–462. [Google Scholar] [CrossRef] [PubMed]
- McKain, M.R.; Johnson, M.G.; Uribe-Convers, S.; Eaton, D.; Yang, Y. Practical considerations for plant phylogenomics. Appl. Plant Sci. 2018, 6, e1038. [Google Scholar] [CrossRef] [PubMed]
- Sanderson, M.J.; Copetti, D.; Búrquez, A.; Bustamante, E.; Charboneau, J.L.; Eguiarte, L.E.; Kumar, S.; Lee, H.O.; Lee, J.; McMahon, M.; et al. Exceptional reduction of the plastid genome of saguaro cactus (Carnegiea gigantea): Loss of the ndh gene suite and inverted repeat. Am. J. Bot. 2015, 102, 1115–1127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Copetti, D.; Búrquez, A.; Bustamante, E.; Charboneau, J.L.M.; Childs, K.; Eguiarte, L.E.; Lee, S.; Liu, T.L.; McMahon, M.M.; Whiteman, N.; et al. Extensive gene tree discordance and hemiplasy shaped the genomes of North American columnar cacti. Proc. Natl. Acad. Sci. USA 2017, 114, 12003–12008. [Google Scholar] [CrossRef] [Green Version]
- Walker, J.F.; Yang, Y.; Feng, T.; Timoneda, A.; Mikenas, J.; Hutchison, V.; Edwards, C.; Wang, N.; Ahluwalia, S.; Olivieri, J.; et al. From cacti to carnivores: Improved phylotranscriptomic sampling and hierarchical homology inference provide further insight into the evolution of Caryophyllales. Am. J. Bot. 2018, 105, 446–462. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Yang, Y.; Moore, M.J.; Brockington, S.F.; Walker, J.F.; Brown, J.W.; Liang, B.; Feng, T.; Edwards, C.; Mikenas, J.; et al. Evolution of Portulacineae Marked by Gene Tree Conflict and Gene Family Expansion Associated with Adaptation to Harsh Environments. Mol. Biol. Evol. 2018, 36, 112–126. [Google Scholar] [CrossRef]
- Bombonato, J.R.; Amaral, D.T.; Silva, G.A.R.; Khan, G.; Moraes, E.M.; Andrade, S.C.; Eaton, D.A.R.; Alonso, D.P.; Ribolla, P.E.M.; Taylor, N.; et al. The potential of genome-wide RAD sequences for resolving rapid radiations: A case study in Cactaceae. Mol. Phylogenetics Evol. 2020, 151, 106896. [Google Scholar] [CrossRef]
- Merklinger, F.F.; Böhnert, T.; Arakaki, M.; Weigend, M.; Quandt, D.; Luebert, F. Quaternary diversification of a columnar cactus in the driest place on earth. Am. J. Bot. 2021, 108, 184–199. [Google Scholar] [CrossRef]
- Köhler, M.; Reginato, M.; Souza-Chies, T.T.; Majure, L.C. Insights into Chloroplast Genome Evolution Across Opuntioideae (Cactaceae) Reveals Robust Yet Sometimes Conflicting Phylogenetic Topologies. Front. Plant Sci. 2020, 11, 729. [Google Scholar] [CrossRef]
- Majure, L.C.; Baker, M.A.; Cloud-Hughes, M.; Salywon, A.; Neubig, K.M. Phylogenomics in Cactaceae: A case study using the chollas sensu lato (Cylindropuntieae, Opuntioideae) reveals a common pattern out of the Chihuahuan and Sonoran deserts. Am. J. Bot. 2019, 106, 1327–1345. [Google Scholar] [CrossRef]
- Majure, L.C.; Barrios, D.; Díaz, E.; Zumwalde, B.A.; Testo, W.; Negrón-Ortíz, V. Pleistocene aridification underlies the evolu-tionary history of the Caribbean endemic, insular, giant Consolea (Opuntioideae). Am. J. Bot. 2021, 108, 200–215. [Google Scholar] [CrossRef] [PubMed]
- Breslin, P.B.; Wojciechowski, M.F.; Majure, L.C. Molecular phylogeny of the Mammilloid clade (Cactaceae) resolves the monophyly of Mammillaria. Taxon 2021, 70, 308–323. [Google Scholar] [CrossRef]
- Mamanova, L.; Coffey, A.J.; Scott, C.E.; Kozarewa, I.; Turner, E.H.; Kumar, A.; Howard, E.; Shendure, J.; Turner, D.J. Target-enrichment strategies for next-generation sequencing. Nat. Methods 2010, 7, 111–118. [Google Scholar] [CrossRef] [PubMed]
- McDonnell, A.J.; Baker, W.J.; Dodsworth, S.; Forest, F.; Graham, S.W.; Johnson, M.G.; Pokorny, L.; Tate, J.; Wicke, S.; Wickett, N.J. Exploring Angiosperms353: Developing and applying a universal toolkit for flowering plant phylogenomics. Appl. Plant Sci. 2021, 9, e11443. [Google Scholar] [CrossRef] [PubMed]
- Baker, W.J.; Bailey, P.; Barber, V.; Barker, A.; Bellot, S.; Bishop, D.; Botigué, L.R.; Brewer, G.; Carruthers, T.; Clarkson, J.J.; et al. A comprehensive phylogenomic platform for exploring the angiosperm tree of life. Syst. Biol. 2022, 71, 301–319. [Google Scholar] [CrossRef]
- Johnson, M.G.; Pokorny, L.; Dodsworth, S.; Botigue, L.R.; Cowan, R.S.; Devault, A.; Eiserhardt, W.L.; Epitawalage, N.; Forest, F.; Kim, J.T.; et al. A universal probe set for targeted sequencing of 353 nuclear genes from any flowering plant designed using k-medoids clustering. Syst. Biol. 2019, 68, 594–606. [Google Scholar] [CrossRef] [Green Version]
- Acha, S.; Majure, L.C. A New Approach Using Targeted Sequence Capture for Phylogenomic Studies across Cactaceae. Genes 2022, 13, 350. [Google Scholar] [CrossRef]
- Shee, Z.Q.; Frodin, D.G.; Cámara-Leret, R.; Pokorny, L. Reconstructing the complex evolutionary history of the Papuasian Schefflera radiation through herbariomics. Front. Plant Sci. 2020, 11, 258. [Google Scholar] [CrossRef]
- Chau, J.H.; Rahfeldt, W.A.; Olmstead, R.G. Comparison of taxon-specific versus general locus sets for targeted sequence capture in plant phylogenomics. Appl. Plant Sci. 2018, 6, e1032. [Google Scholar] [CrossRef]
- Jantzen, J.R.; Amarasinghe, P.; Folk, R.A.; Reginato, M.; Michelangeli, F.A.; Soltis, D.E.; Cellinese, N.; Soltis, P.S. A two-tier bioinformatic pipeline to develop probes for target capture of nuclear loci with applications in Melastomataceae. Appl. Plant Sci. 2020, 8, e11345. [Google Scholar] [CrossRef]
- Yardeni, G.; Viruel, J.; Paris, M.; Hess, J.; Crego, C.G.; de La Harpe, M.; Rivera, N.; Barfuss, M.H.J.; Till, W.; Guzmán-Jacob, V.; et al. Taxon-specific or universal? Using target capture to study the evolutionary history of rapid radiations. Mol. Ecol. Resour. 2022, 22, 927–945. [Google Scholar] [CrossRef] [PubMed]
- Siniscalchi, C.M.; Hidalgo, O.; Palazzesi, L.; Pellicer, J.; Pokorny, L.; Maurin, O.; Leitch, I.J.; Forest, F.; Baker, W.J.; Mandel, J.R. Lineage-specific vs. universal: A comparison of the Compositae1061 and Angiosperms353 enrichment panels in the sunflower family. Appl. Plant Sci. 2022, 9, e11422. [Google Scholar] [CrossRef] [PubMed]
- Weitemier, K.; Straub, S.C.; Cronn, R.C.; Fishbein, M.; Schmickl, R.; McDonnell, A.; Liston, A. Hyb-Seq: Combining target enrichment and genome skimming for plant phylogenomics. Appl. Plant Sci. 2014, 2, 1400042. [Google Scholar] [CrossRef] [PubMed]
- Villaverde, T.; Pokorny, L.; Olsson, S.; Rincón-Barrado, M.; Johnson, M.G.; Gardner, E.M.; Wickett, N.J.; Molero, J.; Riina, R.; Sanmartín, I. Bridging the micro-and macroevolutionary levels in phylogenomics: Hyb-Seq solves relationships from populations to species and above. New Phytol. 2018, 220, 636–650. [Google Scholar] [CrossRef]
- Sanderson, B.J.; DiFazio, S.P.; Cronk, Q.C.; Ma, T.; Olson, M.S. A targeted sequence capture array for phylogenetics and population genomics in the Salicaceae. Appl. Plant Sci. 2020, 8, e11394. [Google Scholar] [CrossRef]
- Peakall, R.; Wong, D.C.; Phillips, R.D.; Ruibal, M.; Eyles, R.; Rodriguez-Delgado, C.; Linde, C.C. A multitiered sequence capture strategy spanning broad evolutionary scales: Application for phylogenetic and phylogeographic studies of orchids. Mol. Ecol. Resour. 2021, 21, 1118–1140. [Google Scholar] [CrossRef]
- Larridon, I.; Villaverde, T.; Zuntini, A.R.; Pokorny, L.; Brewer, G.E.; Epitawalage, N.; Fairlie, I.; Hahn, M.; Kim, J.; Maguilla, E.; et al. Tackling rapid radiations with targeted sequencing. Front. Plant Sci. 2020, 10, 1655. [Google Scholar] [CrossRef]
- Bagley, J.C.; Uribe-Convers, S.; Carlsen, M.M.; Muchhala, N. Utility of targeted sequence capture for phylogenomics in rapid, recent angiosperm radiations: Neotropical Burmeistera bellflowers as a case study. Mol. Phylogenet. Evol. 2020, 152, 106769. [Google Scholar] [CrossRef]
- Thomas, A.E.; Igea, J.; Meudt, H.M.; Albach, D.C.; Lee, W.G.; Tanentzap, A.J. Using target sequence capture to improve the phylogenetic resolution of a rapid radiation in New Zealand Veronica. Am. J. Bot. 2021, 108, 1289–1306. [Google Scholar] [CrossRef]
- de La Harpe, M.; Hess, J.; Loiseau, O.; Salamin, N.; Lexer, C.; Paris, M. A dedicated target capture approach reveals variable genetic markers across micro-and macro-evolutionary time scales in palms. Mol. Ecol. Resour. 2019, 19, 221–234. [Google Scholar] [CrossRef]
- Christe, C.; Boluda, C.G.; Koubínová, D.; Gautier, L.; Naciri, Y. New genetic markers for Sapotaceae phylogenomics: More than 600 nuclear genes applicable from family to population levels. Mol. Phylogenet. Evol. 2021, 160, 107123. [Google Scholar] [CrossRef] [PubMed]
- Emms, D.M.; Kelly, S. OrthoFinder: Phylogenetic orthology inference for comparative genomics. Genome Biol. 2019, 20, 238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.; Xu, J.; Han, X.; Qiao, G.; Yang, K.; Wen, Z.; Wen, X. Comparative transcriptome analysis combining SMRT-and Illumina-based RNA-Seq identifies potential candidate genes involved in betalain biosynthesis in pitaya fruit. Int. J. Mol. Sci. 2020, 21, 3288. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.Y.; Krishnakumar, V.; Chan, A.P.; Thibaud-Nissen, F.; Schobel, S.; Town, C.D. Araport11: A complete reannotation of the Arabidopsis thaliana reference genome. Plant J. 2017, 89, 789–804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Bel, M.; Silvestri, F.; Weitz, E.M.; Kreft, L.; Botzki, A.; Coppens, F.; Vandepoele, K. PLAZA 5.0: Extending the scope and power of comparative and functional genomics in plants. Nucleic Acids Res. 2022, 50, 1468–1474. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Meinhardt, L.W.; Goenaga, R.; Zhang, D.; Yin, Y. The chromosome-level genome of dragon fruit reveals whole-genome duplication and chromosomal co-localization of betacyanin biosynthetic genes. Hortic. Res. 2021, 8, 1468–1474. [Google Scholar] [CrossRef]
- McLay, T.G.; Birch, J.L.; Gunn, B.F.; Ning, W.; Tate, J.A.; Nauheimer, L.; Joyce, E.M.; Simpson, L.; Schmidt-Lebuhn, A.N.; Baker, W.J.; et al. New targets acquired: Improving locus recovery from the Angiosperms353 probe set. Appl. Plant Sci. 2022, 9, e11420. [Google Scholar] [CrossRef]
- Nyffeler, R.; Eggli, U. A farewell to dated ideas and concepts: Molecular phylogenetics and a revised suprageneric classification of the family Cactaceae. Schumannia 2010, 6, 109–149. [Google Scholar]
- Arakaki, M.; Christin, P.A.; Nyffeler, R.; Lendel, A.; Eggli, U.; Ogburn, R.M.; Spriggs, E.; Moore, M.J.; Edwards, E.J. Contemporaneous and recent radiations of the world’s major succulent plant lineages. Proc. Natl. Acad. Sci. USA 2011, 108, 8379–8384. [Google Scholar] [CrossRef] [Green Version]
- Franco, F.F.; Silva, G.A.R.; Moraes, E.M.; Taylor, N.; Zappi, D.C.; Jojima, C.L.; Machado, M.C. Plio-Pleistocene diversification of Cereus (Cactaceae, Cereeae) and closely allied genera. Bot. J. Linn. 2017, 183, 199–210. [Google Scholar] [CrossRef]
- Amaral, D.T.; Minhós-Yano, I.; Oliveira, J.V.M.; Romeiro-Brito, M.; Bonatelli, I.A.S.; Taylor, N.P.; Zappi, D.C.; Moraes, E.M.; Eaton, D.A.R.; Franco, F.F. Tracking the xeric biomes of South America: The spatiotemporal diversification of Mandacaru cactus. J. Biogeogr. 2021, 48, 3085–3103. [Google Scholar] [CrossRef]
- Inglis, P.W.; Pappas, M.D.C.R.; Resende, L.V.; Grattapaglia, D. Fast and inexpensive protocols for consistent extraction of high quality DNA and RNA from challenging plant and fungal samples for high-throughput SNP genotyping and sequencing applications. PLoS ONE 2018, 13, e0206085. [Google Scholar] [CrossRef] [PubMed]
- Schubert, M.; Lindgreen, S.; Orlando, L. AdapterRemoval v2: Rapid adapter trimming, identification, and read merging. BMC Res. Notes 2016, 9, 88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, M.G.; Gardner, E.M.; Liu, Y.; Medina, R.; Goffinet, B.; Shaw, A.J.; Zerega, N.J.C.; Wickett, N.J. HybPiper: Extracting coding sequence and introns for phylogenetics from high-throughput sequencing reads using target enrichment. Appl. Plant Sci. 2016, 4, 1600016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, L.T.; Schmidt, H.A.; Von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [Green Version]
- Capella-Gutiérrez, S.; Silla-Martínez, J.M.; Gabaldón, T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2019, 25, 1972–1973. [Google Scholar] [CrossRef]
- Borowiec, M.L. AMAS: A fast tool for alignment manipulation and computing of summary statistics. PeerJ 2016, 25, 1972–1973. [Google Scholar] [CrossRef] [Green Version]
- Hoang, D.T.; Chernomor, O.; Von Haeseler, A.; Minh, B.Q.; Vinh, L.S. UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 2018, 35, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.; Von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Rabiee, M.; Sayyari, E.; Mirarab, S. ASTRAL-III: Polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinform. 2018, 19, 15–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sayyarim, E.; Mirarab, S. Fast coalescent-based computation of local branch support from quartet frequencies. Mol. Biol. Evol. 2016, 33, 1654–1668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franco, F.F.; Jojima, C.L.; Perez, M.F.; Zappi, D.C.; Taylor, N.; Moraes, E.M. The xeric side of the Brazilian Atlantic Forest: The forces shaping phylogeographic structure of cacti. Ecol. Evol. 2017, 7, 9281–9293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donoghue, M.J.; Sanderson, M.J. The suitability of molecular and morphological evidence in reconstructing plant phylogeny. In Molecular Systematics of Plants; Soltis, P.S., Soltis, D.E., Doyle, J.J., Eds.; Springer: Boston, MA, USA, 1992; pp. 340–368. [Google Scholar]
- Eserman, L.A.; Thomas, S.K.; Coffey, E.E.; Leebens-Mack, J.H. Target sequence capture in orchids: Developing a kit to sequence hundreds of single-copy loci. Appl. Plant Sci. 2021, 9, e11416. [Google Scholar] [CrossRef] [PubMed]
- Hendriks, K.P.; Mandáková, T.; Hay, N.M.; Ly, E.; Hooft van Huysduynen, A.; Tamrakar, R.; Thomas, S.K.; Toro-Núñez, O.; Pires, C.; Nikolov, L.A.; et al. The best of both worlds: Combining lineage-specific and universal bait sets in target-enrichment hybridization reactions. Appl. Plant Sci. 2021, 9, e11438. [Google Scholar] [CrossRef] [PubMed]
- Edwards, E.J.; Nyffeler, R.; Donoghue, M.J. Basal cactus phylogeny: Implications of Pereskia (Cactaceae) paraphyly for the transition to the cactus life form. Am. J. Bot. 2005, 92, 1177–1188. [Google Scholar] [CrossRef] [Green Version]
- Fantinati, M.R.; Soffiatti, P.; Calvente, A. A new phylogenetic hypothesis for Cereinae (Cactaceae) points to a monophyletic subtribe. Syst. Bot. 2021, 46, 689–699. [Google Scholar] [CrossRef]
- Schlumpberger, B.O.; Renner, S.S. Molecular phylogenetics of Echinopsis (Cactaceae): Polyphyly at all levels and convergent evolution of pollination modes and growth forms. Am. J. Bot. 2012, 99, 1335–1349. [Google Scholar] [CrossRef] [Green Version]
- Lendel, A. South American Cacti in Time and Space: Studies on the Diversification of the Tribe Cereeae, with Particular Focus on Subtribe Trichocereinae (Cactaceae). Ph.D. Thesis, Mathematisch- Naturwissenschaftlichen Fakultat der Universitat Zurich, Zurich, Switzerland, 2013. [Google Scholar]
- Taylor, N.; Zappi, D. Notes on plants called Cereus hexagonus (Cactaceae). Bradleya 2019, 37, 17–25. [Google Scholar] [CrossRef]
Dataset | Alignment Length (pb) | % Missing Data | S | PIS (%) |
---|---|---|---|---|
Cactaceae | ||||
Exons | 258,375 | 12.83 | 100,715 | 54,156 (0.211) |
Introns | 309,041 | 23.28 | 149,244 | 78,597 (0.254) |
anonymous regions | 154,174 | 64.45 | 44,159 | 22,416 (0.145) |
Cactaceae-coding | 258,375 | 12.83 | 100,715 | 54,156 (0.211) |
Cactaceae-all | 721,59 | 33.52 | 294,118 | 155,169 (0.215) |
Cereus Clade A | ||||
Exons | 303,688 | 12.67 | 24,729 | 10,278 (0.034) |
Introns | 424,012 | 5.49 | 42,732 | 18,454 (0.044) |
anonymous regions | 136,613 | 25.02 | 11,036 | 5148 (0.038) |
Cereus-noncoding | 560,025 | 15.26 | 53,768 | 23,603 (0.042) |
Cereus-all | 864,313 | 14.39 | 78,497 | 33,880 (0.039) |
Dataset | Total | High Support | Moderate Support | Low Support |
---|---|---|---|---|
Cactaceae-coding | ||||
concatenated | 57 | 51 | 5 | 1 |
coalescent-based | 57 | 48 | 7 | 2 |
Cactaceae-all | ||||
concatenated | 57 | 52 | 3 | 2 |
coalescent-based | 57 | 53 | 0 | 4 |
Cereus-noncoding | ||||
concatenated | 26 | 19 | 4 | 3 |
coalescent-based | 26 | 19 | 4 | 3 |
Cereus-all | ||||
concatenated | 26 | 19 | 5 | 2 |
coalescent-based | 26 | 21 | 3 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romeiro-Brito, M.; Telhe, M.C.; Amaral, D.T.; Franco, F.F.; Moraes, E.M. A target Capture Probe Set Useful for Deep- and Shallow-Level Phylogenetic Studies in Cactaceae. Genes 2022, 13, 707. https://doi.org/10.3390/genes13040707
Romeiro-Brito M, Telhe MC, Amaral DT, Franco FF, Moraes EM. A target Capture Probe Set Useful for Deep- and Shallow-Level Phylogenetic Studies in Cactaceae. Genes. 2022; 13(4):707. https://doi.org/10.3390/genes13040707
Chicago/Turabian StyleRomeiro-Brito, Monique, Milena Cardoso Telhe, Danilo Trabuco Amaral, Fernando Faria Franco, and Evandro Marsola Moraes. 2022. "A target Capture Probe Set Useful for Deep- and Shallow-Level Phylogenetic Studies in Cactaceae" Genes 13, no. 4: 707. https://doi.org/10.3390/genes13040707
APA StyleRomeiro-Brito, M., Telhe, M. C., Amaral, D. T., Franco, F. F., & Moraes, E. M. (2022). A target Capture Probe Set Useful for Deep- and Shallow-Level Phylogenetic Studies in Cactaceae. Genes, 13(4), 707. https://doi.org/10.3390/genes13040707