Mutation in Hemagglutinin Antigenic Sites in Influenza A pH1N1 Viruses from 2015–2019 in the United States Mountain West, Europe, and the Northern Hemisphere
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sequence Datasets
2.2. Sequence Alignment and Variant Identification
2.3. Phylogenetic Tree Reconstruction
2.4. Selection-Pressure Analysis
2.5. Bayesian Evolutionary Analysis
2.6. Coevolutionary Sequence Analysis
3. Results
3.1. Basic Analytical Design
3.2. 2015–2019. Mountain West H1N1 HA Sequences Fall into Two Distinct Clades with Specific Substitutions
3.3. USA, Euro, Northern Hemisphere Sampling Results Overview
3.4. Selection Pressure
3.5. Temporal Prevalence of Mutation across Geographical Areas
3.6. Additional Amino Acid Positions with Significant Temporal Changes
3.7. Coevolution
3.8. Amino Acid Positions Having Substantial Coevolution, Selection Pressure, and/or Temporal Changes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morens, D.M.; Fauci, A.S. The 1918 Influenza Pandemic: Insights for the 21st Century. J. Infect. Dis. 2007, 195, 1018–1028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novel Swine-Origin Influenza A (H1N1) Virus Investigation Team; Dawood, F.S.; Jain, S.; Finelli, L.; Shaw, M.W.; Lindstrom, S.; Garten, R.J.; Gubareva, L.V.; Xu, X.; Bridges, C.B.; et al. Emergence of a Novel Swine-Origin Influenza A (H1N1) Virus in Humans. N. Engl. J. Med. 2009, 360, 2605–2615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shrestha, S.S.; Swerdlow, D.L.; Borse, R.H.; Prabhu, V.S.; Finelli, L.; Atkins, C.Y.; Owusu-Edusei, K.; Bell, B.; Mead, P.S.; Biggerstaff, M.; et al. Estimating the Burden of 2009 Pandemic Influenza A (H1N1) in the United States (April 2009-April 2010). Clin. Infect. Dis. 2011, 52 (Suppl. S1), S75–S82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henritzi, D.; Petric, P.P.; Lewis, N.S.; Graaf, A.; Pessia, A.; Starick, E.; Breithaupt, A.; Strebelow, G.; Luttermann, C.; Parker, L.M.K.; et al. Surveillance of European Domestic Pig Populations Identifies an Emerging Reservoir of Potentially Zoonotic Swine Influenza A Viruses. Cell Host Microbe 2020, 28, 614–627.e6. [Google Scholar] [CrossRef]
- Rambo-Martin, B.L.; Keller, M.W.; Wilson, M.M.; Nolting, J.M.; Anderson, T.K.; Vincent, A.L.; Bagal, U.R.; Jang, Y.; Neuhaus, E.B.; Davis, C.T.; et al. Influenza A Virus Field Surveillance at a Swine-Human Interface. mSphere 2020, 5, e00822-19. [Google Scholar] [CrossRef] [Green Version]
- Parvin, J.D.; Moscona, A.; Pan, W.T.; Leider, J.M.; Palese, P. Measurement of the Mutation Rates of Animal Viruses: Influenza A Virus and Poliovirus Type 1. J. Virol. 1986, 59, 377–383. [Google Scholar] [CrossRef] [Green Version]
- Wille, M.; Tolf, C.; Avril, A.; Latorre-Margalef, N.; Wallerström, S.; Olsen, B.; Waldenström, J. Frequency and Patterns of Reassortment in Natural Influenza A Virus Infection in a Reservoir Host. Virology 2013, 443, 150–160. [Google Scholar] [CrossRef]
- Nelson, M.I.; Detmer, S.E.; Wentworth, D.E.; Tan, Y.; Schwartzbard, A.; Halpin, R.A.; Stockwell, T.B.; Lin, X.; Vincent, A.L.; Gramer, M.R.; et al. Genomic Reassortment of Influenza A Virus in North American Swine, 1998-2011. J. Gen. Virol. 2012, 93, 2584–2589. [Google Scholar] [CrossRef]
- Valkenburg, S.A.; Rutigliano, J.A.; Ellebedy, A.H.; Doherty, P.C.; Thomas, P.G.; Kedzierska, K. Immunity to Seasonal and Pandemic Influenza A Viruses. Microbes Infect. 2011, 13, 489–501. [Google Scholar] [CrossRef] [Green Version]
- Clohisey, S.; Baillie, J.K. Host Susceptibility to Severe Influenza A Virus Infection. Crit. Care 2019, 23, 303. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Liu, S.; Goraya, M.U.; Maarouf, M.; Huang, S.; Chen, J.-L. Host Immune Response to Influenza A Virus Infection. Front. Immunol. 2018, 9, 320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasin, A.V.; Temkina, O.A.; Egorov, V.V.; Klotchenko, S.A.; Plotnikova, M.A.; Kiselev, O.I. Molecular Mechanisms Enhancing the Proteome of Influenza A Viruses: An Overview of Recently Discovered Proteins. Virus Res. 2014, 185, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, Y.; Ito, T.; Suzuki, T.; Holland, R.E.; Chambers, T.M.; Kiso, M.; Ishida, H.; Kawaoka, Y. Sialic Acid Species as a Determinant of the Host Range of Influenza A Viruses. J. Virol. 2000, 74, 11825–11831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, R.; Cui, Q.; Rong, L. Competitive Cooperation of Hemagglutinin and Neuraminidase during Influenza A Virus Entry. Viruses 2019, 11, 458. [Google Scholar] [CrossRef] [Green Version]
- Fujioka, Y.; Nishide, S.; Ose, T.; Suzuki, T.; Kato, I.; Fukuhara, H.; Fujioka, M.; Horiuchi, K.; Satoh, A.O.; Nepal, P.; et al. A Sialylated Voltage-Dependent Ca2+ Channel Binds Hemagglutinin and Mediates Influenza A Virus Entry into Mammalian Cells. Cell Host Microbe 2018, 23, 809–818.e5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duvvuri, V.R.S.K.; Duvvuri, B.; Cuff, W.R.; Wu, G.E.; Wu, J. Role of Positive Selection Pressure on the Evolution of H5N1 Hemagglutinin. Genom. Proteom. Bioinform. 2009, 7, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Stray, S.J.; Pittman, L.B. Subtype- and Antigenic Site-Specific Differences in Biophysical Influences on Evolution of Influenza Virus Hemagglutinin. Virol. J. 2012, 9, 91. [Google Scholar] [CrossRef] [Green Version]
- Castelán-Vega, J.A.; Magaña-Hernández, A.; Jiménez-Alberto, A.; Ribas-Aparicio, R.M. The Hemagglutinin of the Influenza A(H1N1)Pdm09 is Mutating towards Stability. Adv. Appl. Bioinform. Chem. 2014, 7, 37–44. [Google Scholar] [CrossRef] [Green Version]
- Moore, K.A.; Ostrowsky, J.T.; Mehr, A.J.; Osterholm, M.T. CEIRS Pandemic Planning Committee Influenza Response Planning for the Centers of Excellence for Influenza Research and Surveillance: Science Preparedness for Enhancing Global Health Security. Influenza Other. Respir. Viruses 2020, 14, 444–451. [Google Scholar] [CrossRef] [Green Version]
- Spackman, E.; Cardona, C.; Muñoz-Aguayo, J.; Fleming, S. Successes and Short Comings in Four Years of an International External Quality Assurance Program for Animal Influenza Surveillance. PLoS ONE 2016, 11, e0164261. [Google Scholar] [CrossRef]
- Barr, I.G.; Cui, L.; Komadina, N.; Lee, R.T.; Lin, R.T.; Deng, Y.; Caldwell, N.; Shaw, R.; Maurer-Stroh, S. A New Pandemic Influenza A(H1N1) Genetic Variant Predominated in the Winter 2010 Influenza Season in Australia, New Zealand and Singapore. Eurosurveillance 2010, 15, 19692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fielding, J.; Higgins, N.; Gregory, J.; Grant, K.; Catton, M.; Bergeri, I.; Lester, R.; Kelly, H. Pandemic H1N1 Influenza Surveillance in Victoria, Australia, April–September, 2009. Eurosurveillance 2009, 14, 19368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, M.; Zhong, H.; He, J.; Rutherford, S.; Yang, F. Using Google Trends for Influenza Surveillance in South China. PLoS ONE 2013, 8, e55205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Potdar, V.A.; Chadha, M.S.; Jadhav, S.M.; Mullick, J.; Cherian, S.S.; Mishra, A.C. Genetic Characterization of the Influenza A Pandemic (H1N1) 2009 Virus Isolates from India. PLoS ONE 2010, 5, e9693. [Google Scholar] [CrossRef] [Green Version]
- Jones, S.; Nelson-Sathi, S.; Wang, Y.; Prasad, R.; Rayen, S.; Nandel, V.; Hu, Y.; Zhang, W.; Nair, R.; Dharmaseelan, S.; et al. Evolutionary, Genetic, Structural Characterization and Its Functional Implications for the Influenza A (H1N1) Infection Outbreak in India from 2009 to 2017. Sci. Rep. 2019, 9, 14690. [Google Scholar] [CrossRef] [Green Version]
- Elderfield, R.A.; Watson, S.J.; Godlee, A.; Adamson, W.E.; Thompson, C.I.; Dunning, J.; Fernandez-Alonso, M.; Blumenkrantz, D.; Hussell, T.; MOSAIC Investigators; et al. Accumulation of Human-Adapting Mutations during Circulation of A(H1N1)Pdm09 Influenza Virus in Humans in the United Kingdom. J. Virol. 2014, 88, 13269–13283. [Google Scholar] [CrossRef] [Green Version]
- Brammer, L.; Blanton, L.; Epperson, S.; Mustaquim, D.; Bishop, A.; Kniss, K.; Dhara, R.; Nowell, M.; Kamimoto, L.; Finelli, L. Surveillance for Influenza during the 2009 Influenza A (H1N1) Pandemic-United States, April 2009-March 2010. Clin. Infect. Dis. 2011, 52 (Suppl. S1), S27–S35. [Google Scholar] [CrossRef] [Green Version]
- Theo, A.; Liwewe, M.; Ndumba, I.; Mupila, Z.; Tambatamba, B.; Mutemba, C.; Somwe, S.W.; Mwinga, A.; Tempia, S.; Monze, M. Influenza Surveillance in Zambia, 2008–2009. J. Infect. Dis. 2012, 206 (Suppl. S1), S173–S177. [Google Scholar] [CrossRef]
- Caton, A.J.; Brownlee, G.G.; Yewdell, J.W.; Gerhard, W. The Antigenic Structure of the Influenza Virus A/PR/8/34 Hemagglutinin (H1 Subtype). Cell 1982, 31, 417–427. [Google Scholar] [CrossRef]
- Lee, A.J.; Das, S.R.; Wang, W.; Fitzgerald, T.; Pickett, B.E.; Aevermann, B.D.; Topham, D.J.; Falsey, A.R.; Scheuermann, R.H. Diversifying Selection Analysis Predicts Antigenic Evolution of 2009 Pandemic H1N1 Influenza A Virus in Humans. J. Virol. 2015, 89, 5427–5440. [Google Scholar] [CrossRef] [Green Version]
- Maurer-Stroh, S.; Lee, R.T.C.; Eisenhaber, F.; Cui, L.; Phuah, S.P.; Lin, R.T. A New Common Mutation in the Hemagglutinin of the 2009 (H1N1) Influenza A Virus. PLoS Curr. 2010, 2, RRN1162. [Google Scholar] [CrossRef] [PubMed]
- Sakabe, S.; Ozawa, M.; Takano, R.; Iwastuki-Horimoto, K.; Kawaoka, Y. Mutations in PA, NP, and HA of a Pandemic (H1N1) 2009 Influenza Virus Contribute to Its Adaptation to Mice. Virus Res. 2011, 158, 124–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ginting, T.E.; Shinya, K.; Kyan, Y.; Makino, A.; Matsumoto, N.; Kaneda, S.; Kawaoka, Y. Amino Acid Changes in Hemagglutinin Contribute to the Replication of Oseltamivir-Resistant H1N1 Influenza Viruses. J. Virol. 2012, 86, 121–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al Khatib, H.A.; Al Thani, A.A.; Yassine, H.M. Evolution and Dynamics of the Pandemic H1N1 Influenza Hemagglutinin Protein from 2009 to 2017. Arch. Virol. 2018, 163, 3035–3049. [Google Scholar] [CrossRef]
- Zhang, Y.; Aevermann, B.D.; Anderson, T.K.; Burke, D.F.; Dauphin, G.; Gu, Z.; He, S.; Kumar, S.; Larsen, C.N.; Lee, A.J.; et al. Influenza Research Database: An Integrated Bioinformatics Resource for Influenza Virus Research. Nucleic Acids Res. 2017, 45, D466–D474. [Google Scholar] [CrossRef] [Green Version]
- MapChart: Create Your Own Custom Map. Available online: https://mapchart.net/index.html (accessed on 4 August 2021).
- Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [Green Version]
- Waterhouse, A.M.; Procter, J.B.; Martin, D.M.A.; Clamp, M.; Barton, G.J. Jalview Version 2--a Multiple Sequence Alignment Editor and Analysis Workbench. Bioinformatics 2009, 25, 1189–1191. [Google Scholar] [CrossRef] [Green Version]
- Pickett, B.E.; Liu, M.; Sadat, E.L.; Squires, R.B.; Noronha, J.M.; He, S.; Jen, W.; Zaremba, S.; Gu, Z.; Zhou, L.; et al. Metadata-Driven Comparative Analysis Tool for Sequences (Meta-CATS): An Automated Process for Identifying Significant Sequence Variations That Correlate with Virus Attributes. Virology 2013, 447, 45–51. [Google Scholar] [CrossRef] [Green Version]
- Strait, B.J.; Dewey, T.G. The Shannon Information Entropy of Protein Sequences. Biophys. J. 1996, 71, 148–155. [Google Scholar] [CrossRef] [Green Version]
- Noronha, J.M.; Liu, M.; Squires, R.B.; Pickett, B.E.; Hale, B.G.; Air, G.M.; Galloway, S.E.; Takimoto, T.; Schmolke, M.; Hunt, V.; et al. Influenza Virus Sequence Feature Variant Type Analysis: Evidence of a Role for NS1 in Influenza Virus Host Range Restriction. J. Virol. 2012, 86, 5857–5866. [Google Scholar] [CrossRef] [Green Version]
- Lam, H.M.; Ratmann, O.; Boni, M.F. Improved Algorithmic Complexity for the 3SEQ Recombination Detection Algorithm. Mol. Biol. Evol. 2018, 35, 247–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arenas, M.; Posada, D. The Effect of Recombination on the Reconstruction of Ancestral Sequences. Genetics 2010, 184, 1133–1139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schierup, M.H.; Hein, J. Consequences of Recombination on Traditional Phylogenetic Analysis. Genetics 2000, 156, 879–891. [Google Scholar] [CrossRef] [PubMed]
- Kozlov, A.M.; Darriba, D.; Flouri, T.; Morel, B.; Stamatakis, A. RAxML-NG: A Fast, Scalable and User-Friendly Tool for Maximum Likelihood Phylogenetic Inference. Bioinformatics 2019, 35, 4453–4455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, D.F.; Foulds, L.R. Comparison of Phylogenetic Trees. Math. Biosci. 1981, 53, 131–147. [Google Scholar] [CrossRef]
- Guindon, S.; Lethiec, F.; Duroux, P.; Gascuel, O. PHYML Online–A Web Server for Fast Maximum Likelihood-Based Phylogenetic Inference. Nucleic Acids Res. 2005, 33, W557–W559. [Google Scholar] [CrossRef] [Green Version]
- Kosakovsky Pond, S.L.; Poon, A.F.Y.; Velazquez, R.; Weaver, S.; Hepler, N.L.; Murrell, B.; Shank, S.D.; Magalis, B.R.; Bouvier, D.; Nekrutenko, A.; et al. HyPhy 2.5—A Customizable Platform for Evolutionary Hypothesis Testing Using Phylogenies. Mol. Biol. Evol. 2020, 37, 295–299. [Google Scholar] [CrossRef]
- Murrell, B.; Wertheim, J.O.; Moola, S.; Weighill, T.; Scheffler, K.; Kosakovsky Pond, S.L. Detecting Individual Sites Subject to Episodic Diversifying Selection. PLoS Genet. 2012, 8, e1002764. [Google Scholar] [CrossRef] [Green Version]
- Kosakovsky Pond, S.L.; Frost, S.D.W. Not so Different after All: A Comparison of Methods for Detecting Amino Acid Sites under Selection. Mol. Biol. Evol. 2005, 22, 1208–1222. [Google Scholar] [CrossRef] [Green Version]
- Weaver, S.; Shank, S.D.; Spielman, S.J.; Li, M.; Muse, S.V.; Kosakovsky Pond, S.L. Datamonkey 2.0: A Modern Web Application for Characterizing Selective and Other Evolutionary Processes. Mol. Biol. Evol. 2018, 35, 773–777. [Google Scholar] [CrossRef] [Green Version]
- Drummond, A.J.; Suchard, M.A.; Xie, D.; Rambaut, A. Bayesian Phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 2012, 29, 1969–1973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouckaert, R.; Vaughan, T.G.; Barido-Sottani, J.; Duchêne, S.; Fourment, M.; Gavryushkina, A.; Heled, J.; Jones, G.; Kühnert, D.; De Maio, N.; et al. BEAST 2.5: An Advanced Software Platform for Bayesian Evolutionary Analysis. PLoS Comput. Biol. 2019, 15, e1006650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barido-Sottani, J.; Bošková, V.; Plessis, L.D.; Kühnert, D.; Magnus, C.; Mitov, V.; Müller, N.F.; PecErska, J.; Rasmussen, D.A.; Zhang, C.; et al. Taming the BEAST-A Community Teaching Material Resource for BEAST 2. Syst. Biol. 2018, 67, 170–174. [Google Scholar] [CrossRef]
- Rambaut, A.; Drummond, A.J.; Xie, D.; Baele, G.; Suchard, M.A. Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. Syst. Biol. 2018, 67, 901–904. [Google Scholar] [CrossRef] [Green Version]
- Jansson, J.; Shen, C.; Sung, W.-K. Improved Algorithms for Constructing Consensus Trees. In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, LA, USA, 6–8 January 2013. [Google Scholar]
- Simonetti, F.L.; Teppa, E.; Chernomoretz, A.; Nielsen, M.; Marino Buslje, C. MISTIC: Mutual Information Server to Infer Coevolution. Nucleic Acids 2013, 41, W8–W14. [Google Scholar] [CrossRef] [Green Version]
- Boonnak, K.; Mansanguan, C.; Schuerch, D.; Boonyuen, U.; Lerdsamran, H.; Jiamsomboon, K.; Sae Wang, F.; Huntrup, A.; Prasertsopon, J.; Kosoltanapiwat, N.; et al. Molecular Characterization of Seasonal Influenza A and B from Hospitalized Patients in Thailand in 2018–2019. Viruses 2021, 13, 977. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, K.; Yin, Y.; Qin, J.; Zhou, Y.-H.; Yang, J.; Li, S.; Poon, L.L.M.; Zhang, C. The Phylodynamics of Seasonal Influenza A/H1N1pdm Virus in China Between 2009 and 2019. Front. Microbiol. 2020, 11, 735. [Google Scholar] [CrossRef]
- Matsuzaki, Y.; Sugawara, K.; Nakauchi, M.; Takahashi, Y.; Onodera, T.; Tsunetsugu-Yokota, Y.; Matsumura, T.; Ato, M.; Kobayashi, K.; Shimotai, Y.; et al. Epitope Mapping of the Hemagglutinin Molecule of A/(H1N1)Pdm09 Influenza Virus by Using Monoclonal Antibody Escape Mutants. J. Virol. 2014, 88, 12364–12373. [Google Scholar] [CrossRef] [Green Version]
- Price, J.V.; Jarrell, J.A.; Furman, D.; Kattah, N.H.; Newell, E.; Dekker, C.L.; Davis, M.M.; Utz, P.J. Characterization of Influenza Vaccine Immunogenicity Using Influenza Antigen Microarrays. PLoS ONE 2013, 8, e64555. [Google Scholar] [CrossRef] [Green Version]
- Zhao, R.; Cui, S.; Guo, L.; Wu, C.; Gonzalez, R.; Paranhos-Baccalà, G.; Vernet, G.; Wang, J.; Hung, T. Identification of a Highly Conserved H1 Subtype-Specific Epitope with Diagnostic Potential in the Hemagglutinin Protein of Influenza A Virus. PLoS ONE 2011, 6, e23374. [Google Scholar] [CrossRef] [Green Version]
- Richards, K.A.; Chaves, F.A.; Krafcik, F.R.; Topham, D.J.; Lazarski, C.A.; Sant, A.J. Direct Ex Vivo Analyses of HLA-DR1 Transgenic Mice Reveal an Exceptionally Broad Pattern of Immunodominance in the Primary HLA-DR1-Restricted CD4 T-Cell Response to Influenza Virus Hemagglutinin. J. Virol. 2007, 81, 7608–7619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.; James, E.A.; Huston, L.; Danke, N.A.; Liu, A.W.; Kwok, W.W. Multiplex Mapping of CD4 T Cell Epitopes Using Class II Tetramers. Clin. Immunol. 2006, 120, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Richards, K.A.; Chaves, F.A.; Sant, A.J. The Memory Phase of the CD4 T-Cell Response to Influenza Virus Infection Maintains Its Diverse Antigen Specificity. Immunology 2011, 133, 246–256. [Google Scholar] [CrossRef] [PubMed]
- Chow, I.-T.; James, E.A.; Tan, V.; Moustakas, A.K.; Papadopoulos, G.K.; Kwok, W.W. DRB1*12:01 Presents a Unique Subset of Epitopes by Preferring Aromatics in Pocket 9. Mol. Immunol. 2012, 50, 26–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babon, J.A.B.; Cruz, J.; Orphin, L.; Pazoles, P.; Co, M.D.T.; Ennis, F.A.; Terajima, M. Genome-Wide Screening of Human T-Cell Epitopes in Influenza A Virus Reveals a Broad Spectrum of CD4(+) T-Cell Responses to Internal Proteins, Hemagglutinins, and Neuraminidases. Hum. Immunol. 2009, 70, 711–721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russell, R.J.; Gamblin, S.J.; Haire, L.F.; Stevens, D.J.; Xiao, B.; Ha, Y.; Skehel, J.J. H1 and H7 Influenza Haemagglutinin Structures Extend a Structural Classification of Haemagglutinin Subtypes. Virology 2004, 325, 287–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, M.; Basu, G. Glycine Rescue of β-Sheets from Cis-Proline. J. Am. Chem. Soc. 2012, 134, 16536–16539. [Google Scholar] [CrossRef]
- Vázquez-Pérez, J.A.; De La Rosa-Zamboni, D.; Vega-Sánchez, Á.E.; Gutiérrez-González, L.H.; Téllez-Navarrete, N.A.; Campos, F.; Guadarrama-Pérez, C.; Sandoval, J.L.; Castillejos-López, M.; Jiménez-Juárez, R.N.; et al. Amino Acid Changes in HA and Determinants of Pathogenicity Associated with Influenza Virus A H1N1pdm09 during the Winter Seasons 2015–2016 and 2016–2017 in Mexico. Virus Res. 2019, 272, 197731. [Google Scholar] [CrossRef]
- Byarugaba, D.K.; Erima, B.; Millard, M.; Kibuuka, H.; Lkwago, L.; Bwogi, J.; Mimbe, D.; Kiconco, J.B.; Tugume, T.; Mworozi, E.A.; et al. Whole-Genome Analysis of Influenza A(H1N1)Pdm09 Viruses Isolated in Uganda from 2009 to 2011. Influenza Other. Respir. Viruses 2016, 10, 486–492. [Google Scholar] [CrossRef]
- Anderson, C.S.; Ortega, S.; Chaves, F.A.; Clark, A.M.; Yang, H.; Topham, D.J.; DeDiego, M.L. Natural and Directed Antigenic Drift of the H1 Influenza Virus Hemagglutinin Stalk Domain. Sci. Rep. 2017, 7, 14614. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Wang, Y.; Liu, Y.; Chen, Y.; Liu, Y.; Cong, X.; Ji, Y.; Gao, Y. Molecular Evolution and Characterization of Hemagglutinin and Neuraminidase of Influenza A(H1N1)Pdm09 Viruses Isolated in Beijing, China, during the 2017–2018 and 2018–2019 Influenza Seasons. Arch. Virol. 2021, 166, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Ou, J.; Zhao, S.; Ma, K.; Lan, W.; Guan, W.; Wu, X.; Zhang, J.; Zhang, B.; Zhao, W.; et al. Characterization of Influenza A and B Viruses Circulating in Southern China During the 2017-2018 Season. Front. Microbiol. 2020, 11, 1079. [Google Scholar] [CrossRef] [PubMed]
- Nayak, J.L.; Richards, K.A.; Chaves, F.A.; Sant, A.J. Analyses of the Specificity of CD4 T Cells during the Primary Immune Response to Influenza Virus Reveals Dramatic MHC-Linked Asymmetries in Reactivity to Individual Viral Proteins. Viral. Immunol. 2010, 23, 169–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cusick, M.F.; Wang, S.; Eckels, D.D. In Vitro Responses to Avian Influenza H5 by Human CD4 T Cells. J. Immunol. 2009, 183, 6432–6441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Majhdi, F.N. Structure of the Sialic Acid Binding Site in Influenza A Virus: Hemagglutinin. J. Biol. Sci. 2007, 7, 113–122. [Google Scholar] [CrossRef] [Green Version]
- Butler, J.; Hooper, K.A.; Petrie, S.; Lee, R.; Maurer-Stroh, S.; Reh, L.; Guarnaccia, T.; Baas, C.; Xue, L.; Vitesnik, S.; et al. Estimating the Fitness Advantage Conferred by Permissive Neuraminidase Mutations in Recent Oseltamivir-Resistant A(H1N1)Pdm09 Influenza Viruses. PLoS Pathog. 2014, 10, e1004065. [Google Scholar] [CrossRef] [Green Version]
- Zell, R.; Groth, M.; Krumbholz, A.; Lange, J.; Philipps, A.; Dürrwald, R. Cocirculation of Swine H1N1 Influenza A Virus Lineages in Germany. Viruses 2020, 12, 762. [Google Scholar] [CrossRef]
- Soundararajan, V.; Tharakaraman, K.; Raman, R.; Raguram, S.; Shriver, Z.; Sasisekharan, V.; Sasisekharan, R. Extrapolating from Sequence--the 2009 H1N1 “swine” Influenza Virus. Nat. Biotechnol. 2009, 27, 510–513. [Google Scholar] [CrossRef]
- Herrera, M.T.; Gonzalez, Y.; Juárez, E.; Hernández-Sánchez, F.; Carranza, C.; Sarabia, C.; Guzman-Beltran, S.; Manjarrez, M.E.; Muñoz-Torrico, M.; Garcia-Garcia, L.; et al. Humoral and Cellular Responses to a Non-Adjuvanted Monovalent H1N1 Pandemic Influenza Vaccine in Hospital Employees. BMC Infect. Dis. 2013, 13, 544. [Google Scholar] [CrossRef] [Green Version]
- Mozdzanowska, K.; Feng, J.; Eid, M.; Kragol, G.; Cudic, M.; Otvos, L.; Gerhard, W. Induction of Influenza Type A Virus-Specific Resistance by Immunization of Mice with a Synthetic Multiple Antigenic Peptide Vaccine That Contains Ectodomains of Matrix Protein 2. Vaccine 2003, 21, 2616–2626. [Google Scholar] [CrossRef]
- Gerhard, W.; Haberman, A.M.; Scherle, P.A.; Taylor, A.H.; Palladino, G.; Caton, A.J. Identification of Eight Determinants in the Hemagglutinin Molecule of Influenza Virus A/PR/8/34 (H1N1) Which Are Recognized by Class II-Restricted T Cells from BALB/c Mice. J. Virol. 1991, 65, 364–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eisenlohr, L.C.; Gerhard, W.; Hackett, C.J. Acid-Induced Conformational Modification of the Hemagglutinin Molecule Alters Interaction of Influenza Virus with Antigen-Presenting Cells. J. Immunol. 1988, 141, 1870–1876. [Google Scholar] [PubMed]
- Yang, J.; James, E.; Gates, T.J.; DeLong, J.H.; LaFond, R.E.; Malhotra, U.; Kwok, W.W. CD4+ T Cells Recognize Unique and Conserved 2009 H1N1 Influenza Hemagglutinin Epitopes after Natural Infection and Vaccination. Int. Immunol. 2013, 25, 447–457. [Google Scholar] [CrossRef] [PubMed]
- Tai, S.-H.S.; Agafitei, O.; Gao, Z.; Liggins, R.; Petric, M.; Withers, S.G.; Niikura, M. Difluorosialic Acids, Potent Novel Influenza Virus Neuraminidase Inhibitors, Induce Fewer Drug Resistance-Associated Neuraminidase Mutations than Does Oseltamivir. Virus Res. 2015, 210, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Tse, H.; Kao, R.Y.T.; Wu, W.L.; Lim, W.W.L.; Chen, H.; Yeung, M.Y.; Woo, P.C.Y.; Sze, K.-H.; Yuen, K.-Y. Structural Basis and Sequence Co-Evolution Analysis of the Hemagglutinin Protein of Pandemic Influenza A/H1N1 (2009) Virus. Exp. Biol. Med. 2011, 236, 915–925. [Google Scholar] [CrossRef] [PubMed]
- Jayaraman, A.; Pappas, C.; Raman, R.; Belser, J.A.; Viswanathan, K.; Shriver, Z.; Tumpey, T.M.; Sasisekharan, R. A Single Base-Pair Change in 2009 H1N1 Hemagglutinin Increases Human Receptor Affinity and Leads to Efficient Airborne Viral Transmission in Ferrets. PLoS ONE 2011, 6, e17616. [Google Scholar] [CrossRef]
- Brownlee, G.G.; Fodor, E. The Predicted Antigenicity of the Haemagglutinin of the 1918 Spanish Influenza Pandemic Suggests an Avian Origin. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2001, 356, 1871–1876. [Google Scholar] [CrossRef]
- Al Khatib, H.A.; Al Thani, A.A.; Gallouzi, I.; Yassine, H.M. Epidemiological and Genetic Characterization of PH1N1 and H3N2 Influenza Viruses Circulated in MENA Region during 2009–2017. BMC Infect. Dis. 2019, 19, 314. [Google Scholar] [CrossRef]
- Boni, M.F.; de Jong, M.D.; van Doorn, H.R.; Holmes, E.C. Guidelines for Identifying Homologous Recombination Events in Influenza A Virus. PLoS ONE 2010, 5, e10434. [Google Scholar] [CrossRef]
- Hasan, A.; Sasaki, T.; Phadungsombat, J.; Koketsu, R.; Rahim, R.; Ara, N.; Biswas, S.M.; Yonezawa, R.; Nakayama, E.E.; Rahman, M.; et al. Genetic Analysis of Influenza A/H1N1pdm Strains Isolated in Bangladesh in Early 2020. Trop. Med. Infect. Dis. 2022, 7, 38. [Google Scholar] [CrossRef]
- Soli, R.; Kaabi, B.; Barhoumi, M.; Maktouf, C.; Ahmed, S.B.-H. Bayesian Phylogenetic Analysis of the Influenza-A Virus Genomes Isolated in Tunisia, and Determination of Potential Recombination Events. Mol. Phylogenet. Evol. 2019, 134, 253–268. [Google Scholar] [CrossRef] [PubMed]
- Fusade-Boyer, M.; Pato, P.S.; Komlan, M.; Dogno, K.; Jeevan, T.; Rubrum, A.; Kouakou, C.K.; Couacy-Hymann, E.; Batawui, D.; Go-Maro, E.; et al. Evolution of Highly Pathogenic Avian Influenza A(H5N1) Virus in Poultry, Togo, 2018. Emerg. Infect. Dis. 2019, 25, 2287–2289. [Google Scholar] [CrossRef] [PubMed]
Mountain West | USA | Europe | Northern Hemisphere |
---|---|---|---|
933 | 1924 | 309 | 2389 |
MW MEME | MW FEL | MW SLAC | US MEME | US FEL | US SLAC | EU MEME | EU FEL | EU SLAC | NH MEME | NH FEL | NH SLAC |
---|---|---|---|---|---|---|---|---|---|---|---|
3 | 3 | 3 | 3 | 3 | |||||||
6 | 6 | 6 | 6 | 6 | |||||||
11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | |||
36 | |||||||||||
57 | |||||||||||
60 | |||||||||||
65 | 65 | ||||||||||
86 | |||||||||||
90 | 90 | ||||||||||
137 | 137 | ||||||||||
145 | |||||||||||
146 | |||||||||||
156 | 156 | 156 | 156 | ||||||||
158 | |||||||||||
180 | 180 | ||||||||||
200 | 200 | 200 | 200 | ||||||||
203 | 203 | 203 | 203 | 203 | 203 | 203 | |||||
273 | |||||||||||
278 | 278 | 278 | |||||||||
289 | |||||||||||
472 | |||||||||||
505 | |||||||||||
513 | 513 | ||||||||||
524 | 524 | ||||||||||
545 | 545 | 545 | 545 | 545 | 545 | ||||||
550 | 550 | 550 | |||||||||
566 |
MW | US | EU | NH | |||||
---|---|---|---|---|---|---|---|---|
Year | %K | %N | %K | %N | %K | %N | %K | %N |
Summer 2015 | 100% (5/5) | 0% (0/5) | 100% (11/11) | 0% (0/11) | 100% (25/25) | 0% (0/25) | 100% (37/37) | 0% (0/37) |
Winter 2015–2016 | 100% (297/297) | 0% (0/297) | 100% (568/569) | 0% (0/569) | 100% (64/64) | 0% (0/64) | 100% (665/666) | 0% (1/666) |
Summer 2016 | 100% (34/34) | 0% (0/34) | 100% (59/59) | 0% (0/59) | 100% (4/4) | 0% (0/4) | 100% (66/66) | 0% (0/66) |
Winter 2016–2017 | 100% (69/69) | 0% (0/69) | 100% (143/143) | 0% (0/143) | 90% (9/10) | 10% (1/10) | 99% (153/154) | 1% (1/154) |
Summer 2017 | 100% (12/12) | 0% (0/12) | 96% (25/26) | 0% (0/26) | NA * | NA * | 96% (25/26) | 4% (1/26) |
Winter 2017–2018 | 100% (122/122) | 0% (0/122) | 100% (316/317) | 0% (0/317) | % (53/53) | 0% (0/53) | 100% (469/470) | 0% (1/470) |
Summer 2018 | 97% (28/29) | 3% (1/29) | 93% (42/45) | 0% (0/45) | 100% (1/1) | 0% (0/1) | 94% (47/50) | 6% 3/50 |
Winter 2018–2019 | 91% (292/322) | 8% (26/322) | 90% (595/658) | 9% (56/658) | 95% (116/122) | 5% (6/122) | 91% (722/791) | 8% 62/791 |
Summer 2019 | 44% (19/43) | 56% (24/43) | 55% (53/96) | 44% (42/96) | 100% (30/30) | 0% (0/30) | 67% (86/129) | 33% 42/129 |
MW | US | EU | NH | |||||
---|---|---|---|---|---|---|---|---|
Year | %P | %S | %P | %S | %P | %S | %P | %S |
Summer 2015 | 100% (5/5) | 0% (0/5) | 100% (11/11) | 0% (0/11) | 60% (15/25) | 32% (8/25) | 70% (26/37) | 24% (9/37) |
Winter 2015–2016 | 99% (293/297) | 1% (4/297) | 99% (563/569) | 1% (6/569) | 84% (54/64) | 9% (6/64) | 98% (650/666) | 2% (12/666) |
Summer 2016 | 91% (31/34) | 9% (3/34) | 95% (56/59) | 5% (3/59) | 50% (2/4) | 25% (1/4) | 92% (61/66) | 6% (4/66) |
Winter 2016–2017 | 100% (69/69) | 0% (0/69) | 99% (142/143) | 1% (1/143) | 40% (4/10) | 60% (6/10) | 95% (147/154) | 5% (7/154) |
Summer 2017 | 100% (12/12) | 0% (0/12) | 100% (26/26) | 0% (0/26) | NA * | NA * | 100% (26/26) | 0% (0/26) |
Winter 2017–2018 | 98% (120/122) | 2% (2/122) | 98% (311/317) | 2% (6/317) | 87% (46/53) | 13% (7/53) | 95% (447/470) | 5% (22/470) |
Summer 2018 | 97% (28/29) | 3% (1/29) | 93% (42/45) | 7% (3/45) | 0% (0/1) | 100% (1/1) | 92% (46/50) | 8% (4/50) |
Winter 2018–2019 | 75% (240/322) | 25% (80/322) | 76% (503/658) | 23% (153/658) | 94% (115/122) | 6% (7/122) | 80% (629/791) | 20% (160/791) |
Summer 2019 | 93% (40/43) | 7% (3/43) | 91% (87/96) | 9% (9/96) | 100% (30/30) | 0% (0/30) | 93% (120/129) | 7% (9/129) |
MW | US | EU | NH | |||||
---|---|---|---|---|---|---|---|---|
Year | %S | %P | %S | %P | %S | %P | %S | %P |
Summer 2015 | 100% (5/5) | 0% (0/5) | 100% (11/11) | 0% (0/11) | 64% (16/25) | 36% (9/25) | 73% (27/37) | 27% (10/37) |
Winter 2015–2016 | 99% (295/297) | 1% (2/297) | 100% (567/569) | 0% (2/569) | 84% (54/64) | 16% (10/64) | 98% (654/666) | 2% (12/666) |
Summer 2016 | 91% (31/34) | 9% (3/34) | 95% (56/59) | 5% (3/59) | 50% (2/4) | 50% (2/4) | 92% (61/66) | 8% (5/66) |
Winter 2016–2017 | 43% (30/69) | 57% (39/69) | 55% (79/143) | 45% (64/143) | 20% (2/10) | 80% (8/10) | 53% (82/154) | 47% (72/154) |
Summer 2017 | 83% (10/12) | 17% (2/12) | 81% (21/26) | 19% (5/26) | NA * | NA * | 81% (21/26) | 19% (5/26) |
Winter 2017–2018 | 25% (31/122) | 75% (91/122) | 19% (61/317) | 81% (256/317) | 75% (40/53) | 25% (13/53) | 33% (153/470) | 67% (316/470) |
Summer 2018 | 14% (4/29) | 86% (25/29) | 16% (7/45) | 84% (38/45) | 0% (0/1) | 100% (1/1) | 18% (9/50) | 82% (41/50) |
Winter 2018–2019 | 4% (13/322) | 96% (309/322) | 3% (22/658) | 97% (636/658) | 7% (9/122) | 93% (113/122) | 4% (31/791) | 96% (760/791) |
Summer 2019 | 5% (2/43) | 95% (41/43) | 3% (3/96) | 97% (93/96) | 3% (1/30) | 97% (29/30) | 3% (4/129) | 97% (125/129) |
1° Residue Position | 1° Residue | 2° Residue Position | 2° Residue | Mutual Information Value ** |
---|---|---|---|---|
181 | S | 312 | I | 1175.141846 |
91 | S | 181 | S | 1163.426392 |
91 | S | 312 | I | 1159.654785 |
200 | S | 312 | I | 714.461975 |
91 | S | 200 | S | 710.796936 |
181 | S | 200 | S | 661.189087 |
146 | N | 202 | T | 606.855347 |
146 | N | 277 | N | 527.068542 |
62 | R | 315 | I | 462.919434 |
299 | P | 315 | I | 450.615295 |
202 | T | 277 | N | 435.101715 |
62 | R | 299 | P | 423.069916 |
154 | P | 468 | N | 382.397064 |
147 | K | 313 | H | 374.515015 |
154 | P | 190 | V | 370.027618 |
252 | E | 537 | V | 356.437103 |
147 | K | 177 | K | 323.149689 |
177 | K | 313 | H | 316.047058 |
177 | K | 233 | T | 316.031616 |
421 | I | 523 | E | 307.183044 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Decker, C.H.; Rapier-Sharman, N.; Pickett, B.E. Mutation in Hemagglutinin Antigenic Sites in Influenza A pH1N1 Viruses from 2015–2019 in the United States Mountain West, Europe, and the Northern Hemisphere. Genes 2022, 13, 909. https://doi.org/10.3390/genes13050909
Decker CH, Rapier-Sharman N, Pickett BE. Mutation in Hemagglutinin Antigenic Sites in Influenza A pH1N1 Viruses from 2015–2019 in the United States Mountain West, Europe, and the Northern Hemisphere. Genes. 2022; 13(5):909. https://doi.org/10.3390/genes13050909
Chicago/Turabian StyleDecker, Craig H., Naomi Rapier-Sharman, and Brett E. Pickett. 2022. "Mutation in Hemagglutinin Antigenic Sites in Influenza A pH1N1 Viruses from 2015–2019 in the United States Mountain West, Europe, and the Northern Hemisphere" Genes 13, no. 5: 909. https://doi.org/10.3390/genes13050909
APA StyleDecker, C. H., Rapier-Sharman, N., & Pickett, B. E. (2022). Mutation in Hemagglutinin Antigenic Sites in Influenza A pH1N1 Viruses from 2015–2019 in the United States Mountain West, Europe, and the Northern Hemisphere. Genes, 13(5), 909. https://doi.org/10.3390/genes13050909