Genome-Wide Association Mapping of Grain Metal Accumulation in Wheat
Abstract
:1. Introduction
2. Material and Methods
2.1. Plant Material, Metal Measurements, and Statistical Analysis
2.2. Genome-Wide Association Mapping and Genomic Prediction
2.3. Candidate Genes Identification
3. Results
3.1. Statistical Analysis
3.2. Genome-Wide Association Mapping
3.3. Genomic Prediction (GP)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alomari, D.Z.; Alqudah, A.M.; Pillen, K.; von Wirén, N.; Röder, M.S. Toward identification of a putative candidate gene for nutrient mineral accumulation in wheat grains for human nutrition purposes. J. Exp. Bot. 2021, 72, 6305–6318. [Google Scholar] [CrossRef]
- Karami, M.; Afyuni, M.; Khoshgoftarmanesh, A.H.; Papritz, A.; Schulin, R. Grain zinc, iron, and copper concentrations of wheat grown in central Iran and their relationships with soil and climate variables. J. Agric. Food Chem. 2009, 57, 10876–10882. [Google Scholar] [CrossRef] [PubMed]
- Ayoubi, S.; Mehnatkesh, A.; Jalalian, A.; Sahrawat, K.L.; Gheysari, M. Relationships between grain protein, Zn, Cu, Fe and Mn contents in wheat and soil and topographic attributes. Arch. Agron. Soil Sci. 2014, 60, 625–638. [Google Scholar] [CrossRef]
- Al-Othman, Z.A.; Ali, R.; Al-Othman, A.M.; Ali, J.; Habila, M.A. Assessment of toxic metals in wheat crops grown on selected soils, irrigated by different water sources. Arab. J. Chem. 2016, 9, S1555–S1562. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Grant, C.A. Cadmium and zinc concentration in grain of durum wheat in relation to phosphorus fertilization, crop sequence and tillage management. Appl. Environ. Soil Sci. 2012, 2012, 817107. [Google Scholar] [CrossRef] [Green Version]
- Właśniewski, S.; Nazarkiewicz, M.; Hajduk, E.; Marchel, M.; Kaniuczak, J. Nickel content in grain of winter wheat (Triticum aestivum L.) and spring barley (Hordeum vulgare L.) cultivated on loessial soil, depending on liming and mineral fertilization. J. Elem. 2019, 24, 257–266. [Google Scholar] [CrossRef]
- Qin, X.; Xia, Y.; Hu, C.; Yu, M.; Shabala, S.; Wu, S.; Tan, Q.; Xu, S.; Sun, X. Ionomics analysis provides new insights into the co-enrichment of cadmium and zinc in wheat grains. Ecotoxicol. Environ. Saf. 2021, 223, 112623. [Google Scholar] [CrossRef]
- Bhatta, M.; Baenziger, P.S.; Waters, B.M.; Poudel, R.; Belamkar, V.; Poland, J.; Morgounov, A. Genome-wide association study reveals novel genomic regions associated with 10 grain minerals in synthetic hexaploid wheat. Int. J. Mol. Sci. 2018, 19, 3237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maltzahn, L.E.; Zenker, S.G.; Lopes, J.L.; Pereira, R.M.; Verdi, C.A.; Rother, V.; Busanello, C.; Viana, V.E.; Batista, B.L.; de Oliveira, A.C.; et al. Brazilian genetic diversity for desirable and undesirable elements in the wheat grain. Biol. Trace Elem. Res. 2021, 199, 2351–2365. [Google Scholar] [CrossRef]
- El-Soda, M.; Malosetti, M.; Zwaan, B.J.; Koornneef, M.; Aarts, M.G. Genotype x environment interaction QTL mapping in plants: Lessons from Arabidopsis. Trends Plant Sci. 2014, 9, 390–398. [Google Scholar] [CrossRef]
- Burghardt, L.T.; Young, N.D.; Tiffin, P. A guide to genome-wide association mapping in plants. Curr. Protoc. Plant Biol. 2017, 2, 22–38. [Google Scholar] [CrossRef]
- Jamann, T.M.; Balint-Kurti, P.J.; Holland, J.B. QTL mapping using high-throughput sequencing. In Plant Functional Genomics: Methods and Protocols; Alonso, J.M., Stepanova, A.N., Eds.; Springer: New York, NY, USA, 2015; pp. 257–285. [Google Scholar] [CrossRef]
- Alqudah, A.M.; Sallam, A.; Stephen Baenziger, P.; Börner, A. GWAS: Fast-forwarding gene identification and characterization in temperate Cereals: Lessons from Barley—A review. J. Adv. Res. 2020, 22, 119–135. [Google Scholar] [CrossRef] [PubMed]
- El-Soda, M.; Sarhan, S.M. From gene mapping to gene editing, a guide from the Arabidopsis research. Annu. Plant Rev. Online 2021, 4, 1–32. [Google Scholar] [CrossRef]
- Meuwissen, T.H.; Hayes, B.J.; Goddard, M.E. Prediction of total genetic value using genome-wide dense marker maps. Genetics 2001, 157, 1819–1829. [Google Scholar] [CrossRef] [PubMed]
- Endelman, J.B. Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant Genome 2011, 4. [Google Scholar] [CrossRef] [Green Version]
- Lopes, M.S.; Dreisigacker, S.; Pena, R.J.; Sukumaran, S.; Reynolds, M.P. Genetic characterization of the wheat association mapping initiative (WAMI) panel for dissection of complex traits in spring wheat. TAG. Theor. Appl. Genet. Theor. Und Angew. Genet. 2015, 128, 453–464. [Google Scholar] [CrossRef] [PubMed]
- Ahirwar, R.N.; Mishra, V.K.; Chand, R.; Budhlakoti, N.; Mishra, D.C.; Kumar, S.; Singh, S.; Joshi, A.K. Genome-wide association mapping of spot blotch resistance in wheat association mapping initiative (WAMI) panel of spring wheat (Triticum aestivum L.). PLoS ONE 2018, 13, e0208196. [Google Scholar] [CrossRef] [Green Version]
- Bradbury, P.J.; Zhang, Z.; Kroon, D.E.; Casstevens, T.M.; Ramdoss, Y.; Buckler, E.S. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 2007, 23, 2633–2635. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wong, D.; Forrest, K.; Allen, A.; Chao, S.; Huang, B.E.; Maccaferri, M.; Salvi, S.; Milner, S.G.; Cattivelli, L.; et al. Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array. Plant Biotechnol. J. 2014, 12, 787–796. [Google Scholar] [CrossRef] [Green Version]
- Zhu, T.; Wang, L.; Rimbert, H.; Rodriguez, J.C.; Deal, K.R.; De Oliveira, R.; Choulet, F.; Keeble-Gagnère, G.; Tibbits, J.; Rogers, J.; et al. Optical maps refine the bread wheat Triticum aestivum cv. Chinese Spring genome assembly. Plant J. 2021, 107, 303–314. [Google Scholar] [CrossRef]
- Hassani-Pak, K.; Singh, A.; Brandizi, M.; Hearnshaw, J.; Parsons, J.D.; Amberkar, S.; Phillips, A.L.; Doonan, J.H.; Rawlings, C. KnetMiner: A comprehensive approach for supporting evidence-based gene discovery and complex trait analysis across species. Plant Biotechnol. J. 2021, 19, 1670–1678. [Google Scholar] [CrossRef]
- Said, A.A.; MacQueen, A.H.; Shawky, H.; Reynolds, M.; Juenger, T.E.; El-Soda, M. Genome-wide association mapping of genotype-environment interactions affecting yield-related traits of spring wheat grown in three watering regimes. Environ. Exp. Bot. 2022, 194, 104740. [Google Scholar] [CrossRef]
- Shepelev, S.; Morgounov, A.; Flis, P.; Koksel, H.; Li, H.; Savin, T.; Sharma, R.; Wang, J.; Shamanin, V. Variation of macro- and microelements, and trace metals in spring wheat genetic resources in siberia. Plants 2022, 11, 149. [Google Scholar] [CrossRef] [PubMed]
- Wen, Z.; Juliana, P.; Dhugga, H.S.; Pacheco, M.; Martínez, U.I.; Aguilar, A.; Ibba, M.I.; Govindan, V.; Singh, R.P.; Dhugga, K.S. Genome-wide association study of phytic acid in wheat grain unravels markers for improving biofortification. Front. Plant Sci. 2022, 13, 830147. [Google Scholar] [CrossRef]
- Cu, S.T.; Guild, G.; Nicolson, A.; Velu, G.; Singh, R.; Stangoulis, J. Genetic dissection of zinc, iron, copper, manganese and phosphorus in wheat (Triticum aestivum L.) grain and rachis at two developmental stages. Plant Sci. 2020, 291, 110338. [Google Scholar] [CrossRef]
- Ekholm, P.; Reinivuo, H.; Mattila, P.; Pakkala, H.; Koponen, J.; Happonen, A.; Hellström, J.; Ovaskainen, M.-L. Changes in the mineral and trace element contents of cereals, fruits and vegetables in Finland. J. Food Compos. Anal. 2007, 20, 487–495. [Google Scholar] [CrossRef]
- Wang, W.; Guo, H.; Wu, C.; Yu, H.; Li, X.; Chen, G.; Tian, J.; Deng, Z. Identification of novel genomic regions associated with nine mineral elements in Chinese winter wheat grain. BMC Plant Biol. 2021, 21, 311. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Y.; Yang, Y.; Zhang, Q.; Fu, B.; Cai, J.; Guo, W.; Shi, L.; Wu, J.; Chen, Y. A thorough screening based on QTLs controlling zinc and copper accumulation in the grain of different wheat genotypes. Environ. Sci. Pollut. Res. 2021, 28, 15043–15054. [Google Scholar] [CrossRef]
- Huang, X.; Duan, S.; Wu, Q.; Yu, M.; Shabala, S. Reducing cadmium accumulation in plants: Structure–function relations and tissue-specific operation of transporters in the spotlight. Plants 2020, 9, 223. [Google Scholar] [CrossRef] [Green Version]
- Kaur, K.; Sharma, A.; Mavi, G.S.; Srivastava, P.; Kaur, H.; Sharma, H.; Singh, S.; Kushwah, A.; Sohu, V.S. Biofortified wheat: Harnessing genetic diversity for improved nutritional quality to eradicate hidden hunger. Crop Sci. 2022, 62, 802–819. [Google Scholar] [CrossRef]
- Grillet, L.; Schmidt, W. Iron acquisition strategies in land plants: Not so different after all. New Phytol. 2019, 224, 11–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fatiukha, A.; Klymiuk, V.; Peleg, Z.; Saranga, Y.; Cakmak, I.; Krugman, T.; Korol, A.B.; Fahima, T. Variation in phosphorus and sulfur content shapes the genetic architecture and phenotypic associations within the wheat grain ionome. Plant J. 2020, 101, 555–572. [Google Scholar] [CrossRef] [PubMed]
- Velu, G.; Crossa, J.; Singh, R.P.; Hao, Y.; Dreisigacker, S.; Perez-Rodriguez, P.; Joshi, A.K.; Chatrath, R.; Gupta, V.; Balasubramaniam, A.; et al. Genomic prediction for grain zinc and iron concentrations in spring wheat. Theor. Appl. Genet. 2016, 129, 1595–1605. [Google Scholar] [CrossRef] [PubMed]
- Manickavelu, A.; Hattori, T.; Yamaoka, S.; Yoshimura, K.; Kondou, Y.; Onogi, A.; Matsui, M.; Iwata, H.; Ban, T. Genetic nature of elemental contents in wheat grains and its genomic prediction: Toward the effective use of wheat landraces from Afghanistan. PLoS ONE 2017, 12, e0169416. [Google Scholar] [CrossRef]
Metal | Min | Max | Mean | S.E. | Safety Level |
---|---|---|---|---|---|
Mn | 3.000 | 9.930 | 6.100 | 0.099 | 500 |
Fe | 5.299 | 19.230 | 12.633 | 0.213 | - |
Cu | 4.200 | 77.300 | 28.247 | 1.093 | 73.3 |
Zn | 9.900 | 88.800 | 48.949 | 1.077 | 99.4 |
Ni | 11.100 | 31.000 | 16.596 | 0.191 | 67.9 |
Cd | 0.003 | 0.266 | 0.123 | 0.005 | 0.2 |
Genotype | Mn | Fe | Cu | Zn | Ni | Cd | Category |
---|---|---|---|---|---|---|---|
393392 | 7.00 | 17.81 | 48.70 | 39.50 | 15.60 | 0.16 | High yield |
1706327 | 7.82 | 16.85 | 30.60 | 48.70 | 12.00 | 0.08 | |
346403 | 7.90 | 15.80 | 24.00 | 29.80 | 15.20 | 0.21 | |
3597332 | 9.15 | 13.12 | 78.50 | 52.50 | 18.40 | 0.06 | |
294568 | 5.10 | 9.81 | 11.50 | 50.70 | 15.60 | 0.02 | |
358192 | 8.15 | 19.23 | 45.00 | 50.20 | 16.00 | 0.11 | High Fe and Zn content |
1403557 | 8.12 | 18.21 | 26.20 | 44.80 | 18.80 | 0.15 | |
1558746 | 5.50 | 16.55 | 38.10 | 86.70 | 18.90 | 0.10 | |
2406044 | 7.19 | 18.20 | 20.30 | 71.80 | 18.70 | 0.16 | |
3585839 | 6.10 | 12.13 | 30.80 | 79.90 | 18.20 | 0.10 | |
3587319 | 7.90 | 19.21 | 42.40 | 69.80 | 19.20 | 0.05 | |
3827755 | 5.18 | 11.12 | 27.10 | 87.00 | 15.10 | 0.15 | |
4755489 | 6.00 | 11.12 | 43.40 | 81.20 | 16.00 | 0.20 | |
41868 | 3.15 | 7.15 | 41.70 | 16.60 | 12.20 | 0.21 | High Cd content |
295261 | 4.26 | 10.22 | 19.90 | 44.60 | 13.10 | 0.26 | |
3586080 | 8.99 | 12.29 | 43.00 | 88.80 | 17.00 | 0.25 | |
4097301 | 6.12 | 13.19 | 27.10 | 44.20 | 19.10 | 0.22 | |
3592850 | 7.15 | 13.15 | 29.10 | 59.20 | 13.20 | 0.26 | |
4319277 | 7.19 | 12.18 | 31.70 | 60.60 | 16.20 | 0.23 | |
3617481 | 8.19 | 15.12 | 15.60 | 45.30 | 17.60 | 0.21 | |
4755706 | 6.22 | 12.15 | 34.70 | 37.80 | 14.20 | 0.21 | |
4756035 | 6.19 | 14.85 | 41.10 | 51.20 | 19.20 | 0.22 | |
42274 | 6.19 | 11.11 | 46.30 | 45.20 | 17.20 | 0.21 | |
4970584 | 5.32 | 12.50 | 35.30 | 55.40 | 13.20 | 0.27 | |
346047 | 4.92 | 12.92 | 32.10 | 65.40 | 15.00 | 0.25 | |
1493157 | 6.30 | 12.92 | 31.30 | 50.20 | 17.60 | 0.21 | |
1987914 | 6.95 | 13.65 | 32.90 | 49.80 | 12.30 | 0.23 | |
766786 | 8.00 | 10.22 | 28.20 | 43.20 | 17.60 | 0.26 | |
778966 | 6.99 | 18.80 | 26.30 | 63.10 | 15.00 | 0.24 | |
2478018 | 6.33 | 12.18 | 27.50 | 43.70 | 17.40 | 0.26 | |
3686320 | 6.11 | 13.22 | 21.90 | 40.10 | 19.80 | 0.25 |
Metal | SNP | Chr | Position (Mbp) | -LOG10(P) | R2 | Allele (Alternate) | Effect | Gene RefSeq v1.0 | Gene RefSeq v2.1 |
---|---|---|---|---|---|---|---|---|---|
Fe | IACX2594 | 5B | 708 | 3.8 | 0.077 | A (G) | 2.09 | TraesCS5B02G560400 | TraesCS5B03G1356900 |
Mn | 3.7 | 0.075 | A (G) | 0.96 | |||||
Fe | RAC875_rep_c106589_184 | 3.8 | 0.077 | C (T) | 2.09 | ||||
Mn | 3.7 | 0.075 | C (T) | 0.96 | |||||
Fe | RAC875_rep_c106589_650 | 3.7 | 0.076 | A (G) | −2.06 | ||||
Mn | 4.0 | 0.082 | A (G) | −0.99 | |||||
Fe | wsnp_Ex_c24031_33277293 | 3.8 | 0.077 | A (G) | −2.06 | ||||
Mn | 3.7 | 0.075 | A (G) | −0.96 | |||||
Fe | wsnp_Ex_c24031_33277856 | 3.8 | 0.079 | A (C) | 2.04 | ||||
Mn | 4.0 | 0.082 | A (C) | 0.98 | |||||
Cd | wsnp_Ex_c34597_42879693 | 6A | 600 | 3.6 | 0.073 | C (T) | −0.05 | TraesCS6A02G375600 | TraesCS6A03G0953900 |
Cu | 3.1 | 0.060 | C (T) | −7.75 | |||||
Fe | 2.7 | 0.050 | C (T) | −1.85 | |||||
Cd | wsnp_Ex_c2236_4189774 | 3.6 | 0.072 | A (G) | −0.05 | ||||
Cu | 3.1 | 0.061 | A (G) | −7.81 | |||||
Fe | 2.6 | 0.048 | A (G) | −1.82 | |||||
Ni | BobWhite_c6300_169 | 3A | 576 | 6.7 | 0.146 | A (C) | −1.45 | TraesCS3A02G331500 | TraesCS3A03G0794000 |
Ni | RAC875_c60753_129 | 577 | 6.7 | 0.146 | A (C) | 14.48 | NA | NA | |
Ni | RFL_Contig4431_279 | 577 | 6.6 | 0.146 | A (C) | 14.47 | TraesCS3A02G331900 | TraesCS3A03G0794600 | |
Ni | Kukri_c5615_1214 | 579 | 4.4 | 0.090 | A (C) | −8.09 | TraesCS3A02G334100 | TraesCS3A03G0799100 | |
Ni | RAC875_c2140_128 | 581 | 4.4 | 0.090 | A (C) | −8.08 | TraesCS3A02G334700 | TraesCS3A03G0801000 | |
Ni | RAC875_c2140_103 | 4.4 | 0.090 | A (C) | 8.07 | ||||
Ni | Kukri_c37815_53 | 578 | 3.6 | 0.071 | A (C) | 5.87 | TraesCS3A02G333100 | TraesCS3A03G0796700 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Soda, M.; Aljabri, M. Genome-Wide Association Mapping of Grain Metal Accumulation in Wheat. Genes 2022, 13, 1052. https://doi.org/10.3390/genes13061052
El-Soda M, Aljabri M. Genome-Wide Association Mapping of Grain Metal Accumulation in Wheat. Genes. 2022; 13(6):1052. https://doi.org/10.3390/genes13061052
Chicago/Turabian StyleEl-Soda, Mohamed, and Maha Aljabri. 2022. "Genome-Wide Association Mapping of Grain Metal Accumulation in Wheat" Genes 13, no. 6: 1052. https://doi.org/10.3390/genes13061052
APA StyleEl-Soda, M., & Aljabri, M. (2022). Genome-Wide Association Mapping of Grain Metal Accumulation in Wheat. Genes, 13(6), 1052. https://doi.org/10.3390/genes13061052