Eph and Ephrin Variants in Malaysian Neural Tube Defect Families
Abstract
:1. Introduction
2. Materials and Methods
2.1. Proband Selection for Whole Exome Sequencing and Candidate Gene Validation
2.2. Whole Exome Sequencing
2.3. Exome Datasets Analysis
2.4. PCR and Sanger Sequencing for Validation
3. Results
3.1. Whole Exome Sequencing Analysis of Eph and Ephrin Identifies 3 Variants
3.2. Unreported and Rare Eph and Ephrin Variants
3.3. In Silico Prediction of the Effect of the Variants on the Protein
3.4. Spina Bifida-Related Genes in Probands with Eph and Ephrin Variants
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nikolopoulou, E.; Galea, G.L.; Rolo, A.; Greene, N.D.E.; Copp, A.J. Neural tube closure: Cellular, molecular and biomechanical mechanisms. Development 2017, 144, 552–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greene, N.D.; Copp, A.J. Neural tube defects. Ann. Rev. Neurosci. 2014, 37, 221–242. [Google Scholar] [CrossRef] [Green Version]
- Copp, A.J.; Stanier, P.; DE Greene, N. Neural tube defects: Recent advances, unsolved questions, and controversies. Lancet Neurol. 2013, 12, 799–810. [Google Scholar] [CrossRef] [Green Version]
- Mohd-Zin, S.W.; Marwan, A.I.; Chaar, M.K.A.; Ahmad-Annuar, A.; Abdul-Aziz, N.M. Spina Bifida: Pathogenesis, Mechanisms, and Genes in Mice and Humans. Scientifica 2017, 2017, 5364827. [Google Scholar] [CrossRef] [PubMed]
- Copp, A.J.; Adzick, N.S.; Chitty, L.S.; Fletcher, J.M.; Holmbeck, G.N.; Shaw, G.M. Spina bifida. Nat. Rev. Dis. Primers 2015, 1, 15007. [Google Scholar] [CrossRef] [PubMed]
- Oakeshott, P.; Hunt, G.M.; Poulton, A.; Reid, F. Open spina bifida: Birth findings predict long-term outcome. Arch. Dis. Child. 2011, 97, 474–476. [Google Scholar] [CrossRef] [PubMed]
- Harris, M.J.; Juriloff, D.M. An update to the list of mouse mutants with neural tube closure defects and advances toward a complete genetic perspective of neural tube closure. Birth Defects Res. Part A Clin. Mol. Teratol. 2010, 88, 653–669. [Google Scholar] [CrossRef] [PubMed]
- Wilde, J.J.; Petersen, J.R.; Niswander, L. Genetic, Epigenetic, and Environmental Contributions to Neural Tube Closure. Annu. Rev. Genet. 2014, 48, 583–611. [Google Scholar] [CrossRef] [Green Version]
- Pangilinan, F.; Molloy, A.M.; Mills, J.L.; Troendle, J.F.; Parle-McDermott, A.; Signore, C.; O’Leary, V.B.; Chines, P.; Seay, J.M.; Geiler-Samerotte, K.; et al. Evaluation of common genetic variants in 82 candidate genes as risk factors for neural tube defects. BMC Med. Genet. 2012, 13, 62. [Google Scholar] [CrossRef] [Green Version]
- Greene, N.; Stanier, P.; Copp, A.J. Genetics of human neural tube defects. Hum. Mol. Genet. 2009, 18, R113–R129. [Google Scholar] [CrossRef]
- Lemay, P.; Guyot, M.-C.; Tremblay, E.; Dionne-Laporte, A.; Spiegelman, D.; Henrion, E.; Diallo, O.; De Marco, P.; Merello, E.; Massicotte, C.; et al. Loss-of-function de novo mutations play an important role in severe human neural tube defects. J. Med. Genet. 2015, 52, 493–497. [Google Scholar] [CrossRef] [Green Version]
- Lemay, P.; De Marco, P.; Emond, A.; Spiegelman, D.; Dionne-Laporte, A.; Laurent, S.; Merello, E.; Accogli, A.; Rouleau, G.A.; Capra, V.; et al. Rare deleterious variants in GRHL3 are associated with human spina bifida. Hum. Mutat. 2017, 38, 716–724. [Google Scholar] [CrossRef]
- Chen, Z.; Lei, Y.; Cao, X.; Zheng, Y.; Wang, F.; Bao, Y.; Peng, R.; Finnell, R.H.; Zhang, T.; Wang, H. Genetic analysis of Wnt/PCP genes in neural tube defects. BMC Med. Genom. 2018, 11, 38. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; de Marco, P.; Capra, V.; Kibar, Z. Update on the Role of the Non-Canonical Wnt/Planar Cell Polarity Pathway in Neural Tube Defects. Cells 2019, 8, 1198. [Google Scholar] [CrossRef] [Green Version]
- Holmberg, J.; Clarke, D.L.; Frisén, J. Regulation of repulsion versus adhesion by different splice forms of an Eph receptor. Nature 2000, 408, 203–206. [Google Scholar] [CrossRef]
- Abdul-Aziz, N.M.; Turmaine, M.; Greene, N.D.; Copp, A.J. EphrinA-EphA receptor interactions in mouse spinal neurulation: Implications for neural fold fusion. Int. J. Dev. Biol. 2009, 53, 559–568. [Google Scholar] [CrossRef]
- Arvanitis, D.; Béhar, A.; Tóth, P.; Bush, J.O.; Jungas, T.; Vitale, N.; Davy, A. Ephrin B1 maintains apical adhesion of neural progenitors. Development 2013, 140, 2082–2092. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Sun, J.; Li, C.; Mao, B. EphA7 modulates apical constriction of hindbrain neuroepithelium during neurulation in Xenopus. Biochem. Biophys. Res. Commun. 2016, 479, 759–765. [Google Scholar] [CrossRef]
- Ji, Y.J.; Hwang, Y.-S.; Mood, K.; Cho, H.-J.; Lee, H.-S.; Winterbottom, E.; Cousin, H.; Daar, I.O. EphrinB2 affects apical constriction in Xenopus embryos and is regulated by ADAM10 and flotillin-1. Nat. Commun. 2014, 5, 3516. [Google Scholar] [CrossRef] [Green Version]
- Laussu, J.; Audouard, C.; Kischel, A.; Assis-Nascimento, P.; Escalas, N.; Liebl, D.J.; Soula, C.; Davy, A. Eph/Ephrin Signaling Controls Progenitor Identities In The Ventral Spinal Cord. Neural Dev. 2017, 12, 10. [Google Scholar] [CrossRef] [Green Version]
- Kemp, H.A.; Cooke, J.E.; Moens, C.B. EphA4 and EfnB2a maintain rhombomere coherence by independently regulating intercalation of progenitor cells in the zebrafish neural keel. Dev. Biol. 2009, 327, 313–326. [Google Scholar] [CrossRef] [Green Version]
- Abdullah, N.L.; Mohd-Zin, S.W.; Ahmad-Annuar, A.; Abdul-Aziz, N.M. A Novel Occulta-Type Spina Bifida Mediated by Murine Double Heterozygotes EphA2 and EphA4 Receptor Tyrosine Kinases. Front. Cell Dev. Biol. 2017, 5, 105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciruna, B.; Jenny, A.; Lee, D.; Mlodzik, M.; Schier, A.F. Planar cell polarity signalling couples cell division and morphogenesis during neurulation. Nature 2006, 439, 220–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tawk, M.; Araya, C.; Lyons, D.; Reugels, A.M.; Girdler, G.C.; Bayley, P.R.; Hyde, D.R.; Tada, M.; Clarke, J.D.W. A mirror-symmetric cell division that orchestrates neuroepithelial morphogenesis. Nature 2007, 446, 797–800. [Google Scholar] [CrossRef]
- Meier, C.; Anastasiadou, S.; Knöll, B. Ephrin-A5 Suppresses Neurotrophin Evoked Neuronal Motility, ERK Activation and Gene Expression. PLoS ONE 2011, 6, e26089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marler, K.J.M.; Becker-Barroso, E.; Martínez, A.; Llovera, M.; Wentzel, C.; Poopalasundaram, S.; Hindges, R.; Soriano, E.; Comella, J.; Drescher, U. A TrkB/EphrinA Interaction Controls Retinal Axon Branching and Synaptogenesis. J. Neurosci. 2008, 28, 12700–12712. [Google Scholar] [CrossRef] [Green Version]
- Marler, K.J.; Poopalasundaram, S.; Broom, E.R.; Wentzel, C.; Drescher, U. Pro-neurotrophins secreted from retinal ganglion cell axons are necessary for ephrinA-p75NTR-mediated axon guidance. Neural Dev. 2010, 5, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, Y.-S.; McLaughlin, T.; Sung, T.-C.; Santiago, A.; Lee, K.-F.; O’Leary, D.D. p75NTR Mediates Ephrin-A Reverse Signaling Required for Axon Repulsion and Mapping. Neuron 2008, 59, 746–758. [Google Scholar] [CrossRef] [Green Version]
- Bonanomi, D.; Chivatakarn, O.; Bai, G.; Abdesselem, H.; Lettieri, K.; Marquardt, T.; Pierchala, B.A.; Pfaff, S.L. Ret Is a Multifunctional Coreceptor that Integrates Diffusible- and Contact-Axon Guidance Signals. Cell 2012, 148, 568–582. [Google Scholar] [CrossRef] [Green Version]
- Lisabeth, E.M.; Falivelli, G.; Pasquale, E.B. Eph Receptor Signaling and Ephrins. Cold Spring Harb. Perspect. Biol. 2013, 5, a009159. [Google Scholar] [CrossRef] [Green Version]
- Miao, H.; Burnett, E.; Kinch, M.; Simon, E.; Wang, B. Activation of EphA2 kinase suppresses integrin function and causes focal-adhesion-kinase dephosphorylation. Nat. Cell Biol. 1999, 2, 62–69. [Google Scholar] [CrossRef]
- Miao, H.; Nickel, C.H.; Cantley, L.G.; Bruggeman, L.A.; Bennardo, L.N.; Wang, B. EphA kinase activation regulates HGF-induced epithelial branching morphogenesis. J. Cell Biol. 2003, 162, 1281–1292. [Google Scholar] [CrossRef] [Green Version]
- Saxton, T.M.; Pawson, T. Morphogenetic movements at gastrulation require the SH2 tyrosine phosphatase Shp2. Proc. Natl. Acad. Sci. USA 1999, 96, 3790–3795. [Google Scholar] [CrossRef] [Green Version]
- Pasquale, E.B. Eph-Ephrin Bidirectional Signaling in Physiology and Disease. Cell 2008, 133, 38–52. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.-H.; Wang, Y.-N.; Yang, W.-H.; Xia, W.; Wei, Y.; Chan, L.-C.; Wang, Y.-H.; Jiang, Z.; Xu, S.; Yao, J.; et al. Human ribonuclease 1 serves as a secretory ligand of ephrin A4 receptor and induces breast tumor initiation. Nat. Commun. 2021, 12, 2788. [Google Scholar] [CrossRef]
- Gao, W.; Zhang, Q.; Wang, Y. EphB3 protein is associated with histological grade and FIGO stage in ovarian serous carcinomas. APMIS 2017, 125, 122–127. [Google Scholar] [CrossRef]
- Efazat, G.; Novak, M.; Kaminskyy, V.O.; De Petris, L.; Kanter, L.; Juntti, T.; Bergman, P.; Zhivotovsky, B.; Lewensohn, R.; Hååg, P.; et al. Ephrin B3 interacts with multiple EphA receptors and drives migration and invasion in non-small cell lung cancer. Oncotarget 2016, 7, 60332–60347. [Google Scholar] [CrossRef] [Green Version]
- Karidis, N.P.; Giaginis, C.; Tsourouflis, G.; Alexandrou, P.; Delladetsima, I.; Theocharis, S. Eph-A2 and Eph-A4 expression in human benign and malignant thyroid lesions: An immunohistochemical study. Med. Sci. Monit. 2011, 17, BR257–BR265. [Google Scholar] [CrossRef]
- Barquilla, A.; Pasquale, E.B. Eph Receptors and Ephrins: Therapeutic Opportunities. Annu. Rev. Pharmacol. Toxicol. 2015, 55, 465–487. [Google Scholar] [CrossRef] [Green Version]
- Agopian, A.J.; Tinker, S.C.; Lupo, P.J.; Canfield, M.A.; Mitchell, L.E.; The National Birth Defects Prevention Study. Proportion of neural tube defects attributable to known risk factors. Birth Defects Res. Part A Clin. Mol. Teratol. 2013, 97, 42–46. [Google Scholar] [CrossRef] [Green Version]
- Sahmat, A.; Gunasekaran, R.; Mohd-Zin, S.W.; Balachandran, L.; Thong, M.-K.; Engkasan, J.P.; Ganesan, D.; Omar, Z.; Azizi, A.B.; Ahmad-Annuar, A.; et al. The Prevalence and Distribution of Spina Bifida in a Single Major Referral Center in Malaysia. Front. Pediatr. 2017, 5, 237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, T.; Cao, X.; Chen, Y.; Jin, L.; Li, Z.; Han, X.; Lin, Y.; Wlodarczyk, B.J.; Finnell, R.H.; Yuan, Z.; et al. Somatic and de novo Germline Variants of MEDs in Human Neural Tube Defects. Front. Cell Dev. Biol. 2021, 9, 641831. [Google Scholar] [CrossRef]
- Rocha, P.P.; Bleiss, W.; Schrewe, H. Mosaic expression of Med12 in female mice leads to exencephaly, spina bifida, and craniorachischisis. Birth Defects Res. Part A Clin. Mol. Teratol. 2010, 88, 626–632. [Google Scholar] [CrossRef] [Green Version]
- Pallerla, S.R.; Pan, Y.; Zhang, X.; Esko, J.D.; Grobe, K. Heparan sulfate Ndst1 gene function variably regulates multiple signaling pathways during mouse development. Dev. Dyn. Off. Publ. Am. Assoc. Anat. 2007, 236, 556–563. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, W.; Liu, E.Y.; Zhou, Y.-H. Single Nucleotide Polymorphism (SNP) Detection and Genotype Calling from Massively Parallel Sequencing (MPS) Data. Stat. Biosci. 2012, 5, 3–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, R.; Paul, J.S.; Albrechtsen, A.; Song, Y.S. Genotype and SNP calling from next-generation sequencing data. Nat. Rev. Genet. 2011, 12, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Ruan, J.; Durbin, R. Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res. 2008, 18, 1851–1858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sims, D.; Sudbery, I.; Ilott, N.E.; Heger, A.; Ponting, C.P. Sequencing depth and coverage: Key considerations in genomic analyses. Nat. Rev. Genet. 2014, 15, 121–132. [Google Scholar] [CrossRef]
- Patel, Z.H.; Kottyan, L.; Lazaro, S.; Williams, M.S.; Ledbetter, D.H.; Tromp, H.; Rupert, A.; Kohram, M.; Wagner, M.; Husami, A.; et al. The struggle to find reliable results in exome sequencing data: Filtering out Mendelian errors. Front. Genet. 2014, 5, 16. [Google Scholar] [CrossRef] [Green Version]
- Karczewski, K.J.; Francioli, L.C.; Tiao, G.; Cummings, B.B.; Alföldi, J.; Wang, Q.; Collins, R.L.; Laricchia, K.M.; Ganna, A.; Birnbaum, D.P.; et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 2020, 581, 434–443. [Google Scholar] [CrossRef]
- Mani, A. Pathogenicity of De Novo Rare Variants: Challenges and Opportunities. Circ. Cardiovasc. Genet. 2017, 10, e002013. [Google Scholar] [CrossRef]
- Chen, H.; Hendricks, A.E.; Cheng, Y.; Cupples, A.L.; Dupuis, J.; Liu, C.-T. Comparison of statistical approaches to rare variant analysis for quantitative traits. BMC Proc. 2011, 5, S113. [Google Scholar] [CrossRef] [Green Version]
- Teo, Y.-Y.; Sim, X.; Ong, R.T.; Tan, A.K.; Chen, J.; Tantoso, E.; Small, K.S.; Ku, C.-S.; Lee, E.J.; Seielstad, M.; et al. Singapore Genome Variation Project: A haplotype map of three Southeast Asian populations. Genome Res. 2009, 19, 2154–2162. [Google Scholar] [CrossRef] [Green Version]
- Manrai, A.; Funke, B.H.; Rehm, H.L.; Olesen, M.S.; Maron, B.A.; Szolovits, P.; Margulies, D.M.; Loscalzo, J.; Kohane, I.S. Genetic Misdiagnoses and the Potential for Health Disparities. N. Engl. J. Med. 2016, 375, 655–665. [Google Scholar] [CrossRef]
- Adzhubei, I.A.; Schmidt, S.; Peshkin, L.; Ramensky, V.E.; Gerasimova, A.; Bork, P.; Kondrashov, A.S.; Sunyaev, S.R. A method and server for predicting damaging missense mutations. Nat. Methods 2010, 7, 248–249. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Henikoff, S.; Ng, P.C. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat. Protoc. 2009, 4, 1073–1081. [Google Scholar] [CrossRef]
- Choi, Y.; Sims, G.E.; Murphy, S.; Miller, J.R.; Chan, A.P. Predicting the Functional Effect of Amino Acid Substitutions and Indels. PLoS ONE 2012, 7, e46688. [Google Scholar] [CrossRef] [Green Version]
- Rentzsch, P.; Witten, D.; Cooper, G.M.; Shendure, J.; Kircher, M. CADD: Predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 2019, 47, D886–D894. [Google Scholar] [CrossRef]
- Shihab, H.A.; Rogers, M.F.; Gough, J.; Mort, M.; Cooper, D.N.; Day, I.N.M.; Gaunt, T.R.; Campbell, C. An integrative approach to predicting the functional effects of non-coding and coding sequence variation. Bioinformatics 2015, 31, 1536–1543. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, J.M.; Cooper, D.N.; Schuelke, M.; Seelow, D. MutationTaster2: Mutation prediction for the deep-sequencing age. Nat. Methods 2014, 11, 361–362. [Google Scholar] [CrossRef]
- Davydov, E.V.; Goode, D.; Sirota, M.; Cooper, G.M.; Sidow, A.; Batzoglou, S. Identifying a High Fraction of the Human Genome to be under Selective Constraint Using GERP++. PLoS Comput. Biol. 2010, 6, e1001025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pollard, K.S.; Hubisz, M.J.; Rosenbloom, K.R.; Siepel, A. Detection of nonneutral substitution rates on mammalian phylogenies. Genome Res. 2009, 20, 110–121. [Google Scholar] [CrossRef] [Green Version]
- Krupp, D.R.; Soldano, K.L.; Garrett, M.E.; Cope, H.; Ashley-Koch, A.E.; Gregory, S.G. Missing genetic risk in neural tube defects: Can exome sequencing yield an insight? Birth Defects Res. Part A Clin. Mol. Teratol. 2014, 100, 642–646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raychaudhuri, S. Mapping Rare and Common Causal Alleles for Complex Human Diseases. Cell 2011, 147, 57–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandell, L.; Sharp, N.P. Fitness Effects of Mutations: An Assessment of PROVEAN Predictions Using Mutation Accumulation Data. Genome Biol. Evol. 2022, 14, evac004. [Google Scholar] [CrossRef] [PubMed]
- Tan, A.C.W.; Mohd-Zin, S.W.; Ishak, N.; Thong, M.-K.; Ahmad-Annuar, A.; Azizi, A.B.; Abdul-Aziz, N.M. MTRR gene variant rs1801394 found in Malaysian patients with neural tube defects. Neurosci. Res. Notes 2020, 3, 24–31. [Google Scholar] [CrossRef]
- Relton, C.; Wilding, C.; Pearce, M.; Laffling, A.J.; Jonas, P.A.; Lynch, S.A.; Tawn, E.; Burn, J. Gene-gene interaction in folate-related genes and risk of neural tube defects in a UK population. J. Med. Genet. 2004, 41, 256–260. [Google Scholar] [CrossRef]
- Kibar, Z.; Salem, S.; Bosoi, C.; Pauwels, E.; De Marco, P.; Merello, E.; Bassuk, A.; Capra, V.; Gros, P. Contribution of VANGL2 mutations to isolated neural tube defects. Clin. Genet. 2010, 80, 76–82. [Google Scholar] [CrossRef] [Green Version]
- Kibar, Z.; Torban, E.; McDearmid, J.R.; Reynolds, A.; Berghout, J.; Mathieu, M.; Kirillova, I.; De Marco, P.; Merello, E.; Hayes, J.M.; et al. Mutations in VANGL1 Associated with Neural-Tube Defects. N. Engl. J. Med. 2007, 356, 1432–1437. [Google Scholar] [CrossRef]
Probands | Genotypes | ||||||
---|---|---|---|---|---|---|---|
EPHA2 (rs147977279) | EPHB6 (rs780569137) | EFNB1 (rs772228172) | |||||
G/G | G/C (Heterozygous) | A/A | A/G (Heterozygous) | C/C | C/T (Heterozygous) | T (Hemizygous) | |
Proband | - | 1 (SB2A) | - | 1 (SB5A) | - | 1 (SB1A) | - |
Parent of probands | 1 (Mother of SB2A) | 1 (Father of SB2A) | 1 (Father of SB5A) | 1 (Mother of SB5A) | 1 (Mother of SB1A) | - | 1 (Father of SB1A) |
Other NTD Probands | 6 | - | 6 | - | 6 | - | - |
Parents and unaffected twin-sibling of other NTD probands | 12 | - | 12 | - | 12 | - | - |
Controls | 10 | - | 10 | - | 10 | - | - |
Total | 29 | 2 | 29 | 2 | 29 | 1 | 1 |
Gene | Location | Transcript | cDNA Change | Amino Acid Change | Nucleotide Change |
---|---|---|---|---|---|
EPHA2 rs147977279 | Chr1: 16477423 | NM_004431 (exon 2) | c.G121C | p.L41V | G to C |
EPHB6 rs780569137 | Chr7: 142562247 | NM_004445 (exon 7) | c.A689G | p.Y230C | A to G |
EFNB1 rs772228172 | ChrX: 68049626 | NM_004429 (exon 1) | c.C7T | p.R3W | C to T |
MAF Databases | EPHA2 (rs147977279) | EPHB6 (rs780569137) | EFNB1 (rs772228172) |
---|---|---|---|
1000 Genome Phase 3 (2N = 5008 alleles) | Global: 0.0022 (2n = 11) EAS = Not reported (total number of alleles = 1008) SAS = 0.011 (2n = 978) | Not listed | Not listed |
GnomAD v2.1.1 (2N = 282,912 alleles) | GnomAD exomes (Global) = 0.002013 (2n = 506/251,420) GnomAD exomes (Asian) = 0.00853 (total number of alleles = 49,008) GnomAD (Global) = 0.000019 (2n = 6/31,384) GnomAD (EAS) = Not reported (2n = 0/1556) | Not listed | GnomAD exomes (Global) = 0.000014 (2n = 2/142,298) GnomAD exomes (Asian) = 0.00004 (total number of alleles = 26,746) |
ExAC (2N = 121,250 alleles) | Global = 0.0024 (2n = 291) Asian = 0.00927 (total number of alleles = 25,142) | Not listed | Not reported |
ESP (2N = 13,006 alleles) | Global = 0.0000308 (2n = 4/13,006) | Not listed | Not reported |
TOPMED (2N = 124,568 alleles) | Global = 0.000334 (2n = 42/125,568) | Not listed | Global = 0.000008 (2n = 1/125,568) |
Singapore Genome Variation Project (SGVP) | Not listed | Not listed | Not listed |
Function | Tool | Score Cut-Off/Range | EPHA2 (rs147977279) | EPHB6 (rs780569137) | EFNB1 (rs772228172) | |||
---|---|---|---|---|---|---|---|---|
Score | Prediction | Score | Prediction | Score | Prediction | |||
Pathogenicity | Polyphen2 HumDiv | 0–1 | 0.998 | Probably Damaging | 1.00 | Probably Damaging | 0.999 | Probably Damaging |
Polyphen2 HumVar | 0–1 | 0.997 | Probably Damaging | 0.962 | Probably Damaging | 0.709 | Possibly Damaging | |
SIFT | Cut-off = 0.05 | 0.001 | Damaging | 0.000 | Damaging | 0.001 | Damaging | |
Provean | Cut-off = −2.5 | −2.27 | Neutral | −1.92 | Neutral | −0.51 | Neutral | |
CADD | 0–10 = Bottom 90% 10–20 = Top 10% >20 = Top 1% | 25.2 | Top 1% most deleterious in the genome | 24.0 | Top 1% most deleterious in the genome | 32 | Top 1% most deleterious in the genome | |
FATHMM-MKL | 0–1 | 0.94351 | Pathogenic | 0.94876 | Pathogenic | 0.61563 | Pathogenic | |
MutationTaster | - | Disease Causing | Probably deleterious | Polymorphism | Probably harmless | Polymorphism | Probably harmless | |
Sequence conservation | GERP | −12.36 to +6.16 | 4.78 | Evolutionary constrained | 5.21 | Evolutionary constrained | 4.17 | Evolutionary constrained |
PhyloP | −14 to +6 | 3.25157 | Conserved | 3.28894 | Conserved | 1.538 | Conserved |
SB1A | SB1C (Father of Proband SB1A) | SB1B (Mother of Proband SB1A) | SB2A | SB2C (Father of Proband SB2A) | SB2B (Mother of Proband SB2A) | SB5A | SB5B (Mother of Proband SB5A) | SB5C (Father of Proband SB5A) | |
---|---|---|---|---|---|---|---|---|---|
Ephs and ephrins | EFNB1 (het) | EFNB1 (hemi) | EFNB1 (wt) | EPHA2 (het) | EPHA2 (het) | EPHA2 (wt) | EPHB6 (het) | EPHB6 (het) | EPHB6 (wt) |
(A) Reported spina bifida-related genes with variants segregated with spina bifida | **/***PTCH1 (hom) * CUBN.1 (het) ** CUBN.2 (het) CUBN.3 (het) ** CUBN.4 (het) * CUBN.5 (het) ** MTRR.1 (het) ** MTRR.4 (het) */** VANGL1.1 (het) *** COMT (hom) *** CUBN.6 (hom) *** TRDMT1 (hom) | Exome dataset not available | PTCH1 (wt) CUBN.1(wt) CUBN.2(wt) CUBN.3 (wt) CUBN.4 (wt) CUBN.5 (wt) MTRR.1 (wt) MTRR.4(wt) VANGL1.1 (wt) COMT (het) CUBN.6 (het) TRDMT1 (het) | ** ALDH1L1 (het) ** CUBN.7 (het) GRHL3 (het) * PARD3 (het) | ALDH1L1(wt) CUBN.7 (wt) GRHL3(wt) PARD3(wt) | ALDH1L1(wt) CUBN.7 (wt) GRHL3(wt) PARD3(wt) | No variants found | No variants found | No variants found |
# (B) Reported spina bifida-related genes in probands and parent of probands with Ephs and ephrins variant | Not relevant due to exome dataset SB1C was not available | Exome dataset not available | Not relevant due to exome dataset SB1C was not available | ** BHMT (het) ** MTHFD1 (het) MTRR.2 (het) MTRR.3 (het) ** TNIP1 (het) VANGL1.2 (het) *** CUBN.6 (hom) *** SOD2 (hom) | BHMT(wt) MTHFD1(wt) MTRR.2 (wt) MTRR.3 (wt) TNIP1(wt) VANGL1.2 (wt) CUBN.6 (het) SOD2 (het) | ** BHMT (het) ** MTHFD1 (het) MTRR.2 (het) MTRR.3 (het) ** TNIP1 (het) *** VANGL1.2(hom) *** CUBN.6 (hom) *** SOD2 (hom) | APEX1 (het) * MTHFR.2 (het) ** MTHFR.1 (het) PCMT1 (het) */** SCRIB (het) VANGL1.2 (het) ** XPD (het) ALDH1A2 (het) **/*** MTRR.1 (hom) | APEX1(wt) MTHFR.2(wt) MTHFR.1(wt) PCMT1(wt) SCRIB(wt) VANGL1.2(wt) XPD(wt) ALDH1A(wt) MTRR.1 (het) | APEX1 (het) * MTHFR.2 (het) ** MTHFR.1 (het) PCMT1 (het) */** SCRIB (het) VANGL1.2 (het)** XPD (het) *** ALDH1A2 (hom) **/*** MTRR.1 (hom) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohd-Zin, S.W.; Tan, A.C.W.; Atroosh, W.M.; Thong, M.-K.; Azizi, A.B.; Greene, N.D.E.; Abdul-Aziz, N.M. Eph and Ephrin Variants in Malaysian Neural Tube Defect Families. Genes 2022, 13, 952. https://doi.org/10.3390/genes13060952
Mohd-Zin SW, Tan ACW, Atroosh WM, Thong M-K, Azizi AB, Greene NDE, Abdul-Aziz NM. Eph and Ephrin Variants in Malaysian Neural Tube Defect Families. Genes. 2022; 13(6):952. https://doi.org/10.3390/genes13060952
Chicago/Turabian StyleMohd-Zin, Siti Waheeda, Amelia Cheng Wei Tan, Wahib M. Atroosh, Meow-Keong Thong, Abu Bakar Azizi, Nicholas D. E. Greene, and Noraishah Mydin Abdul-Aziz. 2022. "Eph and Ephrin Variants in Malaysian Neural Tube Defect Families" Genes 13, no. 6: 952. https://doi.org/10.3390/genes13060952
APA StyleMohd-Zin, S. W., Tan, A. C. W., Atroosh, W. M., Thong, M. -K., Azizi, A. B., Greene, N. D. E., & Abdul-Aziz, N. M. (2022). Eph and Ephrin Variants in Malaysian Neural Tube Defect Families. Genes, 13(6), 952. https://doi.org/10.3390/genes13060952