The Genetic Diversity of Bletilla spp. Based on SLAF-seq and Oligo-FISH
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Slaf Library Construction and Sequencing
2.3. FISH Hybridization
2.4. Data Analysis
3. Results
3.1. SLAF Tag Development
3.2. Genetic Diversity Analysis
3.3. Genetic Diversity Analysis of Bletilla Based on FISH
4. Discussion
4.1. Characteristics of the SLAF-seq Method
4.2. Differences in Karyotype Structure and FISH Signal Pattern
4.3. SNP, FISH, and Parental Breeding
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cao, Q.; Wang, X.P. Biological characteristics and protection of medicinal Bletilla striata. Anhui Agric. Sci. 2015, 43, 175–176. [Google Scholar] [CrossRef]
- Zhou, X.J.; Zhang, M.; Lin, J.; Chen, T.Z.; Wu, P. Investigation on Medicinal Plant Resources of Bletilla in Sichuan. J. Anhui Agric. Sci. 2019, 47, 178–180. [Google Scholar] [CrossRef]
- Li, S.Q.; Xiong, L.D.; He, H.L.; Zeng, C.G.; Li, L. The pharmacological effects and clinical research progress of Bletilla striata. Chin. Beauty Med. 2021, 30, 176–178. [Google Scholar] [CrossRef]
- Chou, S.; Zhao, J.; Tang, F.N.; Xia, K.; Jiang, Q.H.; Zhao, Z.G. Development status, existing problems and Prospect of Bletilla striata industry. Guizhou Agric. Sci. 2017, 45, 96–98. [Google Scholar] [CrossRef]
- Yu, J.P.; Liu, J.X.; Han, F.G.; Ren, Q.J. Several excellent medicinal ornamental groundcover plants and their applications. Wild Plant Resour. China 2003, 2, 17–18. [Google Scholar] [CrossRef]
- Wang, Q.B.; Wang, Y.C.; Dong, Y.C.; Zheng, T.; Chen, L. Research progress of Bletilla striata related preparations and medical materials. Chin. Pat. Med. 2018, 40, 1808–1810. [Google Scholar] [CrossRef]
- Zhang, N.; Xue, L.P.; Younas, A.; Liu, F.F.; Sun, J.H.; Dong, Z.L.; Zhao, Y.X. Co-delivery of triamcinolone acetonide and verapamil for synergistic treatment of hypertrophic scars via carboxymethyl chitosan and Bletilla striata polysaccharide-based microneedles. Carbohydr. Polym. 2022, 284, 119219. [Google Scholar] [CrossRef] [PubMed]
- Pang, S.Q.; Wang, G.Q.; Wu, S.; Sun, A.J.; Diao, Y.; Xu, R.A. Protective effect of polysaccharide from Rhizoma Bletillae on deep second degree burn wounds in rats. Chin. Med. Mater. 2013, 36, 1819–1823. [Google Scholar] [CrossRef]
- Xiang, J.X.; Wang, Y.J.; Yang, L.P.; Zhang, X.J.; Hong, Y.L.; Shen, L. A novel hydrogel based on Bletilla striata polysaccharide for rapid hemostasis: Synthesis, characterization and evaluation. Int. J. Biol. Macromol. 2021, 196, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.W.; Fang, C.H.; Liang, Y.J.; Liao, H.H.; Lin, F.H. Modified Low-Temperature Extraction Method for Isolation of Bletilla striata Polysaccharide as Antioxidant for the Prevention of Alzheimer’s Disease. Int. J. Mol. Sci. 2021, 22, 12760. [Google Scholar] [CrossRef] [PubMed]
- Qian, L.H.; Yin, S.Y.; Lu, N.; Yuan, S.L.; Wang, X.B. Present situation and Prospect of comprehensive utilization of Bletilla striata resources. Jiangsu Agric. Sci. 2021, 19, 64–71. [Google Scholar] [CrossRef]
- Fan, Y.X.; Long, C.L. Traditional skin care knowledge of Bletilla plants. Domest. Chem. Sci. 2020, 43, 41–48. [Google Scholar] [CrossRef]
- Ma, S.H.; Jin, L.; Jie, S.; Wang, S.X.; Sun, D.F.; Zhang, W.M. Application of Bletilla striata-paeonol inclusion complex in cosmetics. Dly. Chem. Sci. 2009, 32, 30–33. [Google Scholar] [CrossRef]
- Xiong, C.X.; Ding, L.; Zhong, Y.Y.; Xiong, H.X. Review on rare medicinal plant Bletilla striata. Heilongjiang Sci. 2021, 12, 49–52. [Google Scholar] [CrossRef]
- Xu, Z.H. Planting prospect and efficient cultivation techniques of Bletilla striata. Rural Econ. Sci. Technol. 2019, 30, 32–33. [Google Scholar] [CrossRef]
- Sun, Z.W.; Huang, X.Q.; Li, W.J.; Zhong, Q.F.; Yu, T.Q.; Guo, Y.Q.; Li, D.Q.; Ying, F.Y.; Chen, Z.Q. Molecular marker technology and its application in Rice gene mapping. Genom. Appl. Biol. 2011, 30, 78–86. [Google Scholar] [CrossRef]
- Deng, Y.M.; Jia, X.P.; Liang, L.J. Methods for identification of distant hybrids of ornamental plants. J. Nucl. Agric. 2016, 30, 1308–1315. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?FileName=HNXB201607008&DbName=CJFQ2016 (accessed on 8 April 2022).
- Liu, Y.; Wang, X.; Jia, X.X.; Fang, Q.G. Analysis of SSR and SNP characteristics based on transcriptome sequencing. Mol. Plant Breed. 2022, 1–13. Available online: http://kns.cnki.net/kcms/detail/46.1068.s.20220126.0942.002.html (accessed on 27 January 2022).
- Li, Q.Y. Comparative analysis of SSR and SNP molecular markers in crop seed detection. Chin. Seed Ind. 2021, 12, 48–50. [Google Scholar] [CrossRef]
- Sun, X.W.; Liu, D.Y.; Zhang, X.F.; Li, W.B.; Liu, H.; Hong, W.G.; Jiang, C.B.; Ning, G.; Ma, C.X.; Zeng, H.P. SLAF-seq: An efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing. PLoS ONE 2013, 8, e58700. [Google Scholar] [CrossRef]
- Huang, H.; Zhou, S.M.; Wu, Y.S.; Ban, M.L.; Wu, T.; Xu, Y.M.; Chen, Q.; Chen, Z.D.; Huang, R.K. The application progress of SLAF-seq technology in vegetable crops. Mol. Plant Breed. 2022, 1–14. Available online: http://kns.cnki.net/kcms/detail/46.1068.S.20210803.0921.002.html (accessed on 5 April 2022).
- Song, L.L.; Zhao, D.; Su, D.; Jin, X.; Xia, Z.M.; Hu, M.W.; Qin, L.J. Based on simplified genome sequencing (SLAF-seq), the genetic relationship of Pepper varieties in Guizhou was analyzed. Mol. Plant Breed. 2021, 19, 7995–8004. [Google Scholar] [CrossRef]
- Lin, P.P.; Zhang, H.; Xu, L.N.; Deng, Z.H.; Wang, Q.N.; Zhao, X.W. Genetic diversity and selection signal analysis of Sugarcane based on SLAF-seq technology. Subtrop. Agric. Res. 2021, 17, 217–225. [Google Scholar] [CrossRef]
- Tian, Q.; Liu, S.W.; Kuo, S.H.; Li, W. Development of SNP molecular markers for Pinus bungeana based on SLAF-seq technology. J. Beijing For. Univ. 2021, 43, 1–8. [Google Scholar] [CrossRef]
- Zhang, R.L.; Liu, W.Y.; Zhang, Y.X.; Tu, D.D.; Zhu, L.Y.; Zhang, W.J.; Hui, Z.M. Genetic diversity analysis based of Melocalamus arrectus on simplified genome sequencing. Mol. Plant Breed. 2021, 1–21. Available online: http://kns.cnki.net/kcms/detail/46.1068.S.20211129.1403.006.html (accessed on 14 March 2022).
- Zhao, Y.Q.; Fang, C.Z.; Zhang, J.Z.; Qiu, Y.J.; Xin, H.L.; Li, X.J. SNP locus development and genetic structure analysis of cultivated and wild species of Humulus lupulus based on simplified genome technology. Chin. Tradit. Herb. Drugs 2021, 52, 6365–6372. [Google Scholar] [CrossRef]
- Fang, H.T.; Liu, H.Y.; Ma, R.H.; Zhang, G.D. Genome-wide assessment of population structure and genetic diversity of Chinese Lou onion using specific length amplified fragment (SLAF) sequencing. PLoS ONE 2020, 15, e0231753. [Google Scholar] [CrossRef]
- Yang, Y.H.; Bai, Z.Y.; Wei, B.G.; Lei, Y.; Zhang, U.J. Based on BSA and SLAF-Seq technology, QTL fine mapping of Soybean main stem node number. Nucl. Agric. J. 2021, 35, 1953–1963. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?FileName=HNXB202109002&DbName=CJFQ2021 (accessed on 14 March 2022).
- Abirached-Darmency, M.; Prado-Vivant, E.; Chelysheva, L.; Pouthier, T. Variation in rDNA locus number and position among legume species and detection of 2 linked rDNA loci in the model Medicago truncatula by FISH. Genome 2005, 48, 556–561. [Google Scholar] [CrossRef]
- Robledo, G.; Lavia, G.I.; Seijo, G. Species relations among wild Arachis species with the A genome as revealed by FISH mapping of rDNA loci and heterchromatin detection. Theor. Appl. Genet. 2009, 118, 1295–1307. [Google Scholar] [CrossRef]
- Cai, Q.; Zhang, D.M.; Liu, Z.L.; Wang, X.R. Chromosomal localization of 5S and 18S rDNA in five species of subgenus Strobus and their implications for genome evolution of Pinus. Ann. Bot. 2006, 97, 715–722. [Google Scholar] [CrossRef]
- Hizume, M.; Shibata, F.; Matsusaki, Y.; Garajova, Z. Chromosome identification and comparative karyotypic analyses of four Pinus species. Theor. Appl. Genet. 2002, 105, 491–497. [Google Scholar] [CrossRef]
- Hanson, R.E.; Islam-Faridi, M.N.; Percival, E.A.; Crane, C.F.; Ji, Y.; Mcknoght, T.D. Distribution of 5S and 18S-28S rDNA loci in a tetraploid cotton (Gossypium hirsutum L.) and its putative diploid ancestors. Chromosoma 1996, 105, 5–61. [Google Scholar] [CrossRef]
- Sakhanokho, H.F.; Faridi, N.; Babiker, E.; Nelson, C.D.; Stringera, S.J.; Adamczyk, J.J. Determination of nuclear DNA content, ploidy, and FISH location of ribosomal DNA in Hibiscus hamabo. Sci. Hortic. 2020, 264, 109167. [Google Scholar] [CrossRef]
- Li, Y.P.; Zhang, X.L.; Wu, W.T.; Miao, S.X.; Chang, J.L. Chromosome and karyotype analysis of Hibiscus mutabilis F. mutabilis. Front. Life Sci. 2015, 8, 300–304. [Google Scholar] [CrossRef]
- Tabassum, N.; Rafique, U.; Balkhair, K.S.; Ashraf, M.A. Chemodynamics of methyl parathion and ethyl parathion: Adsorption models for sustainable agriculture. Biomed. Res. Internat. 2014, 2014, 831989. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.M.; He, Z.J. Distribution of FISH oligo-5S rDNA and oligo-(AGGGTTT)3 in Hibiscus mutabilis L. Genome 2019, 20, 655–664. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.M.; Liu, J.C.; He, Z.J. Oligo-FISH Can Identify Chromosomes and Distinguish Hippophaë rhamnoides L. Taxa. Genes 2022, 13, 195. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.M.; Chen, J.Y. Physical map of FISH 5S rDNA and (AG3T3)3 signals displays Chimonanthus campanulatus R.H. Chang &C.S. Ding chromosomes, reproduces its metaphase dynamics and distinguishes its chromosomes. Genes 2019, 10, 904. [Google Scholar] [CrossRef] [Green Version]
- Luo, X.M.; Chen, J. Distinguishing Sichuan walnut cultivars and examining their relationships with Juglans regia and J. sigillata by FISH, early-Fruiting gene analysis, and SSR analysis. Front. Plant Sci. 2020, 11, 27. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.H.; Xing, G.M.; Zhang, Y.Q.; Tian, H.L.; Fu, L.M.; Qu, L.W. Advances in Tulip germplasm resources and breeding in China. Hortic. Seed 2020, 40, 31–35. [Google Scholar] [CrossRef]
- Zhang, Y.Z.; Fang, X.Q.; Yang, H.Y.; Zhang, X.J.; Shao, Q.; Liang, D.; Guo, Q.; Liu, Q.S.; Du, W.J. Genetic relationship analysis of Sorghum breeding materials based on simplified genome sequencing. Biotechnol. Bull. 2020, 36, 21–23. [Google Scholar] [CrossRef]
- Xiong, F.Q.; Liu, J.X.; Liu, J.; He, L.Q.; Jiang, J.; Tang, X.M.; Tang, R.H. Comparative analysis and application of five improved CTAB extraction methods of Peanut DNA. Mol. Plant Breed. 2019, 17, 2207–2216. [Google Scholar] [CrossRef]
- Gharbi, E.C.; Davey, W.J.; Blaxter, L.M.; Fuentes, U. Special features of RAD Sequencing data: Implications for genotyping. Mol. Ecol. 2013, 22, 3151–3164. [Google Scholar] [CrossRef] [Green Version]
- Luo, X.M.; Liu, J.C.; Zhao, A.J.; Chen, X.H.; Wan, W.L.; Chen, L. Karyotype analysis of Piptanthus concolor based on FISH with an oligonucleotide for rDNA 5S. Sci. Hortic. 2017, 226, 361–365. [Google Scholar] [CrossRef]
- Liu, J.C.; Luo, X.M. First report of bicolour FISH of Berberis diaphana and B. soulieana reveals interspecific differences and co-localization of (AGGGTTT)3 and rDNA 5S in B. diaphana. Hereditas 2019, 156, 13. [Google Scholar] [CrossRef] [PubMed]
- Qi, Z.X.; Zeng, H.; Li, X.L.; Chen, C.B.; Song, W.Q.; Chen, R.Y. The molecular characterization of maize B chromosome specific AFLPs. Cell Res. 2002, 12, 63–68. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Durbin, R. Fast and accurate short read alignment with burrows–wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [Green Version]
- Sudhir, K.; Glen, S.; Li, M.; Christina, K.; Koichiro, T.; Mega, X. Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Alexander, D.H.; Novembre, J.; Lange, K.F. Model-based estimation of ancestry in unrelated individuals. Genome Res. 2009, 19, 1655–1664. [Google Scholar] [CrossRef] [Green Version]
- Price, A.L.; Patterson, N.J.; Plenge, R.M.; Weinblatt, M.E.; Shadick, N.A.; Reich, D. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 2006, 38, 904–909. [Google Scholar] [CrossRef]
- Xiong, Y.; Zhang, J.Z.; Dong, J.; Wang, L.; Gao, P.; Jiang, W.; Che, D.D. Research progress on the application of simplified genome sequencing technology in ornamental plants. Hortic. J. 2020, 47, 1194–1202. [Google Scholar] [CrossRef]
- Li, N.N.; Wang, Y.B.; Xu, G.P.; Yi, L.; Wang, A.F.; Li, T.; Cao, G.Q. Comparison of SNP marker based methods for classification of maize inbred lines and evaluation indexes of grouping efficacy. J. Plant Genet. Resour. 2020, 21, 605–618. [Google Scholar] [CrossRef]
- Liu, T.; Guo, L.L.; Pan, Y.L.; Zhao, Q.; Wang, J.H.; Song, Z.Q. Construction of the first high-density genetic linkage map of Salvia miltiorrhiza using specific length amplified fragment (SLAF) sequencing. Sci. Rep. 2016, 6, 24070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Y.Y.; Liu, L.F.; Ji, H.L.; Han, M.K.; Jiao, W.J.; Gao, Z.Y.; Ma, Z.M. Research progress on simplified genome sequencing technology. J. Jiangsu Norm. Univ. Nat. Sci. Ed. 2018, 36, 63–68. [Google Scholar] [CrossRef]
- Lan, Y.; Qu, L.W.; Xin, H.Y.; Gong, H.L.; Lei, J.J.; Xi, M.L. Physical mapping of rDNA and karyotype analysis in Tulipa sinkiangensis and T. schrenkii. Sci. Hortic. 2018, 240, 638–644. [Google Scholar] [CrossRef]
- Mane, R.N.; Nagendra, C.; Reddy, A.M.; Yadav, S.R. Karyomorphological Analysis of Hildegardia populifolia (Malvaceae): An Endemic Species from the Eastern Ghats, India. Cytologia 2021, 86, 241–243. [Google Scholar] [CrossRef]
- Wang, Y.; Xiong, P.F.; Zheng, H.; Qi, Y.Q.; Zhang, J.C.; Han, J.Y. Karyotype analysis of medicinal plant Bletilla striata germplasm resources. Seed 2021, 40, 20–34. [Google Scholar] [CrossRef]
- Leng, Q.Y.; Mo, R.; Peng, B.; Huang, M.Z.; Luo, Y.H.; Wang, J.B. Karyotype analysis of six orchids. Hortic. J. 2009, 36, 291–296. [Google Scholar] [CrossRef]
- Meng, Y.; Wen, Y.H.; Li, H.M.; Zhou, Y.C.; Wang, Y.Y.; Li, Z.L. Karyotype analysis of F-1 hybrids between Cymbidium hybridum and Cymbidium hybridum. J. Jiangxi Agric. 2014, 26, 50–52. [Google Scholar] [CrossRef]
- Yao, R.; Ren, X.J.; Li, M.H.; Yang, M.H.; Guo, Z.Q.; Gao, H.; Lin, X.H. Karyotype and evolutionary relationship analysis of three species with R genome in Wheat crops. Seed 2020, 39, 14–18. [Google Scholar] [CrossRef]
- Tian, M.; Zhang, T.; Tang, K.X.; Zhang, H.; Qiu, X.Q.; Yan, H.J.; Jian, H.Y. Overview of the application of fluorescence in situ hybridization in the study of Rosa plants. Jiangsu Agric. Sci. 2018, 46, 29–35. [Google Scholar] [CrossRef]
- Pinkel, D.; Gray, T.; Gray, J.W. Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc. Natl. Acad. Sci. USA 1986, 83, 2934–2938. [Google Scholar] [CrossRef] [Green Version]
- Xie, W.J.; Huang, J.; Ma, X.J. Location of 45S and 5S rDNA sequences on chromosomes of 20 species of Cucurbitaceae. J. South China Agric. Univ. 2019, 40, 74–81. [Google Scholar] [CrossRef]
- Wang, J.Y.; Cao, S.; Dang, J.B.; Liang, G.L.; Yang, C.; Zhang, Y.; Chen, Y.Y. Optimization of 18S rDNA chromosome in situ hybridization in tobacco. J. Chin. Tob. 2019, 25, 78–84. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Cheng, C.Y.; Li, J.; Yang, S.Q.; Wang, Y.Z.; Li, Z.; Chen, J.F.; Luo, Q.F. Chromosomal structures and repetitive sequences divergence in Cucumis species revealed by comparative cytogenetic mapping. BMC Genom. 2015, 16, 730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, J. Fluorescence in situ hybridization in plants: Recent developments and future applications. Chromosome Res. 2019, 27, 153–165. [Google Scholar] [CrossRef]
- Zhang, N.; Peng, Y.F.; Li, Y.Q.; Zhang, S.C.; Li, M.J.; He, M.Q. Genetic diversity of high quality wheat based on 55k SNP chip analysis. J. Triticeae Crops 2022, 42, 264–271. Available online: http://qikan.cqvip.com/Qikan/Article/Detail?id=7106968142 (accessed on 14 March 2022).
- Zhang, H.B.; Lv, D.; Zhao, M.; Zhao, G.; Zhao, X.P.; Li, W. Analysis of genetic structure of Picea crassifolia based on whole genome SNP markers. Bull. Bot. Res. 2022, 42, 373–382. [Google Scholar] [CrossRef]
- Ma, F.; Li, Q.; Li, X.; Li, H.; Tang, Z.; Hu, L.; Cao, Q.; Xie, Y.; Wang, X. Selection of Parents for Breeding Edible Varieties of Sweet potato with High Carotene Content. Agric. Sci. China 2009, 8, 1166–1173. [Google Scholar] [CrossRef]
- Cao, Y.; Chen, A.H.; Wu, Y.P.; Zhang, Y.; Chen, S.H.; Zhang, Z.D.; Tian, Z. Genetic relationship analysis of Meretrix meretrix and its breeding population in different sea areas by multivariate statistical methods and SSR Markers. J. Fish. Sci. China 2021, 28, 265–275. [Google Scholar] [CrossRef]
- Sun, Z.Q.; Qi, F.Y.; Zheng, Z.; Dong, W.Z.; Huang, B.Y.; Zhang, J.; Zhang, Z.X.; Tang, F.S.; Zhang, X.Y.; Liu, Z.Y. Analysis of parental relationship of 106 peanut cultivars released in Henan Province. Chin. J. Oil Crop Sci. 2017, 39, 754–762. [Google Scholar] [CrossRef]
Sample | Variety | Location | Geographic Coordinates | Geographic Coordinates | Leaf Spreading | Initial Flowering | Green Period | Florescence |
---|---|---|---|---|---|---|---|---|
BS-AB1 | B. striata | Aba, Sichuan | 103°37′30″ E, 31°28′05″ N | 1529 m | 04, Dec. | 15, Mar. | 316 d | 41 d |
BS-AB2 | B. striata | Aba, Sichuan | 103°23′59″ E, 30°55′55″ N | 1348 m | 21, Feb. | 11, Mar. | 229 d | 47 d |
BS-CD1 | B. striata | Dujiangyan, Sichuan | 103°40′19″ E, 31°06′36″ N | 1389 m | 21, Feb. | 01, Apr. | 235 d | 39 d |
BS-CD2 | B. striata | Pengzhou, Sichuan | 103°55′51″ E, 31°08′51″ N | 690 m | 11, Feb. | 25, Mar. | 238 d | 28 d |
BS-CD3 | B. striata | Chongzhou, Sichuan | 103°43′48″ E, 30°40′46″ N | 543 m | 21, Feb. | 01, Apr. | 235 d | 39 d |
BS-NJ | B. striata | Neijiang, Sichuan | 104°53′54″ E, 29°35′11″ N | 365 m | 09, Feb. | 15, Mar. | 247 d | 48 d |
BS-BS | B. striata | Baoshan, Yunnan | 99°16′28″ E, 25°16′54″ N | 2320 m | 11, Mar. | 15, Apr. | 211 d | 44 d |
BS-HH | B. striata | Honghe, Yunnan | 102°17′25″ E, 23°16′29″ N | 2014 m | 14, Feb. | 15, Mar. | 236 d | 55 d |
BS-PE | B. striata | Pu’er, Yunnan | 101°05′22″ E, 23°00′18″ N | 1406 m | 14, Feb. | 01, Apr. | 229 d | 55 d |
BS-QJ | B. striata | Qujing, Yunnan | 103°48′24″ E, 25°40′35″ N | 1996 m | 05, Mar. | 19, Apr. | 217 d | 27 d |
BO-CD1 | B. ochracea | Jintang, Sichuan | 104°29′22″ E, 30°53′59″ N | 628 m | 09, Mar. | 25, Apr. | 206 d | 69 d |
BO-CD2 | B. ochracea | Dujiangyan, Sichuan | 103°40′37″ E, 31°09′20″ N | 1119 m | 01, Apr. | 25, Apr. | 190 d | 73 d |
BO-CD3 | B. ochracea | Dujiangyan, Sichuan | 103°39′41″ E, 31°06′28″ N | 1145 m | 06, Mar. | 28, Apr. | 209 d | 61 d |
BO-NJ | B. ochracea | Neijiang, Sichuan | 104°51′51″ E, 29°35′46″ N | 405 m | 25, Feb. | 23, Apr. | 225 d | 132 d |
BO-QJ | B. ochracea | Qujing, Yunnan | 103°25′25″ E, 26°27′17″ N | 2067 m | 01, Apr. | 09, May | 183 d | 54 d |
BF-LS | B. formosana | Leshan, Sichuan | 103°54′38″ E, 28°56′42″ N | 468 m | 09, Feb. | 09, May | 249 d | 135 d |
Sample | Total Reads | SLAF Number | Total Depth | SNP Number | Hetloci Ratio (%) | Integrity Ratio (%) | GC (%) | Q30 (%) |
---|---|---|---|---|---|---|---|---|
BS-AB1 | 3,821,883 | 170,860 | 2,473,500 | 2,276,348 | 6.61 | 49.34 | 39.38 | 93.80 |
BS-AB2 | 4,812,117 | 179,144 | 3,064,920 | 2,455,325 | 7.35 | 53.22 | 38.94 | 93.99 |
BS-CD1 | 5,141,345 | 193,721 | 2,434,635 | 2,754,599 | 12.84 | 59.71 | 41.28 | 94.08 |
BS-CD2 | 5,981,956 | 206,013 | 2,965,498 | 2,965,366 | 11.13 | 64.28 | 40.44 | 92.85 |
BS-CD3 | 5,784,414 | 223,459 | 3,307,779 | 2,982,996 | 14.82 | 64.66 | 41.22 | 94.58 |
BS-NJ | 2,949,503 | 158,898 | 1,783,602 | 2,136,444 | 5.87 | 46.31 | 39.15 | 93.40 |
BS-BS | 3,997,451 | 176,902 | 2,613,096 | 2,283,183 | 9.87 | 49.49 | 39.35 | 93.89 |
BS-HH | 2,034,833 | 145,657 | 1,072,634 | 1,764,431 | 6.56 | 38.24 | 38.74 | 94.06 |
BS-PE | 3,061,044 | 158,054 | 1,839,338 | 2,095,856 | 4.35 | 45.43 | 39.74 | 93.82 |
BS-QJ | 7,385,716 | 218,414 | 4,061,827 | 2,889,780 | 12.62 | 62.64 | 40.63 | 93.71 |
BO-CD1 | 2,573,939 | 140,044 | 1,747,803 | 1,670,758 | 7.77 | 36.21 | 38.93 | 93.59 |
BO-CD2 | 5,337,341 | 185,699 | 2,831,409 | 2,399,920 | 12.09 | 52.02 | 39.15 | 90.38 |
BO-CD3 | 4,403,717 | 173,407 | 2,934,318 | 2,099,281 | 8.92 | 45.50 | 41.41 | 94.00 |
BO-NJ | 7,037,001 | 216,078 | 4,262,652 | 2,892,493 | 11.51 | 62.70 | 40.89 | 94.58 |
BO-QJ | 2,932,721 | 149,933 | 1,776,647 | 1,891,899 | 7.75 | 41.01 | 39.02 | 93.65 |
BF-LS | 4,799,485 | 173,473 | 2,605,232 | 2,468,689 | 10.40 | 53.51 | 41.39 | 94.86 |
Variety | BS- NJ | BS- AB1 | BS- BS | BS- PE | BS- CD1 | BF- LS | BO- NJ | BO- QJ | BO- CD1 | BS- AB2 | BS- QJ | BS- CD2 | BS- CD3 | BO- CD2 | BS- HH | BO- CD3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PC1 | −0.2613 | −0.2832 | −0.2481 | −0.2597 | 0.0845 | 0.2604 | 0.3081 | 0.3191 | 0.273 | −0.2832 | −0.1605 | −0.1813 | 0.0031 | 0.3032 | −0.1995 | 0.3252 |
PC2 | −0.1949 | −0.2126 | 0.1878 | −0.0381 | 0.0558 | 0.4205 | −0.1298 | −0.0525 | −0.1376 | −0.2185 | 0.7152 | −0.2128 | −0.1489 | −0.0407 | 0.1325 | −0.1254 |
PC3 | 0.0893 | 0.1009 | −0.0284 | 0.0486 | −0.3773 | 0.5683 | 0.1491 | −0.5937 | 0.1518 | 0.1037 | −0.1932 | 0.0665 | −0.2157 | 0.0329 | −0.0248 | 0.122 |
Samples | Species | Total Length | Karyotype Formula | Longest Chromosome | Shortest Chromosome |
---|---|---|---|---|---|
BS-NJ | B. striata | 174.85 μm | 2n = 32 = 6L + 9M2 + 8M1 + 9S | 8.28 μm | 3.26 μm |
BS-AB1 | B. striata | 117.53 μm | 2n = 32 = 8L + 7M2 + 12M1 + 5S | 5.54 μm | 2.12 μm |
BS-BS | B. striata | 147.06 μm | 2n = 32 = 5L + 10M2 + 11M1 + 6S | 7.10 μm | 2.49 μm |
BS-PE | B. striata | 160.06 μm | 2n = 32 = 7L + 7M2 + 9M1 + 9S | 8.10 μm | 2.24 μm |
BS-CD1 | B. striata | 166.84 μm | 2n = 34 = 10L + 5M2 + 7M1 + 12S | 7.55 μm | 2.24 μm |
BF-LS | B. formosana | 179.26 μm | 2n = 32 = 10L + 3M2 + 10M1 + 9S | 8.54 μm | 2.85 μm |
BO-NJ | B. ochracea | 151.97 μm | 2n = 34 = 7L + 10M2 + 9M1 + 8S | 7.85 μm | 2.86 μm |
BO-QJ | B. ochracea | 147.31 μm | 2n = 36 = 11L + 2M2 + 15M1 + 8S | 6.61 μm | 2.46 μm |
BO-CD1 | B. ochracea | 182.54 μm | 2n = 36 = 9L + 6M2 + 11M1 + 10S | 8.69 μm | 2.75 μm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huan, J.; He, Z.; Lei, Y.; Li, W.; Jiang, L.; Luo, X. The Genetic Diversity of Bletilla spp. Based on SLAF-seq and Oligo-FISH. Genes 2022, 13, 1118. https://doi.org/10.3390/genes13071118
Huan J, He Z, Lei Y, Li W, Jiang L, Luo X. The Genetic Diversity of Bletilla spp. Based on SLAF-seq and Oligo-FISH. Genes. 2022; 13(7):1118. https://doi.org/10.3390/genes13071118
Chicago/Turabian StyleHuan, Jie, Zhoujian He, Yuting Lei, Wenjun Li, Liqiong Jiang, and Xiaomei Luo. 2022. "The Genetic Diversity of Bletilla spp. Based on SLAF-seq and Oligo-FISH" Genes 13, no. 7: 1118. https://doi.org/10.3390/genes13071118
APA StyleHuan, J., He, Z., Lei, Y., Li, W., Jiang, L., & Luo, X. (2022). The Genetic Diversity of Bletilla spp. Based on SLAF-seq and Oligo-FISH. Genes, 13(7), 1118. https://doi.org/10.3390/genes13071118