Genome-Wide Characterization of Nitrogenase Reductase (nifH) Genes in the Sweet Potato [Ipomoea batatas (L.) Lam] and Its Wild Ancestors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Identification and Classification of the nifH Genes
2.2. Sequence Alignment and Phylogenetic Analysis
2.3. Conserved Motif Detection and Gene Structure Analyses of the nifH Genes
2.4. Chromosome Distribution of the nifH Genes
2.5. Duplication and Ka/Ks Analysis of the nifH Genes
2.6. Expression Profiles of nifH Genes of the Sweet Potato, I. trifida and I. triloba
2.7. RNA Isolation and Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) Analysis
3. Results
3.1. Identification of the nifH Genes of the Sweet Potato, I. trifida and I. triloba
3.2. Phylogenetic Analysis of the nifH Genes of the Sweet Potato, I. trifida and I. triloba
3.3. Conserved Motif Detection and Gene Structure Analyses of the nifH Genes
3.4. Chromosome Locations of the nifH Genes of the Sweet Potato, I. trifida and I. triloba
3.5. Duplication and Ka/Ks Analysis of the nifH Genes
3.6. Expression Patterns of the nifH Genes in the Sweet Potato, I. trifida and I. triloba
3.7. qRT-PCR Analysis of the nifH Genes under Treatments
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Q. Sweet potato omics and biotechnology in China. Plant Omics 2011, 4, 295–301. [Google Scholar]
- Liu, Q. Improvement for agronomically important traits by gene engineering in sweetpotato. Breed. Sci. 2017, 67, 15–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaby, J.C.; Buckley, D.H. A comprehensive evaluation of pcr primers to amplify the nifH gene of nitrogenase. PLoS ONE 2012, 7, e42149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubio, L.M.; Ludden, P.W. The gene products of the nif regulon. In Nitrogen Fixation at the Millennium; Elsevier Science: Amsterdam, The Netherlands, 2002; pp. 101–136. [Google Scholar]
- Man-Aharonovich, D.; Kress, N.; Zeev, E.B.; Berman-Frank, I.; Béjà, O. Molecular ecology of nifH genes and transcripts in the eastern mediterranean sea. Environ. Microbiol. 2007, 9, 2354–2363. [Google Scholar] [CrossRef]
- Rösch, C.; Bothe, H. Diversity of total, nitrogen-fixing and denitrifying bacteria in an acid forest soil. Eur. J. Soil Sci. 2009, 60, 883–894. [Google Scholar] [CrossRef]
- Mehta, M.P.; Butterfield, D.A.; Baross, J.A. Phylogenetic diversity of nitrogenase (nifH) genes in deep-sea and hydrothermal vent environments of the juan de fuca ridge. Appl. Environ. Microbiol. 2003, 69, 960–970. [Google Scholar] [CrossRef] [Green Version]
- Héry, M.; Philippot, L.; Mériaux, E.; Poly, F.; Le Roux, X.; Navarro, E. Nickel mine spoils revegetation attempts: Effect of pioneer plants on two functional bacterial communities involved in the N-cycle. Environ. Microbiol. 2005, 7, 486–498. [Google Scholar] [CrossRef]
- Yamada, A.; Inoue, T.; Noda, S.; Hongoh, Y.; Ohkuma, M. Evolutionary trend of phylogenetic diversity of nitrogen fixation genes in the gut community of wood-feeding termites. Mol. Ecol. 2007, 16, 3768–3777. [Google Scholar] [CrossRef]
- Roesch, L.F.W.; Camargo, F.A.; Bento, F.M.; Triplett, E.W. Biodiversity of diazotrophic bacteria within the soil, root and stem of field-grown maize. Plant Soil 2008, 302, 91–104. [Google Scholar] [CrossRef]
- Swain, H.; Abhijita, S. Nitrogen fixation and its improvement through genetic engineering. J. Glob. Biosci. 2013, 2, 98–112. [Google Scholar]
- Schulte, C.C.; Borah, K.; Wheatley, R.M.; Terpolilli, J.J.; Saalbach, G.; Crang, N.; de Groot, D.H.; Ratcliffe, R.G.; Kruger, N.J.; Papachristodoulou, A.; et al. Metabolic control of nitrogen fixation in rhizobium-legume symbioses. Sci. Adv. 2021, 7, eabh2433. [Google Scholar] [CrossRef]
- Herrero, A.; Muro-Pastor, A.M.; Flores, E. Nitrogen control in cyanobacteria. J. Bacteriol. 2001, 183, 411–425. [Google Scholar] [CrossRef] [Green Version]
- Ekman, M.; Tollbäck, P.; Bergman, B. Proteomic analysis of the cyanobacterium of the azolla symbiosis: Identity, adaptation, and nifH modification. J. Exp. Bot. 2007, 59, 1023–1034. [Google Scholar] [CrossRef] [Green Version]
- Bhuvaneshwari, K.; Singh, P.K. Response of nitrogen-fixing water fern Azolla biofertilization to rice crop. 3 Biotech 2015, 5, 523–529. [Google Scholar] [CrossRef] [Green Version]
- Eily, A.N.; Pryer, K.M.; Li, F.W. A first glimpse at genes important to the azolla–nostoc symbiosis. Symbiosis 2019, 78, 149–162. [Google Scholar] [CrossRef]
- Chen, W.X.; Tan, Z.Y.; Gao, J.L.; Li, Y.; Wang, E.T. Rhizobium hainanense sp. Nov., isolated from tropical legumes. Int. J. Syst. Bacteriol. 1997, 47, 870–873. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Q.; Sun, W. Expression of nitrogenase structural scaffold genes in higher plant. BAOJ Biotech 2018, 4, 038. [Google Scholar]
- Jiang, X.; Payá-Tormo, L.; Coroian, D.; García-Rubio, I.; Castellanos-Rueda, R.; Eseverri, Á.; Lpez-Torrejón, G.; Burén, S.; Rubio, L.M. Exploiting genetic diversity and gene synthesis to identify superior nitrogenase nifH protein variants to engineer N2-fixation in plants. Commun. Biol. 2021, 4, 4. [Google Scholar] [CrossRef]
- Klarenberg, I.J.; Keuschnig, C.; Colmenares, A.; Warshan, D.; Jungblut, A.D.; Jónsdóttir, I.; Vilhelmsson, O. Long-term warming effects on the microbiome and nifH gene abundance of a common moss species in sub-arctic tundra. New Phytol. 2022, 234, 2044–2056. [Google Scholar] [CrossRef]
- Itoh, K.; Ohashi, K.; Yakai, N.; Adachi, F.; Hayashi, S. Changes in acetylene reduction activities and nifH genes associated with field-grown sweet potatoes with different nursery farmers and cultivars. Horticulturae 2019, 5, 53. [Google Scholar] [CrossRef] [Green Version]
- Hill, W.A.; Hortense, D.; Hahn, S.; Mulongoy, K.; Adeyeye, S. Sweet potato root and biomass production with and without nitrogen fertilization. Agron. J. 1990, 82, 1120–1122. [Google Scholar] [CrossRef] [Green Version]
- Yonebayashi, K.; Katsumi, N.; Nishi, T.; Okazaki, M. Activation of nitrogen-fixing endophytes is associated with the tuber growth of sweet potato. Mass Spectrom. 2014, 3, A0032. [Google Scholar] [CrossRef] [Green Version]
- Yoneyama, T.; Terakado, J.; Masuda, T. Natural abundance of 15n in sweet potato, pumpkin, sorghum and castor bean: Possible input of n2-derived nitrogen in sweet potato. Biol. Fertil. Soils 1997, 26, 152–154. [Google Scholar] [CrossRef]
- Hill, W.A.; Bacon-Hill, P.; Crossman, S.M.; Stevens, C. Characterization of N2-fixing bacteria associated with sweet potato roots. Can. J. Microbiol. 1983, 29, 860–862. [Google Scholar] [CrossRef]
- Paula, M.d.; Reis, V.; Döbereiner, J. Interactions of glomus clarum with acetobacter diazotrophicus in infection of sweet potato (Ipomoea batatas), sugarcane (Saccharum spp.), and sweet sorghum (Sorghum vulgare). Biol. Fertil. Soils 1991, 11, 111–115. [Google Scholar] [CrossRef]
- Adachi, K.; Nakatani, M.; Mochida, H. Isolation of an endophytic diazotroph, klebsiella oxytoca, from sweet potato stems in Japan. Soil Sci. Plant Nutr. 2002, 48, 889–895. [Google Scholar] [CrossRef]
- Asis Jr, C.; Adachi, K. Isolation of endophytic diazotroph pantoea agglomerans and nondiazotroph enterobacter asburiae from sweetpotato stem in Japan. Lett. Appl. Microbiol. 2004, 38, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Terakado-Tonooka, J.; Fujihara, S.; Ohwaki, Y. Possible contribution of bradyrhizobium on nitrogen fixation in sweet potatoes. Plant Soil 2013, 367, 639–650. [Google Scholar] [CrossRef]
- Khan, Z.; Doty, S.L. Characterization of bacterial endophytes of sweet potato plants. Plant Soil 2009, 322, 197–207. [Google Scholar] [CrossRef]
- Shao, Z.Q.; Zhang, Y.M.; Hang, Y.Y.; Xue, J.Y.; Zhou, G.C.; Wu, P.; Wu, X.Y.; Wu, X.Z.; Wang, Q.; Wang, B.; et al. Long-term evolution of nucleotide-binding site-leucine-rich repeat genes: Understanding gained from and beyond the legume family. Plant Physiol. 2014, 166, 217–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sievers, F.; Higgins, D.G. Clustal omega for making accurate alignments of many protein sequences. Protein Sci. 2018, 27, 135–145. [Google Scholar] [CrossRef] [Green Version]
- Sievers, F.; Wilm, A.; Dineen, D.; Gibson, T.J.; Karplus, K.; Li, W.; Lopez, R.; McWilliam, H.; Remmert, M.; Söding, J.; et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011, 7, 539. [Google Scholar] [CrossRef]
- Liu, Y.; Zeng, Z.; Zhang, Y.-M.; Li, Q.; Jiang, X.-M.; Jiang, Z.; Tang, J.-H.; Chen, D.; Wang, Q.; Chen, J.-Q.; et al. An angiosperm nlr atlas reveals that nlr gene reduction is associated with ecological specialization and signal transduction component deletion. Mol. Plant 2021, 14, 2015–2031. [Google Scholar] [CrossRef]
- Minh, B.Q.; Nguyen, M.A.; von Haeseler, A. Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol. 2013, 30, 1188–1195. [Google Scholar] [CrossRef]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; von Haeseler, A.; Jermiin, L.S. Modelfinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef] [Green Version]
- Anisimova, M.; Gil, M.; Dufayard, J.F.; Dessimoz, C.; Gascuel, O. Survey of branch support methods demonstrates accuracy, power, and robustness of fast likelihood-based approximation schemes. Syst. Biol. 2011, 60, 685–699. [Google Scholar] [CrossRef]
- Meyers, B.C.; Kozik, A.; Griego, A.; Kuang, H.; Michelmore, R.W. Genome-wide analysis of NBS-LRR-encoding genes in arabidopsis. Plant Cell 2003, 15, 809–834. [Google Scholar] [CrossRef] [Green Version]
- Timothy, L.B. MEME SUITE: Tools for motif discovery and searching. Nucleic Acids Res. 2009, 37, 202–208. [Google Scholar]
- Chen, C.; Xia, R.; Chen, H.; He, Y. Tbtools, a toolkit for biologists integrating various hts-data handling tools with a user-friendly interface. bioRxiv 2018, 2018, 289660. [Google Scholar]
- Voorrips, R.E. Mapchart: Software for the graphical presentation of linkage maps and QTLs. J. Hered. 2002, 93, 77–78. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Tang, H.; DeBarry, J.D.; Tan, X.; Li, J.; Wang, X.; Lee, T.-H.; Jin, H.; Marler, B.; Guo, H.; et al. MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012, 40, e49. [Google Scholar] [CrossRef] [Green Version]
- Krzywinski, M.; Schein, J.; Birol, I.; Connors, J.; Gascoyne, R.; Horsman, D.; Jones, S.J.; Marra, M.A. Circos: An information aesthetic for comparative genomics. Genome Res. 2009, 19, 1639–1645. [Google Scholar] [CrossRef] [Green Version]
- Suyama, M.; Torrents, D.; Bork, P. PAL2NAL: Robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 2006, 34, 609–612. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z. PAML 4: Phylogenetic Analysis by Maximum Likelihood. Mol. Biol. Evol. 2007, 24, 1586–1591. [Google Scholar] [CrossRef] [Green Version]
- Wen, G. A simple process of RNA-sequence analyses by Hisat2, Htseq and DESeq2. In Proceedings of the 2017 International Conference on Biomedical Engineering and Bioinformatics, Bangkok, Thailand, 14–16 September 2017; pp. 11–15. [Google Scholar]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The sequence alignment/map format and samtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [Green Version]
- Howe, E.A.; Sinha, R.; Schlauch, D.; Quackenbush, J. Rna-seq analysis in MeV. Bioinformatics 2011, 27, 3209–3210. [Google Scholar] [CrossRef] [Green Version]
- Galloway, J.N.; Schlesinger, W.H.; Levy, H.; Michaels, A.; Schnoor, J.L. Nitrogen fixation: Anthropogenic enhancement-environmental response. Glob. Biogeochem. Cycles 1995, 9, 235–252. [Google Scholar] [CrossRef] [Green Version]
- Payá-Tormo, L.; Coroian, D.; Martín-Muñoz, S.; Badalyan, A.; Green, R.T.; Veldhuizen, M.; Jiang, X.; López-Torrejón, G.; Balk, J.; Seefeldt, L.C. A colorimetric method to measure in vitro nitrogenase functionality for engineering nitrogen fixation. Sci. Rep. 2022, 12, 10367. [Google Scholar] [CrossRef] [PubMed]
- Kyndt, T.; Quispe, D.; Zhai, H.; Jarret, R.; Ghislain, M.; Liu, Q.; Gheysen, G.; Kreuze, J.F. The genome of cultivated sweet potato contains agrobacterium t-dnas with expressed genes: An example of a naturally transgenic food crop. Proc. Natl. Acad. Sci. USA 2015, 112, 5844–5849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, S.; Lau, K.H.; Cao, Q.; Hamilton, J.P.; Sun, H.; Zhou, C.; Eserman, L.; Gemenet, D.C.; Olukolu, B.A.; Wang, H.; et al. Genome sequences of two diploid wild relatives of cultivated sweetpotato reveal targets for genetic improvement. Nat. Commun. 2018, 9, 4580. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Moeinzadeh, M.-H.; Kuhl, H.; Helmuth, J.; Xiao, P.; Haas, S.; Liu, G.; Zheng, J.; Sun, Z.; Fan, W.; et al. Haplotype-resolved sweet potato genome traces back its hexaploidization history. Nat. Plants 2017, 3, 696–703. [Google Scholar] [CrossRef]
- Xie, T.; Chen, C.; Li, C.; Liu, J.; Liu, C.; He, Y. Genome-wide investigation of WRKY gene family in pineapple: Evolution and expression profiles during development and stress. BMC Genom. 2018, 19, 490. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Sun, W.; Ma, Z.; Zheng, T.; Huang, L.; Wu, Q.; Chen, H. Genome-wide investigation of the AP2/ERF gene family in tartary buckwheat (Fagopyum tataricum). BMC Plant Biol. 2019, 19, 84. [Google Scholar] [CrossRef] [Green Version]
- Su, W.; Raza, A.; Gao, A.; Jia, Z.; Zhang, Y.; Hussain, M.A.; Zou, X. Genome-wide analysis and expression profile of superoxide dismutase (SOD) gene family in rapeseed (Brassica napus L.) under different hormones and abiotic stress conditions. Antioxidants 2021, 10, 1182. [Google Scholar] [CrossRef]
- Cannon, S.B.; Mitra, A.; Baumgarten, A.; Young, N.D.; May, G. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol. 2004, 4, 10. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.Y.; González, J.M.; Ramachandran, S. Comparative genomic and transcriptomic analysis of tandemly and segmentally duplicated genes in rice. PLoS ONE 2013, 8, e63551. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Wu, N.; Song, W.; Yin, G.; Qin, Y.; Yan, Y.; Hu, Y. Soybean (Glycine max) expansin gene superfamily origins: Segmental and tandem duplication events followed by divergent selection among subfamilies. BMC Plant Biol. 2014, 14, 93. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.M.; Shao, Z.Q.; Wang, Q.; Hang, Y.Y.; Xue, J.Y.; Wang, B.; Chen, J.Q. Uncovering the dynamic evolution of nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes in Brassicaceae. J. Integr. Plant Biol. 2016, 58, 165–177. [Google Scholar] [CrossRef]
- Gaut, B.S.; Doebley, J.F. DNA sequence evidence for the segmental allotetraploid origin of maize. Proc. Natl. Acad. Sci. USA 1997, 94, 6809–6814. [Google Scholar] [CrossRef] [Green Version]
- Kesawat, M.S.; Kherawat, B.S.; Singh, A.; Dey, P.; Kabi, M.; Debnath, D.; Saha, D.; Khandual, A.; Rout, S.; Manorama; et al. Genome-wide identification and characterization of the brassinazole-resistant (BZR) gene family and its expression in the various developmental stage and stress conditions in wheat (Triticum aestivum L.). Int. J. Mol. Sci. 2021, 22, 8743. [Google Scholar] [CrossRef]
- El-Sappah, A.H.; Elrys, A.S.; Desoky, E.-S.M.; Zhao, X.; Bingwen, W.; El-Sappah, H.H.; Zhu, Y.; Zhou, W.; Zhao, X.; Li, J. Comprehensive genome wide identification and expression analysis of MTP gene family in tomato (Solanum lycopersicum) under multiple heavy metal stress. Saudi J. Biol. Sci. 2021, 28, 6946–6956. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Liu, J.; Zhong, G.; Wang, B. Genome-Wide Identification and Expression Patterns of the C2H2-Zinc Finger Gene Family Related to Stress Responses and Catechins Accumulation in Camellia sinensis [L.] O. Kuntze. Int. J. Mol. Sci. 2021, 22, 4197. [Google Scholar] [CrossRef]
- Li, W.H.; Yang, J.; Gu, X. Expression divergence between duplicate genes. Trends Genet. 2005, 21, 602–607. [Google Scholar] [CrossRef]
- Bonthala, V.S.; Stich, B. Genetic divergence of lineage-specific tandemly duplicated gene clusters in four diploid potato genotypes. Front. Plant Sci. 2022, 13, 875202. [Google Scholar] [CrossRef] [PubMed]
Species | Gene_Id | Number of Amino Acids | Exon Number | Chromosome Location | Strand | Gene_Start | Gene_End |
---|---|---|---|---|---|---|---|
g950.t1 | 315 | 2 | Ibchr1 | + | 5,540,056 | 5,541,373 | |
g3730.t1 | 315 | 3 | Ibchr1 | + | 26,923,828 | 26,934,096 | |
g4650.t1 | 939 | 8 | Ibchr2 | + | 3,249,593 | 3,253,657 | |
g10233.t1 | 426 | 13 | Ibchr3 | + | 5,697,280 | 5,701,545 | |
g16683.t1 | 488 | 13 | Ibchr5 | − | 550,499 | 558,988 | |
g17404.t1 | 864 | 8 | Ibchr5 | + | 5,150,173 | 5,157,672 | |
g19690.t1 | 541 | 16 | Ibchr5 | + | 22,748,809 | 22,759,672 | |
g22847.t1 | 378 | 8 | Ibchr6 | − | 14,879,621 | 14,883,661 | |
g25326.t1 | 343 | 4 | Ibchr7 | − | 363,695 | 365,842 | |
sweet potato | g27090.t1 | 289 | 6 | Ibchr7 | + | 13,784,034 | 13,787,412 |
g27094.t1 | 594 | 8 | Ibchr7 | + | 13,802,034 | 13,807,229 | |
g27100.t1 | 317 | 4 | Ibchr7 | + | 13,837,054 | 13,839,787 | |
g30380.t1 | 460 | 11 | Ibchr8 | − | 761,393 | 764,513 | |
g31149.t1 | 440 | 12 | Ibchr8 | − | 4,991,243 | 4,995,748 | |
g33987.t1 | 237 | 3 | Ibchr9 | + | 217,387 | 219,435 | |
g38504.t1 | 207 | 3 | Ibchr10 | − | 2,286,298 | 2,293,174 | |
g50721.t1 | 522 | 7 | Ibchr12 | − | 28,604,621 | 28,610,924 | |
g56575.t1 | 464 | 10 | Ibchr14 | − | 8,492,679 | 8,500,020 | |
g56705.t1 | 67 | 2 | Ibchr14 | + | 9,444,490 | 9,445,508 | |
g61682.t1 | 405 | 9 | Ibchr15 | + | 12,526,772 | 12,530,022 | |
itf05g19180.t1 | 329 | 1 | Chr05 | − | 21,097,894 | 21,099,282 | |
itf06g08100.t1 | 358 | 5 | Chr06 | − | 10,472,405 | 10,476,280 | |
itf06g08100.t2 | 358 | 5 | Chr06 | − | 10,472,405 | 10,476,280 | |
itf06g08100.t3 | 358 | 5 | Chr06 | − | 10,472,558 | 10,476,272 | |
itf06g08100.t4 | 358 | 5 | Chr06 | − | 10,472,558 | 10,476,272 | |
itf06g08340.t1 | 323 | 4 | Chr06 | + | 10,684,647 | 10,686,646 | |
itf09g21630.t1 | 357 | 7 | Chr09 | + | 18,324,833 | 18,330,898 | |
itf10g25730.t1 | 377 | 3 | Chr10 | − | 24,717,023 | 24,719,626 | |
itf11g00790.t1 | 359 | 7 | Chr11 | − | 370,700 | 373,523 | |
I. trifida | itf11g07340.t1 | 410 | 12 | Chr11 | − | 3,956,871 | 3,961,420 |
itf11g07340.t2 | 410 | 11 | Chr11 | − | 3,957,323 | 3,961,420 | |
itf11g07340.t3 | 421 | 10 | Chr11 | − | 3,957,967 | 3,961,420 | |
itf11g07340.t4 | 299 | 9 | Chr11 | − | 3,958,281 | 3,961,420 | |
itf12g00130.t1 | 409 | 11 | Chr12 | − | 131,709 | 139,045 | |
itf12g00130.t2 | 405 | 10 | Chr12 | − | 131,709 | 139,045 | |
itf12g19260.t1 | 530 | 16 | Chr12 | + | 18,656,207 | 18,662,081 | |
itf12g19260.t2 | 411 | 12 | Chr12 | + | 18,658,050 | 18,662,081 | |
itf12g22980.t1 | 289 | 8 | Chr12 | − | 21,330,987 | 21,334,731 | |
itf14g14040.t1 | 311 | 8 | Chr14 | − | 14,807,579 | 14,810,974 | |
itb05g19830.t1 | 329 | 1 | Chr05 | − | 26,142,356 | 26,143,775 | |
itb06g05680.t1 | 358 | 4 | Chr06 | − | 8,346,489 | 8,349,665 | |
itb09g24130.t1 | 357 | 7 | Chr09 | + | 23,745,236 | 23,751,328 | |
itb11g00750.t1 | 361 | 8 | Chr11 | − | 336,194 | 340,261 | |
itb11g00750.t2 | 359 | 7 | Chr11 | − | 336,931 | 340,298 | |
itb11g03920.t3 | 278 | 6 | Chr11 | + | 2,113,511 | 2,117,952 | |
itb11g07630.t1 | 408 | 12 | Chr11 | − | 4,684,828 | 4,690,449 | |
itb11g07630.t2 | 408 | 11 | Chr11 | − | 4,684,828 | 4,690,449 | |
I. triloba | itb11g07630.t3 | 324 | 9 | Chr11 | − | 4,686,363 | 4,690,421 |
itb12g00110.t1 | 297 | 9 | Chr12 | − | 146,125 | 149,815 | |
itb12g00110.t2 | 297 | 8 | Chr12 | − | 146,125 | 149,815 | |
itb12g00110.t3 | 297 | 9 | Chr12 | − | 146,125 | 149,815 | |
itb12g19660.t1 | 530 | 16 | Chr12 | + | 22,066,146 | 22,072,061 | |
itb12g19660.t2 | 513 | 15 | Chr12 | + | 22,066,170 | 22,072,003 | |
itb12g19660.t3 | 529 | 16 | Chr12 | + | 22,066,146 | 22,072,061 | |
itb12g23320.t1 | 289 | 9 | Chr12 | − | 25,103,363 | 25,107,101 | |
itb14g15470.t1 | 611 | 15 | Chr14 | − | 18,766,811 | 18,772,688 |
Gene Pairs | Duplication Type | Ka | Ks | Ka/Ks |
---|---|---|---|---|
g10233.t1_itb14g15470.t1 | Segmental replication | 0.06 | 0.11 | 0.54 |
g10233.t1_itf14g14040.t1 | Segmental replication | 0.05 | 0.12 | 0.39 |
g16683.t1_itb12g00110.t1 | Segmental replication | 0.00 | 0.00 | 0.62 |
g16683.t1_itf12g00130.t1 | Segmental replication | 0.00 | 0.00 | 0.65 |
g19690.t1_itb12g19660.t1 | Segmental replication | 0.01 | 0.03 | 0.21 |
g19690.t1_itf12g19260.t1 | Segmental replication | 0.00 | 0.03 | 0.00 |
g30380.t1_itb11g00750.t1 | Segmental replication | 0.00 | 0.05 | 0.02 |
g30380.t1_itf11g00790.t1 | Segmental replication | 0.00 | 0.02 | 0.00 |
g31149.t1_itb11g07630.t1 | Segmental replication | 0.01 | 0.05 | 0.16 |
g33987.t1_itf10g25730.t1 | Segmental replication | 0.11 | 0.13 | 0.82 |
g56575.t1_itb09g24130.t1 | Segmental replication | 0.02 | 0.07 | 0.25 |
g56575.t1_itf09g21630.t1 | Segmental replication | 0.02 | 0.08 | 0.26 |
g950.t1_itb05g19830.t1 | Segmental replication | 0.00 | 0.05 | 0.06 |
g950.t1_itf05g19180.t1 | Segmental replication | 0.00 | 0.07 | 0.04 |
itb05g19830.t1_itf05g19180.t1 | Segmental replication | 0.00 | 0.06 | 0.00 |
itb09g24130.t1_itf09g21630.t1 | Segmental replication | 0.00 | 0.03 | 0.08 |
itb11g00750.t1_itf11g00790.t1 | Segmental replication | 0.00 | 0.06 | 0.02 |
itb11g07630.t1_itf11g07340.t1 | Segmental replication | 0.00 | 0.04 | 0.03 |
itb12g00110.t1_itf12g00130.t1 | Segmental replication | 0.00 | 0.01 | 0.15 |
itb12g19660.t1_itf12g19260.t1 | Segmental replication | 0.01 | 0.04 | 0.14 |
itb12g23320.t1_itf12g22980.t1 | Segmental replication | 0.00 | 0.02 | 0.00 |
itb14g15470.t1_itf14g14040.t1 | Segmental replication | 0.02 | 0.07 | 0.32 |
itf11g07340.t2_itf11g07340.t3 | Tandem | 0.08 | 0.06 | 1.34 |
itf11g07340.t3_itf11g07340.t4 | Tandem | 0.03 | 0.04 | 0.71 |
itf12g19260.t1_itf12g19260.t2 | Tandem | 0.02 | 0.02 | 0.62 |
itb11g00750.t1_itb11g00750.t2 | Tandem | 0.00 | 0.00 | 0.30 |
itb11g07630.t2_itb11g07630.t3 | Tandem | 0.01 | 0.01 | 0.59 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Si, Z.; Wang, C.; Zhao, M.; Ji, Z.; Qiao, Y.; Wang, L. Genome-Wide Characterization of Nitrogenase Reductase (nifH) Genes in the Sweet Potato [Ipomoea batatas (L.) Lam] and Its Wild Ancestors. Genes 2022, 13, 1428. https://doi.org/10.3390/genes13081428
Si Z, Wang C, Zhao M, Ji Z, Qiao Y, Wang L. Genome-Wide Characterization of Nitrogenase Reductase (nifH) Genes in the Sweet Potato [Ipomoea batatas (L.) Lam] and Its Wild Ancestors. Genes. 2022; 13(8):1428. https://doi.org/10.3390/genes13081428
Chicago/Turabian StyleSi, Zengzhi, Chong Wang, Mingming Zhao, Zhixin Ji, Yake Qiao, and Lianjun Wang. 2022. "Genome-Wide Characterization of Nitrogenase Reductase (nifH) Genes in the Sweet Potato [Ipomoea batatas (L.) Lam] and Its Wild Ancestors" Genes 13, no. 8: 1428. https://doi.org/10.3390/genes13081428
APA StyleSi, Z., Wang, C., Zhao, M., Ji, Z., Qiao, Y., & Wang, L. (2022). Genome-Wide Characterization of Nitrogenase Reductase (nifH) Genes in the Sweet Potato [Ipomoea batatas (L.) Lam] and Its Wild Ancestors. Genes, 13(8), 1428. https://doi.org/10.3390/genes13081428