Evaluation of Physiological Coping Strategies and Quality Substances in Purple SweetPotato under Different Salinity Levels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Transcriptome Analysis
2.3. Metabolite Extraction and Profiling Analysis
2.4. K+, Na+ Concentration Determination
2.5. Related Enzymes Activity Assay
2.6. Measurement of Soluble Sugar, Monosaccharide, and Starch Content
2.7. Determination of the Composition and Content of Polyphenols in Storage Root
2.8. Validation Experiment
2.9. Statistical Analysis
3. Results
3.1. Transcriptome Analysis
3.2. The Effect of Salinity on the Metabolic Profile Variations
3.3. Ion Balance and Related Gene Expression
3.4. The Effect of Low Salinity on the Oxidative Stress
3.5. The Starch, Monosaccharide and Related Gene and Enzyme
3.6. The Effect of Salinity on the Sugar Metabolites of Purple Sweetpotato
3.7. The Effect of Salinity on the Composition and Content of Anthocyanins, Flavonoids, and Other Polyphenols
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tang, H.; Zhang, X.; Gong, B.; Yan, Y.; Shi, Q. Proteomics and metabolomics analysis of tomato fruit at different maturity stages and under salt treatment. Food Chem. 2020, 311, 126009. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Chen, L.; Shi, Q.; Ren, Z. SlMYB102, an R2R3-type MYB gene, confers salt tolerance in transgenic tomato. Plant Sci. 2020, 291, 110356. [Google Scholar] [CrossRef] [PubMed]
- Kaur, S.; Gupta, A.K.; Kaur, N. Indole acetic acid mimics the effect of salt stress in relation to enzymes of carbohydrate metabolism in chickpea seedlings. Plant Growth Regul. 2003, 39, 91–98. [Google Scholar] [CrossRef]
- Zaghdoud, C.; Carvajal, M.; Ferchichi, A.; Martinez-Ballesta, M.D.C. Water balance and N-metabolism in broccoli (Brassica oleracea L. var. Italica) plants depending on nitrogen source under salt stress and elevated CO2. Sci. Total Environ. 2016, 571, 763–771. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Li, Y.; Gao, Y.; He, X.; Zhang, D.; Liu, B.; Li, Q. Effects of CO2 enrichment on non-structural carbohydrate metabolism in leaves of cucumber seedlings under salt stress. Sci. Hortic. 2020, 265, 109275. [Google Scholar] [CrossRef]
- Khan, I.; Raza, M.A.; Awan, S.A.; Shah, G.A.; Rizwan, M.; Ali, B.; Tariq, R.; Hassan, M.J.; Alyemeni, M.N.; Brestic, M.; et al. Amelioration of salt induced toxicity in pearl millet by seed priming with silver nanoparticles (AgNPs): The oxidative damage, antioxidant enzymes and ions uptake are major deter-minants of salt tolerant capacity. Plant Physiol. Biochem. 2020, 156, 221–232. [Google Scholar] [CrossRef]
- Palma, F.; Tejera, N.A.; Lluch, C. Nodule carbohydrate metabolism and polyols involvement in the response of Medicago sativa to salt stress. Environ. Exp. Bot. 2013, 85, 43–49. [Google Scholar] [CrossRef]
- Mickelbart, M.V.; Hasegawa, P.M.; Bailey-Serres, J. Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat. Rev. Genet. 2015, 16, 237–251. [Google Scholar] [CrossRef]
- Kishor, P.B.K.; Sangam, S.; Amrutha, R.N.; Laxmi, P.S.; Sreenivasulu, N. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: Its implications in plant growth and abiotic stress tolerance. Curr. Sci. 2004, 88, 424–438. [Google Scholar]
- Fujita, Y.; Fujita, M.; Shinozaki, K.; Yamaguchi-Shinozaki, K. ABA-mediated transcriptional regulation in response to osmotic stress in plants. J. Plant Res. 2011, 124, 509–525. [Google Scholar] [CrossRef]
- Mahmood, U.; Hussain, S.; Hussain, S.; Ali, B.; Ashraf, U.; Zamir, S.; Al-Robai, S.A.; Alzahrani, F.O.; Hano, C.; El-Esawi, M.A. Morpho-physio-biochemical and molecular responses of maize hybrids to salinity and waterlogging during stress and recovery phase. Plants 2021, 10, 1345. [Google Scholar] [CrossRef]
- Sairam, R.K.; Tyagi, A.; Chinnusamy, V. Salinity Tolerance: Cellular Mechanisms and Gene Regulation; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Ashraf, M.; Foolad, M.R. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot. 2007, 59, 206–216. [Google Scholar] [CrossRef]
- Hussain, S.; Hussain, S.; Ali, B.; Ren, X.; Chen, X.; Li, Q.; Saqib, M.; Ahmad, N. Recent progress in understanding salinity tolerance in plants: Story of Na/K balance and beyond. Plant Physiol. Biochem. 2021, 160, 239–256. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Chen, H.W.; Li, Q.T.; Wei, W.; Li, W.; Zhang, W.K.; Ma, B.; Bi, Y.D.; Lai, Y.C.; Liu, X.L. GmWRKY27 interacts with GmMYB174 to reduce expression of GmNAC29 for stress tolerance in soybean plants. Plant J. 2015, 83, 224–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, L.; Niu, B.; Zhu, Z.; Wu, S.; Li, W. CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics 2012, 28, 3150–3152. [Google Scholar] [CrossRef]
- Yin, Y.G.; Tominaga, T.; Iijima, Y.; Aoki, K.; Shibata, D.; Ashihara, H.; Nishimura, S.; Ezura, H.; Matsukura, C. Metabolic alterations in organic acids and γ-aminobutyric acid in developing tomato (Solanum lycopersicum L.) fruits. Plant Cell Physiol. 2010, 51, 1300–1314. [Google Scholar] [CrossRef] [Green Version]
- Sharma, R.; Singh, G.; Bhattacharya, S.; Singh, A. Comparative transcriptome meta-analysis of Arabidopsis thaliana under drought and cold stress. PLoS ONE 2018, 13, 0203266. [Google Scholar]
- Chamorro, S.; Cueva-Mestanza, R.; de Pascual-Teresa, S. Effect of spray drying on the polyphenolic compounds present in purple sweet potato roots: Identification of new cinnamoylquinic acids. Food Chem. 2021, 345, 128679. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.-c.; Zhou, Q.; Yang, Y.; Wang, Y.; Zhang, J.-l. Highly Acylated Anthocyanins from Purple Sweet potato (Ipomoea batatas L.) Alleviate Hyperuricemia and Kidney Inflammation in Hyperuricemic Mice: Possible Attenuation Effects on Allopurinol. J. Agric. Food Chem. 2019, 67, 6202–6211. [Google Scholar] [CrossRef]
- Liu, A.; Xiao, Z.; Li, M.-W.; Wong, F.-L.; Yung, W.-S.; Ku, Y.-S.; Wang, Q.; Wang, X.; Xie, M.; Yim, A.K.-Y.; et al. Transcriptomic reprogramming in soybean seedlings under salt stress. Plant Cell Environ. 2019, 42, 98–114. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Zhang, W.; Xie, W.; Chen, H.; Yu, W.; Li, H.; Shen, G. Tributyl phosphate impairs the urea cycle and alters liver pathology and metabolism in mice after short-term exposure based on a metabonomics study. Sci. Total Environ. 2017, 603, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Li, C.; Zhang, Q.; Liu, Z.; Geng, J.; Zhang, M. Effects of polymer-coated potassium chloride on cotton yield, leaf senescence and soil potassium. Field Crops Res. 2017, 212, 145–152. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Q.; Xie, X.; Cai, Y.; Li, J.; Feng, Y.; Zhang, Y. Integrated Metabolomics and Transcriptomics Analyses Reveal the Molecular Mechanisms Underlying the Accumulation of Anthocyanins and Other Flavonoids in Cowpea Pod (Vigna unguiculata L.). J. Agric. Food Chem. 2020, 68, 9260–9275. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Xuan, Y.; Bian, X.; Zhang, L.; Pan, Z.; Kou, M.; Cao, Q.; Tang, Z.; Li, Q.; Ma, D.; et al. Overexpression of phosphatidylserine synthase IbPSS1 affords cellular Na(+) homeostasis and salt tolerance by activating plasma membrane Na(+)/H(+) antiport activity in sweet potato roots. Hortic. Res. 2020, 7, 131. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, Y.; Jin, L.; Chen, Z.; Jackson, A. Development of fruit color in Rubus chingii Hu (Chinese raspberry): A story about novel offshoots of anthocyanin and carotenoid biosynthesis. Plant Sci. 2021, 311, 110996. [Google Scholar] [CrossRef]
- Cui, Y.; Ramnarain, D.B.; Chiang, Y.C.; Ding, L.H.; Denis, M. Genome wide expression analysis of the CCR4-NOT complex indicates that it consists of three modules with the NOT module controlling SAGA-responsive genes. Mol. Genet. Genom. 2008, 279, 323–337. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.K.; Yan, Y.B. The N-terminus modulates human Caf1 activity, structural stability and aggregation. Int. J. Biol. Macromol. 2012, 51, 497–503. [Google Scholar] [CrossRef] [PubMed]
- Hasanuzzaman, M.; Inafuku, M.; Nahar, K.; Fujita, M.; Oku, H. Nitric Oxide Regulates Plant Growth, Physiology, Antioxidant Defense, and Ion Homeostasis to Confer Salt Tolerance in the Mangrove Species, Kandelia obovata. Antioxidants 2021, 10, 611. [Google Scholar] [CrossRef]
- Galli, V.; da Silva Messias, R.; Perin, E.C.; Borowski, J.M.; Bamberg, A.L.; Rombaldi, C.V. Mild salt stress improves strawberry fruit quality. LWT 2016, 73, 693–699. [Google Scholar] [CrossRef]
- Rouphael, Y.; Petropoulos, S.A.; Cardarelli, M.; Colla, G. Salinity as eustressor for enhancing quality of vegetables. Sci. Hortic. 2018, 234, 361–369. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Levizou, E.; Ntatsi, G.; Fernandes, Â.; Petrotos, K.; Akoumianakis, K.; Barros, L.; Ferreira, I.C.F.R. Salinity effect on nutritional value, chemical composition and bioactive compounds content of Cichorium spinosum L. Food Chem. 2017, 214, 129–136. [Google Scholar] [CrossRef] [Green Version]
- Shaheen, S.; Naseer, S.; Ashraf, M.; Akram, N.A. Salt stress affects water relations, photosynthesis, and oxidative defense mechanisms in Solanum melongena L. J. Plant Interact. 2013, 8, 85–96. [Google Scholar] [CrossRef]
- Chisari, M.; Todaro, A.; Barbagallo, R.N.; Spagna, G. Salinity effects on enzymatic browning and antioxidant capacity of fresh-cut baby Romaine lettuce (Lactuca sativa L. cv. Duende)—ScienceDirect. Food Chem. 2010, 119, 1502–1506. [Google Scholar] [CrossRef]
- Moya, C.; Oyanedel, E.; Verdugo, G.; Flores, M.F.; Urrestarazu, M.; Álvaro, J.E. Increased Electrical Conductivity in Nutrient Solution Management Enhances Dietary and Organoleptic Qualities in Soilless Culture Tomato. HortScience 2017, 52, 868–872. [Google Scholar] [CrossRef] [Green Version]
- Ehret, D.L.; Usher, K.; Helmer, T.; Block, G.; Steinke, D.; Frey, B.; Kuang, T.; Diarra, M. Tomato Fruit Antioxidants in Relation to Salinity and Greenhouse Climate. J. Agric. Food Chem. 2013, 61, 1138–1145. [Google Scholar] [CrossRef] [PubMed]
- Neocleous, D.; Koukounaras, A.; Siomos, A.S. Changes in Photosynthesis, Yield, and Quality of Baby Lettuce under Salinity Stress. J. Agric. Sci. Technol. 2014, 16, 1335–1343. [Google Scholar]
- Borgognone, D.; Cardarelli, M.; Rea, E.; Lucini, L.; Colla, G. Salinity source-induced changes in yield, mineral composition, phenolic acids and flavonoids in leaves of artichoke and cardoon grown in floating system. J. Sci. Food Agric. 2014, 94, 1231–1237. [Google Scholar] [CrossRef]
- Beatrice, F.; Valeria, S.; Ombretta, M.; Giuseppe, P.; Muriel, Q.; Stanley, L.; Paolo, B. Germination under Moderate Salinity Increases Phenolic Content and Antioxidant Activity in Rapeseed (Brassica napus var oleifera Del.) Sprouts. Molecules 2017, 22, 1377. [Google Scholar]
- Hossain, M.A.; Tanaka, I.; Tanaka, T.; Khan, A.U.; Mori, T. Crystal growth and anisotropy of high temperature thermoelectric properties of yttrium borosilicide single crystals. J. Solid State Chem. 2016, 233, 1–7. [Google Scholar] [CrossRef]
- Kader, A.A. Flavor quality of fruits and vegetables. J. Sci. Food Agric. 2010, 88, 1863–1868. [Google Scholar] [CrossRef]
- He, J.F.; Goyal, R.; Laroche, A.; Zhao, M.L.; Lu, Z.X. Effects of salinity stress on starch morphology, composition and thermal properties during grain development in triticale. Can. J. Plant Sci. 2013, 93, 765–771. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Pei, H.; Chen, S.; Jiang, L.; Hou, Q.; Yang, Z.; Yu, Z. Salinity-induced cellular cross-talk in carbon partitioning reveals starch-to-lipid biosynthesis switching in low-starch freshwater algae. Bioresour. Technol. 2017, 250, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, A.; Baker, D.A. The effect of water stress on the activities of key regulatory enzymes of the sucrose to starch pathway in wheat. Plant Growth Regul. 2001, 35, 81–91. [Google Scholar] [CrossRef]
- Jeon, J.S.; Ryoo, N.; Hahn, T.R.; Walia, H.; Nakamura, Y. Starch biosynthesis in cereal endosperm. Plant Physiol. Biochem. 2010, 48, 383–392. [Google Scholar] [CrossRef] [PubMed]
Gene Name | Primer-Forward (5′ → 3′) | Prime-Reverse (5′ → 3′) |
---|---|---|
PSS1 | ATGACTTCCATGCTGGTGACG | CTAGCGAAAAGACAGTGTGCTTGG |
CAF1 | CCCAAGCTTATGGCTGTTGAAAAAGCTGC | GCCTCGAGTTACTAATACACTTCTAATCC |
HAK1 | ATGGTAGCCTGAACTTGCGAC | GATGGTTGGACCTCCCTTGG |
FSD1 | TTGAGCAGACAGGAGAAGCGTC | TCCCACAAGTCCAAACCGATC |
SOD1 | TCCCACAAGTCCAAACCGATC | AGCTCATGTCCTCCCTTTCCA |
MSD1 | GGTGTGGCTTGGTGTGGATAA | TGCCCAAAAGAGGAACCAAGT |
POD1 | AACTGCTGTTGAGAATGCATGC | TCCAAAATGGCCCTCCACTC |
CAT1 | CCATTTCAACTATTTTCATCGATCTTC | AAGGTCGCGTCTCGTCTCA |
APX1 | GAAGGTGCCACAAGGAACGTT | AGCCCTTCTTTTTCCCCACTC |
SBE I | GAGCCATGACCAGGCTATTGT | ATTGGCGTCTGCACTTCTCAT |
SBE II | ATCCAAATGCTGATGTTATGACTCG | AATGCCTGAAGGAGTGTCCATAC |
GBSS I | GACTGCGGCATCACTGGTATTT | GAACTTAGAAATCGCAGCAT |
ISA | TGCTCCTGAAGAAGGGCATTAC | AGTCAAACTTATCAGCGGTAGGT |
3MaT1 | TTTCCTTGGGTTCTCCTG | TTCTAACTCGGTGGTGGG |
F3H | AAGGAAGCGTTGACCAAAGC | AAGGAAGCGTTGACCAAAGC |
ANS | TAATGCTAGTGGGCAGCTTGAG | TAATGCTAGTGGGCAGCTTGAG |
DFR | TGAGCATCCCAAAGCAGAAG | TGAGCATCCCAAAGCAGAAG |
MATE | TTGTTCAGCTGGGGTACGAC | TTGTTCAGCTGGGGTACGAC |
FAMOMT | CGAGTTTGAGGTCGATCGGT | ACAGCTTGTTTGCATCTTCCAA |
F3′H | AAGGAAGCGTTGACCAAAGC | AAGGAAGCGTTGACCAAAGC |
F3′5′H | TGTGGTGGTGGAAATGT | CTATAGAAAGCACCCTTCAA |
LAR | GCAAACGTTGCAAGGGTGAATG | ACTTTGAGCAGGTTCCTCCGGGTT |
IFS | AAACCCACGTCATGCCAGCTC | CGACAAGCACGGTCAACTTC |
CCoAMOT | GTCTGATGGCTACTGCACCA | GTCTGATGGCTACTGCACCA |
FLS | GCCTGTCGTTGGGTTTAGGG | GACACGGCGGGTAATAGTTGA |
ANR | GGTGAAGCGGGTGATCTTG | TTCTCTGTCATCGTCTTGGCA |
UFGT | AGGATTTGCAAGCGCCATTC | AGGATTTGCAAGCGCCATTC |
CHS | AGTGCTTGTTCGAGGCTTTC | AGTGCTTGTTCGAGGCTTT |
PAL | TGCCAGGCAATTGATCTGAG | TGCCAGGCAATTGATCTGAG |
4CL | AAAGGATGCACGCACTTCTC | AAAGGATGCACGCACTTCTC |
CHI | AAGTGGAACGGGAAAAGTGC | AAGTGGAACGGGAAAAGTGC |
C4H | ATCTTGGTGAACGCTTGGTG | ATCTTGGTGAACGCTTGGTG |
GST | TGACTCTGCTGTGGGGCTC | GGTCACAGCACCAACA |
Item | Class | Retention Time (min) | Metabolites | Molecular Formula | Exact Molecular Weight | Found Molecular Weight (m/z) | Error (ppm) | p Value | Related Content | |
---|---|---|---|---|---|---|---|---|---|---|
Low-Salinity | High-Salinity | |||||||||
1 | amino acid | 2.74 | proline | C5H9NO2 | 115.1699 | 115.1695 | −3.47 | 5.22 × 10−3 | 4.06↑ | 8.72↑ |
2 | 6.25 | glycine | C2H5NO2 | 76.0871 | 76.0874 | 3.94 | 2.14 × 10−3 | 6.91↑ | 10.05↑ | |
3 | 4.55 | valine | C5H11NO2 | 118.1859 | 118.1857 | −1.69 | 6.24 × 10−4 | 29.8↑ | 40.7↑ | |
4 | 4.74 | alanine | C3H7NO2 | 90.12 | 90.1205 | 5.55 | 7.70 × 10−5 | 12.6↑ | 18.05↑ | |
5 | 6.84 | aspartic acid | C4H7NO4 | 86.1377 | 86.1374 | −3.48 | 2.15 × 10−4 | 2.64↑ | 4.72↑ | |
6 | 5.69 | serine | C3H7NO3 | 106.1194 | 106.1192 | −1.88 | 2.45 ×10−3 | 5.93↑ | 18.05↑ | |
7 | 12.74 | cysteine | C3H7NO2S | 122.185 | 122.1853 | 2.46 | 8.40 × 10−5 | 6.91↑ | 11.38↑ | |
8 | 14.62 | phenylalanine | C9H11NO2 | 166.2538 | 166.2637 | 0.595 | 8.86 × 10−3 | 4.06↑ | 40.7↑ | |
9 | 14.83 | lysine | C6H14N2O2 | 147.2333 | 147.2334 | 0.6579 | 9.50 × 10− 4 | 7.08↑ | 8.72↑ | |
10 | 15.44 | tryptophan | C11H12N2O2 | 205.3024 | 205.3021 | −1.46 | 8.54 × 10−4 | 12.6↑ | 15.39↑ | |
11 | 18.74 | cystine | C6H12N2O4S2 | 241.3462 | 241.346 | -0.829 | 9.55 × 10−3 | 15.44 | 18.05↑ | |
12 | 12.11 | 3-amino-isobutty acid | C4H9NO3 | 104.1529 | 104.1526 | −2.88 | 9.02 × 10−3 | 8.65↓ | 5.14↓ | |
13 | 16.55 | aminomalonic acid | C3H5NO4 | 120.1029 | 120.1022 | −5.83 | 6.80 × 10−3 | 9.245↓ | 3.11↓ | |
14 | 13.83 | β-alanine | C3H7NO2 | 90.1200 | 90.1205 | 5.55 | 8.41 × 10−3 | 4.628↓ | 2.74↓ | |
15 | 7.62 | 3-hydroxypropionic acid | C3H6O3 | 91.1048 | 91.1047 | −1.10 | 9.51 × 10−4 | 15.36↓ | 4.66↓ | |
16 | 9.44 | ornithine | C5H12N2O2 | 133.2004 | 133.2008 | 3.00 | 8.15 × 10−3 | 8.74↓ | 2.08↓ | |
17 | 12.74 | tyrosine | C9H11NO3 | 182.2532 | 182.2531 | −0.549 | 7.56 × 10−3 | 4.99↓ | 1.74↓ | |
18 | Sugars | 18.97 | sucrose | C12H22O11 | 343.3800 | 343.3808 | 2.33 | 9.51 × 10−3 | 1.058↓ | 6.254↑ |
19 | 19.05 | isomaltose | C12H22O11 | 343.3800 | 343.3801 | 0.291 | 5.47 × 10−3 | 6.25↓ | 27.11↑ | |
20 | 19.77 | melibiose | C12H22O11 | 343.3800 | 343.379 | −0.291 | 4.53 × 10−3 | 4.81↓ | 12.05↓ | |
21 | 18.62 | fructose | C6H12O6 | 101.2046 | 101.2044 | −1.98 | 6.53 × 10−3 | 5.45↓ | 18.64↑ | |
22 | 22.76 | maltose | C12H22O11 | 343.3800 | 343.3815 | 4.37 | 5.15 × 10−3 | 1.07↓ | 14.53↑ | |
23 | 12.00 | 3, 6-Anhydro-D-galactose | C6H10O5 | 163.1863 | 163.1864 | 0.613 | 8.53 × 10−3 | 1.11↑ | 7.65↑ | |
24 | Organi acid | 11.65 | hexadecanoic acid | C16H32O2 | 257.5328 | 257.532 | −3.11 | 6.54 × 10−3 | 2.74↓ | 2.05↑ |
25 | 15.84 | linolenic acid | C18H30O2 | 279.5509 | 279.5503 | −2.15 | 8.52 × 10−3 | 3.39↓ | 4.77↑ | |
26 | 10.08 | valeric acid | C5H10O2 | 103.1711 | 103.1715 | 3.88 | 8.45 × 10−3 | 4.05↓ | 6.58↑ | |
27 | 17.83 | pyruvic acid | C3H4O3 | 89.0889 | 89.0887 | −2.24 | 6.25 × 10−3 | 2.77↓ | 8.14↑ | |
28 | 22.68 | gluconic acid | C6H12O7 | 197.2010 | 197.2011 | 0.507 | 4.50 × 10−3 | 3.02↓ | 3.59↑ | |
29 | 24.05 | fumaric acid | C6H8O7 | 193.1693 | 193.1699 | 3.11 | 3.42 × 10−3 | 2.68↓ | 4.87↑ | |
30 | 24.77 | citric acid | C6H8O7 | 193.1693 | 193.169 | −1.55 | 5.14 × 10−3 | 1.44↑ | 4.99↑ | |
31 | 20.74 | malic acid | C4H6O5 | 135.1206 | 135.1211 | 3.70 | 6.03 × 10−3 | 2.08↑ | 5.64↑ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Dai, W.-W.; Liu, C.; Zhang, G.-X.; Song, W.-H.; Li, C.; Yangchen, Y.-C.; Gao, R.-F.; Chen, Y.-Y.; Yan, H.; et al. Evaluation of Physiological Coping Strategies and Quality Substances in Purple SweetPotato under Different Salinity Levels. Genes 2022, 13, 1350. https://doi.org/10.3390/genes13081350
Wang X, Dai W-W, Liu C, Zhang G-X, Song W-H, Li C, Yangchen Y-C, Gao R-F, Chen Y-Y, Yan H, et al. Evaluation of Physiological Coping Strategies and Quality Substances in Purple SweetPotato under Different Salinity Levels. Genes. 2022; 13(8):1350. https://doi.org/10.3390/genes13081350
Chicago/Turabian StyleWang, Xin, Wei-Wei Dai, Chong Liu, Guang-Xi Zhang, Wei-Han Song, Chen Li, Yuenden-Ci Yangchen, Run-Fei Gao, Yu-Yu Chen, Hui Yan, and et al. 2022. "Evaluation of Physiological Coping Strategies and Quality Substances in Purple SweetPotato under Different Salinity Levels" Genes 13, no. 8: 1350. https://doi.org/10.3390/genes13081350
APA StyleWang, X., Dai, W. -W., Liu, C., Zhang, G. -X., Song, W. -H., Li, C., Yangchen, Y. -C., Gao, R. -F., Chen, Y. -Y., Yan, H., Tang, W., Kou, M., Zhang, Y. -G., Yuan, B., & Li, Q. (2022). Evaluation of Physiological Coping Strategies and Quality Substances in Purple SweetPotato under Different Salinity Levels. Genes, 13(8), 1350. https://doi.org/10.3390/genes13081350