Pathogenicity of PKCγ Genetic Variants—Possible Function as a Non-Invasive Diagnostic Biomarker in Ovarian Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection and Processing of Samples
2.2. Genomic DNA Extraction and Genotype Analysis
2.3. In-Situ Mutagenesis
2.4. Statistical Examination
2.5. Molecular Docking of PKCγ with Connexin43
2.6. Interaction Dynamics Analysis
2.7. Pathway Construction for PKCγ’ and Connexin43 Interaction
3. Results
3.1. Clinico-Pathological Characteristics of Ovarian Cancer Patients
3.2. Association of A24S (rs923331350) and K359R (rs1331232028) SNPs of PRKCG with Ovarian Cancer
3.3. Association of K359R (rs1331232028) SNP of PRKCG with Metastatic State and Stage of Ovarian Cancer
3.4. Influence of (SNP rsIDs rs923331350 and rs1331232028) on the PRKCG mRNA Secondary Structure
3.5. Influence of PRKCG SNPs on PKCγ–Connexin 43 Interaction
3.6. Interactions Dynamic Analysis of Wild-Type and Variant PKCγ–Connexin 43 Complexes
3.7. PKCγ and Connexin 43 Interaction Pathway
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- La Vecchia, C. Ovarian cancer: Epidemiology and risk factors. Eur. J. Cancer Prev. 2017, 26, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Arora, T.; Mullangi, S.; Lekkala, M.R. Ovarian Cancer; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Stewart, C.; Ralyea, C.; Lockwood, S. Ovarian Cancer: An Integrated Review. Semin. Oncol. Nurs. 2019, 35, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-H.; Li, Z.; Tan, M.-Z. Association Between Diet Quality and Risk of Ovarian and Endometrial Cancers: A Systematic Review of Epidemiological Studies. Front. Oncol. 2021, 11, 880. [Google Scholar] [CrossRef] [PubMed]
- Newton, A.C. Protein kinase C: Perfectly balanced. Crit. Rev. Biochem. Mol. Biol. 2018, 53, 208–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martiny-Baron, G.; Fabbro, D. Classical PKC isoforms in cancer. Pharmacol. Res. 2007, 55, 477–486. [Google Scholar] [CrossRef]
- Parker, P.J.; Murray-Rust, J. PKC at a glance. J. Cell Sci. 2004, 117, 131–132. [Google Scholar] [CrossRef] [Green Version]
- Wu, B.; Zhou, H.; Hu, L.; Mu, Y.; Wu, Y. Involvement of PKCα activation in TF/VIIa/PAR2-induced proliferation, migration, and survival of colon cancer cell SW620. Tumour Biol. 2013, 34, 837–846. [Google Scholar] [CrossRef]
- Lahn, M.; Köhler, G.; Sundell, K.; Su, C.; Li, S.; Paterson, B.M.; Bumol, T.F. Protein Kinase C α Expression in Breast and Ovarian Cancer. Oncology 2004, 67, 1–10. [Google Scholar] [CrossRef]
- Teicher, B.A.; Menon, K.; Alvarez, E.; Shih, C.; Faul, M.M. Antiangiogenic and antitumor effects of a protein kinase Cbeta inhibitor in human breast cancer and ovarian cancer xenografts. Investig. New Drugs 2002, 20, 241–251. [Google Scholar] [CrossRef]
- Yu, W.; Murray, N.R.; Weems, C.; Chen, L.; Guo, H.; Ethridge, R.; Ceci, J.D.; Evers, B.M.; Thompson, E.A.; Fields, A.P. Role of cyclooxygenase 2 in protein kinase C β II-mediated colon carcinogenesis. J. Biol. Chem. 2003, 278, 11167–11174. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Choi, Y.L.; Vallentin, A.; Hunrichs, B.S.; Hellerstein, M.K.; Peehl, D.M.; Mochly-Rosen, D. Centrosomal PKCbetaII and pericentrin are critical for human prostate cancer growth and angiogenesis. Cancer Res. 2008, 68, 6831–6839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teicher, B.A.; Menon, K.; Alvarez, E.; Galbreath, E.; Shih, C.; Faul, M. Antiangiogenic and antitumor effects of a protein kinase Cbeta inhibitor in human T98G glioblastoma multiforme xenografts. Clin. Cancer Res. 2001, 7, 634–640. [Google Scholar] [PubMed]
- Dowling, C.M.; Hayes, S.L.; Phelan, J.J.; Cathcart, M.C.; Finn, S.P.; Mehigan, B.; McCormick, P.; Coffey, J.C.; O’Sullivan, J.; Kiely, P.A. Expression of protein kinase C γ promotes cell migration in colon cancer. Oncotarget 2017, 8, 72096–72107. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Hu, X.; Wang, H.-K.; Shen, W.-W.; Liao, T.-Q.; Chen, P.; Chu, T.-W. Single-nucleotide polymorphisms of the PRKCG gene and osteosarcoma susceptibility. Tumor Biol. 2014, 35, 12671–12677. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xu, J.; Zhu, X. A 63 signature genes prediction system is effective for glioblastoma prognosis. Int. J. Mol. Med. 2018, 41, 2070–2078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cargill, M.; Altshuler, D.; Ireland, J.; Sklar, P.; Ardlie, K.; Patil, N.; Lane, C.R.; Lim, E.P.; Kalyanaraman, N.; Nemesh, J.; et al. Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat. Genet. 1999, 22, 231–238. [Google Scholar] [CrossRef]
- Deng, N.; Zhou, H.; Fan, H.; Yuan, Y. Single nucleotide polymorphisms and cancer susceptibility. Oncotarget 2017, 8, 110635–110649. [Google Scholar] [CrossRef] [Green Version]
- Syvänen, A.-C. Accessing genetic variation: Genotyping single nucleotide polymorphisms. Nat. Rev. Genet. 2001, 2, 930–942. [Google Scholar] [CrossRef]
- Komar, A.A. Silent SNPs: Impact on gene function and phenotype. Pharmacogenomics 2007, 8, 1075–1080. [Google Scholar] [CrossRef]
- Kumar, G.G.; Paul, S.F.D.; Martin, J.; Manickavasagam, M.; Sundersingh, S.; Ganesan, N.; Ramya, R.; Rani, G.U.; Mary, F.A. Association between RAD51, XRCC2 and XRCC3 gene polymorphisms and risk of ovarian cancer: A case control and an in silico study. Mol. Biol. Rep. 2021, 48, 4209–4220. [Google Scholar] [CrossRef] [PubMed]
- Fasching, P.A.; Gayther, S.; Pearce, L.; Schildkraut, J.M.; Goode, E.; Thiel, F.; Chenevix-Trench, G.; Chang-Claude, J.; Wang-Gohrke, S.; Ramus, S.; et al. Role of genetic polymorphisms and ovarian cancer susceptibility. Mol. Oncol. 2009, 3, 171–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schildkraut, J.M.; Goode, E.L.; Clyde, M.A.; Iversen, E.S.; Moorman, P.G.; Berchuck, A.; Marks, J.R.; Lissowska, J.; Brinton, L.; Peplonska, B.; et al. Single Nucleotide Polymorphisms in the TP53 Region and Susceptibility to Invasive Epithelial Ovarian Cancer. Cancer Res. 2009, 69, 2349–2357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, J.-H. Protein Kinase C (PKC) Isozymes and Cancer. New J. Sci. 2014, 2014, 1–36. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Qian, D.; Liu, H.; Abbruzzese, J.L.; Luo, S.; Walsh, K.; Wei, Q. Genetic variants of the peroxisome proliferator-activated receptor (PPAR) signaling pathway genes and risk of pancreatic cancer. Mol. Carcinog. 2020, 59, 930–939. [Google Scholar] [CrossRef]
- Khan, K.; Shah, H.; Rehman, A.; Badshah, Y.; Ashraf, N.M.; Shabbir, M. Influence of PRKCE non-synonymous variants on protein dynamics and functionality. Hum. Mol. Genet. 2022, 31, 2236–2261. [Google Scholar] [CrossRef]
- Abid, F.; Iqbal, T.; Khan, K.; Badshah, Y.; Trembley, J.H.; Ashraf, N.M.; Shabbir, M.; Afsar, T.; Almajwal, A.; Razak, S. Analyzing PKC γ (+ 19,506 A/G) polymorphism as a promising genetic marker for HCV-induced hepatocellular carcinoma. Biomark. Res. 2022, 10, 87. [Google Scholar] [CrossRef]
- Ghatak, S.; Muthukumaran, R.B.; Nachimuthu, S.K. A simple method of genomic DNA extraction from human samples for PCR-RFLP analysis. J. Biomol. Tech. 2013, 24, 224–231. [Google Scholar] [CrossRef] [Green Version]
- Collins, A.; Ke, X. Primer1: Primer Design Web Service for Tetra-Primer ARMS-PCR. Open Bioinform. J. 2012, 6, 55–58. [Google Scholar] [CrossRef] [Green Version]
- Zweig, A.S.; Karolchik, D.; Kuhn, R.M.; Haussler, D.; Kent, W.J. UCSC genome browser tutorial. Genomics 2008, 92, 75–84. [Google Scholar] [CrossRef]
- Sun, Y.; Luo, Z.-M.; Guo, X.-M.; Su, D.-F.; Liu, X. An updated role of microRNA-124 in central nervous system disorders: A review. Front. Cell. Neurosci. 2015, 9, 193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeLano, W.L. Unraveling hot spots in binding interfaces: Progress and challenges. Curr. Opin. Struct. Biol. 2002, 12, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Mavrevski, R.A.; Traykov, M.E.; Trenchev, I.V.; Trencheva, M.I. Approaches to modeling of biological experimental data with GraphPad Prism software. WSEAS Trans. Syst. Control 2018, 13, 242–247. [Google Scholar]
- Gruber, A.; Lorenz, R.; Bernhart, S.H.F.; Neuböck, R.; Hofacker, I.L. The Vienna RNA Websuite. Nucleic Acids Res. 2008, 36, W70–W74. [Google Scholar] [CrossRef] [Green Version]
- De Vries, S.J.; van Dijk, M.; Bonvin, A.M. The HADDOCK web server for data-driven biomolecular docking. Nat. Protoc. 2010, 5, 883–897. [Google Scholar] [CrossRef] [Green Version]
- Szklarczyk, D.; Morris, J.H.; Cook, H.; Kuhn, M.; Wyder, S.; Simonovic, M.; Santos, A.; Doncheva, N.T.; Roth, A.; Bork, P.; et al. The STRING database in 2017: Quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res. 2017, 45, D362–D368. [Google Scholar] [CrossRef]
- Laskowski, R.A.; Swindells, M.B. LigPlot+: Multiple ligand–protein interaction diagrams for drug discovery. J. Chem. Inf. Model. 2011, 51, 2778–2786. [Google Scholar] [CrossRef]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Kulig, W.; Pasenkiewicz-Gierula, M.; Róg, T. Topologies, structures and parameter files for lipid simulations in GROMACS with the OPLS-aa force field: DPPC, POPC, DOPC, PEPC, and cholesterol. Data Brief 2015, 5, 333–336. [Google Scholar] [CrossRef]
- Ha, Y.; Kwon, W.; Lennon, S.J. Online visual merchandising (VMD) of apparel web sites. J. Fash. Mark. Manag. Int. J. 2007, 11, 477–493. [Google Scholar] [CrossRef]
- Kanehisa, M.; Furumichi, M.; Tanabe, M.; Sato, Y.; Morishima, K. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017, 45, D353–D361. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liao, Q.-P. Expression of connexin 43 in ovarian cancer and its relationship with chemoresistance. Zhonghua Fu Chan Ke Za Zhi 2009, 44, 50–55. [Google Scholar] [PubMed]
- Predescu, D.-V.; Crețoiu, S.M.; Pavelescu, L.A.; Suciu, N.; Radu, B.M.; Voinea, S.-C. G Protein-Coupled Receptors (GPCRs)-Mediated Calcium Signaling in Ovarian Cancer: Focus on GPCRs activated by Neurotransmitters and Inflammation-Associated Molecules. Int. J. Mol. Sci. 2019, 20, 5568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Regad, T. Targeting RTK Signaling Pathways in Cancer. Cancers 2015, 7, 1758–1784. [Google Scholar] [CrossRef]
- Bao, X.; Altenberg, G.A.; Reuss, L. Mechanism of regulation of the gap junction protein connexin 43 by protein kinase C-mediated phosphorylation. Am. J. Physiol. Physiol. 2004, 286, C647–C654. [Google Scholar] [CrossRef]
- Lampe, P.D.; TenBroek, E.M.; Burt, J.M.; Kurata, W.E.; Johnson, R.G.; Lau, A.F. Phosphorylation of Connexin43 on Serine368 by Protein Kinase C Regulates Gap Junctional Communication. J. Cell Biol. 2000, 149, 1503–1512. [Google Scholar] [CrossRef]
- Moufarrij, S.; Dandapani, M.; Arthofer, E.; Gomez, S.; Srivastava, A.; Lopez-Acevedo, M.; Villagra, A.; Chiappinelli, K.B. Epigenetic therapy for ovarian cancer: Promise and progress. Clin. Epigenetics 2019, 11, 7. [Google Scholar] [CrossRef]
- Asher, V.; Lee, J.; Innamaa, A.; Bali, A. Preoperative platelet lymphocyte ratio as an independent prognostic marker in ovarian cancer. Clin. Transl. Oncol. 2011, 13, 499–503. [Google Scholar] [CrossRef]
- Gadducci, A.; Cosio, S.; Tana, R.; Genazzani, A.R. Serum and tissue biomarkers as predictive and prognostic variables in epithelial ovarian cancer. Crit. Rev. Oncol. 2009, 69, 12–27. [Google Scholar] [CrossRef]
- Robert, F.; Pelletier, J. Exploring the impact of single-nucleotide polymorphisms on translation. Front. Genet. 2018, 9, 507. [Google Scholar] [CrossRef] [Green Version]
- Thirumal Kumar, D.; George Priya Doss, C. Role of E542 and E545 missense mutations of PIK3CA in breast cancer: A comparative computational approach. J. Biomol. Struct. Dyn. 2017, 35, 2745–2757. [Google Scholar] [CrossRef] [PubMed]
- Choi, C.-M.; Jang, S.-J.; Park, S.-Y.; Choi, Y.-B.; Jeong, J.-H.; Kim, D.-S.; Kim, H.-K.; Park, K.-S.; Nam, B.-H.; Kim, H.-R.; et al. Transglutaminase 2 as an independent prognostic marker for survival of patients with non-adenocarcinoma subtype of non-small cell lung cancer. Mol. Cancer 2011, 10, 119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashemi, M.; Shahkar, G.; Simforoosh, N.; Basiri, A.; Ziaee, S.A.M.; Narouie, B.; Taheri, M. Association of polymorphisms in PRKCI gene and risk of prostate cancer in a sample of Iranian Population. Cell. Mol. Biol. 2015, 61, 16–21. [Google Scholar]
- Garczarczyk, D.; Szeker, K.; Galfi, P.; Csordas, A.; Hofmann, J. Protein kinase Cγ in colon cancer cells: Expression, Thr514 phosphorylation and sensitivity to butyrate-mediated upregulation as related to the degree of differentiation. Chem. Biol. Interact. 2010, 185, 25–32. [Google Scholar] [CrossRef] [Green Version]
- Akhtar, M.; Jamal, T.; Din, J.U.; Hayat, C.; Rauf, M.; Haq, S.M.U.; Khan, R.S.; Shah, A.A.; Jamal, M.; Jalil, F. An in silico approach to characterize nonsynonymous SNPs and regulatory SNPs in human TOX3 gene. J. Genet. 2019, 98, 104. [Google Scholar] [CrossRef]
- Gautam, N.; Kaur, S.; Kaur, K.; Kumar, N. A novel insight of Asp193His mutation on epigenetic methyltransferase activity of human EZH2 protein: An in-silico approach. Meta Gene 2019, 19, 258–267. [Google Scholar] [CrossRef]
- Heo, L.; Feig, M. Modeling of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Proteins by Machine Learning and Physics-Based Refinement. bioRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Xu, D.; Zhang, J.; Roy, A.; Zhang, Y. Automated protein structure modeling in CASP9 by I-TASSER pipeline combined with QUARK-based ab initio folding and FG-MD-based structure refinement. Proteins Struct. Funct. Bioinform. 2011, 79, 147–160. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Zhai, Z.; Xie, Q.; Lai, Y.; Chen, G. Correlation between SNPs of PIK3CA, ERBB2 3′UTR, and their interactions with environmental factors and the risk of epithelial ovarian cancer. J. Assist. Reprod. Genet. 2021, 38, 2631–2639. [Google Scholar] [CrossRef]
- Khan, K.; Zafar, S.; Hafeez, A.; Badshah, Y.; Shahid, K.; Ashraf, N.M.; Shabbir, M. PRKCE non-coding variants influence on transcription as well as translation of its gene. RNA Biol. 2022, 19, 1115–1129. [Google Scholar] [CrossRef]
- Akoyev, V.; Takemoto, D.J. ZO-1 is required for protein kinase C γ-driven disassembly of connexin 43. Cell. Signal. 2007, 19, 958–967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.-I.; Wang, L.-H. Emerging roles of gap junction proteins connexins in cancer metastasis, chemoresistance and clinical application. J. Biomed. Sci. 2019, 26, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Alstrom, J.S.; Stroemlund, L.W.; Nielsen, M.S.; MacAulay, N. Protein kinase C-dependent regulation of connexin43 gap junctions and hemichannels. Biochem. Soc. Trans. 2015, 43, 519–523. [Google Scholar] [CrossRef] [PubMed]
- Solan, J.L.; Marquez-Rosado, L.; Sorgen, P.L.; Thornton, P.J.; Gafken, P.R.; Lampe, P.D. Phosphorylation at S365 is a gatekeeper event that changes the structure of Cx43 and prevents down-regulation by PKC. J. Cell Biol. 2007, 179, 1301–1309. [Google Scholar] [CrossRef] [PubMed]
Variant rs IDs | Primer Sequences | Denaturation | Annealing | Extension |
---|---|---|---|---|
rs923331350 G/T | Forward inner primer (G allele): GTTTTGCAGAAAGGAGG | 95 °C | 51 °C | 72 °C |
Reverse inner primer (T allele): ACCTTCTGCCTCAGAGA | ||||
Forward outer primer (5′-3′): CTCGGAATTTCCCTGT | ||||
Reverse outer primer (5′-3′): AGTCGGGACTACAGCC | ||||
rs1331232028 G/A | Forward inner primer (G allele): TTCCTCATGGTTCTAGGCAG | 95 °C | 57 °C | 72 °C |
Reverse inner primer (A allele): ACCTTCCCAAAACTGCATT | ||||
Forward outer primer (5′-3′): GGTAGGAGGGTGGCCA | ||||
Reverse outer primer (5′-3′): CCGTCCCCTCAAGGAG |
Clinico-Pathological Characteristics of Patients | Ovarian Cancer (N) (%) | |
---|---|---|
Age | ≥50 | 23 (48) |
<50 | 26 (52) | |
Stage | I–II | 17 (36) |
III-IV | 32 (64) | |
Metastasis | Metastatic | 19 (38) |
Non-metastatic | 30 (62) | |
Treatment | Radiations | 0 (0) |
Chemotherapy | 49 (100) | |
Radiations + Chemotherapy | 1 (0) |
Variants | Internal Band (Reference Allele) | Internal Band (Variant Allele) | Control Band |
---|---|---|---|
rs923331350 G/T | G-Allele | T-Allele | Outer |
224 | 197 | 387 | |
rs1331232028 G/A | G-Allele | A-Allele | Outer |
224 | 291 | 476 |
Genotype | Patient (n = 49) | Control (n = 51) | Odds Ratio | 95% CI—Odds Ratio | Relative Risk | 95% CI—Relative Risk | p Value |
---|---|---|---|---|---|---|---|
(%) | (%) | ||||||
AA | 20 | 11 | 2.508 | 1.059 to 5.989 | 1.535 | 1.027 to 2.230 | 0.0515 |
40.82% | 21.57% | ||||||
AG | 15 | 14 | 1.166 | 0.4799 to 2.882 | 1.080 | 0.6801 to 1.609 | 0.8265 |
30.61% | 27.45% | ||||||
GG | 14 | 26 | 0.3846 | 0.1631 to 0.9052 | 0.6000 | 0.3646 to 0.9337 | 0.0261 |
28.57% | 50.98% | ||||||
A | 28 | 18 | 2.444 | 1.076 to 5.396 | 1.565 | 1.048 to 2.377 | 0.0442 |
57.14% | 35.29% | ||||||
G | 21 | 33 | 0.4091 | 0.1853 to 0.9291 | 0.6389 | 0.4207 to 0.9538 | 0.0442 |
42.86% | 64.71% |
Genotyping Distribution of rs1331232028 SNPs’ Clinical Features | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Metastatic State | Cancer’s Stage | |||||||||||
Genotype | Metastatic | Non-Metastatic | Stage I-II | Stage III-IV | ||||||||
OR | RR | p Value | OR | RR | p Value | OR | RR | p Value | OR | RR | p Value | |
(95% CI) | (95% CI) | (95% CI) | (95% CI) | (95% CI) | (95% CI) | (95% CI) | (95% CI) | |||||
AA | 0.41 | 0.52 | 0.0017 | 1.32 | 1.18 | 0.59 | 5.19 | 3.19 | 0.0065 | 1.58 | 1.30 | 0.44 |
(0.13–1.20) | (0.22–1.14) | (0.43–3.55) | (0.60–2.09) | (1.53–16.89) | (1.42–7.12) | (0.61–4.08) | (0.71–2.17) | |||||
AG | 0.66 | 0.73 | 0.76 | 1.530 | 1.297 | 0.45 | 0.81 | 0.85 | >0.99 | 1.38 | 1.21 | 0.62 |
(0.21–2.28) | (0.27–1.72) | (0.55–4.04) | (0.71–2.23) | (0.25–2.99) | (0.31–2.07) | (0.51–3.57 | (0.67–2.06) | |||||
GG | 6.23 | 3.503 | 0.12 | 0.5567 | 0.6885 | 0.25 | 0.20 | 0.28 | 0.02 | 0.43 | 0.59 | 0.11 |
(2.01–19.43) | (1.62–7.63) | (0.21–1.46) | (0.37–1.22 | (0.05–0.78) | (0.09–0.81) | (0.18–1.13 | (0.31–1.05) |
Bond Length | Wild-Type | A24S Mutant | K359R Mutant | ||||||
---|---|---|---|---|---|---|---|---|---|
Lys503-Val359 | Gln48-Arg374 | Tyr529-Asn341 | Ser639-Pro334 | Ser664-Arg376 | Cys516-Glu352 | Arg413-Ser 328 | Phe469-Arg362 | Arg615-Arg376 | |
0 ns | 26.71 Å | 15.67 Å | 9.77 Å | 13.85 Å | 10.07 Å | 8.34 Å | 5.66 Å | 8.80 Å | 8.32 Å |
5 ns | 23.83 Å | 11.08 Å | 11.41 Å | 7.83 Å | 10.04 Å | 7.61 Å | 7.45 Å | 8.59 Å | 10.95 Å |
10 ns | 24.59 Å | 17.07 Å | 10.66 Å | 11.81 Å | 10.07 Å | 7.58 Å | 7.64 Å | 7.10 Å | 10.21 Å |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahid, K.; Khan, K.; Badshah, Y.; Mahmood Ashraf, N.; Hamid, A.; Trembley, J.H.; Shabbir, M.; Afsar, T.; Almajwal, A.; Abusharha, A.; et al. Pathogenicity of PKCγ Genetic Variants—Possible Function as a Non-Invasive Diagnostic Biomarker in Ovarian Cancer. Genes 2023, 14, 236. https://doi.org/10.3390/genes14010236
Shahid K, Khan K, Badshah Y, Mahmood Ashraf N, Hamid A, Trembley JH, Shabbir M, Afsar T, Almajwal A, Abusharha A, et al. Pathogenicity of PKCγ Genetic Variants—Possible Function as a Non-Invasive Diagnostic Biomarker in Ovarian Cancer. Genes. 2023; 14(1):236. https://doi.org/10.3390/genes14010236
Chicago/Turabian StyleShahid, Kanza, Khushbukhat Khan, Yasmin Badshah, Naeem Mahmood Ashraf, Arslan Hamid, Janeen H. Trembley, Maria Shabbir, Tayyaba Afsar, Ali Almajwal, Ali Abusharha, and et al. 2023. "Pathogenicity of PKCγ Genetic Variants—Possible Function as a Non-Invasive Diagnostic Biomarker in Ovarian Cancer" Genes 14, no. 1: 236. https://doi.org/10.3390/genes14010236
APA StyleShahid, K., Khan, K., Badshah, Y., Mahmood Ashraf, N., Hamid, A., Trembley, J. H., Shabbir, M., Afsar, T., Almajwal, A., Abusharha, A., & Razak, S. (2023). Pathogenicity of PKCγ Genetic Variants—Possible Function as a Non-Invasive Diagnostic Biomarker in Ovarian Cancer. Genes, 14(1), 236. https://doi.org/10.3390/genes14010236