Development of Toehold Switches as a Novel Ribodiagnostic Method for West Nile Virus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Development of a Toehold Switch Cloning Vector
2.2. Bioinformatic Analysis and Selection of Appropriate WNV Sequences
2.3. Design and Cloning of the Toehold Switch Panel
2.4. Cell Culturing of WNV and Viral RNA Extraction
2.5. RNA Isolation from Blood or Plasma
2.6. cDNA Synthesis and Quantitative PCR
2.7. In Vitro-Transcription Translation
3. Results
3.1. K-mer Fragmentation of the WNV Full Genomic Sequence
3.2. Phylogenetic Analysis of WNV Full Genomic Sequence
3.3. Sequence Analysis and Filtering of Toehold Switches
3.4. Detection of WNV with GFP Toehold Riboswitches
3.5. Detection and Quantification of WNV RNA with qPCR
4. Discussion and Future Perspectives
5. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smithburn, K.C.; Hughes, T.P.; Burke, A.W.; Paul, J.H. A Neurotropic Virus Isolated from the Blood of a Native of Uganda 1. Am. J. Trop. Med. 1940, 20, 471–492. [Google Scholar] [CrossRef]
- Colpitts, T.M.; Conway, M.J.; Montgomery, R.R.; Fikrig, E. West Nile Virus: Biology, transmission, and human infection. Clin. Microbiol. Rev. 2012, 25, 635–648. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.K.; Singh, S.; Nischal, A.; Pant, K.K.; Seth, P.K. Molecular-based identification and phylogeny of genomic and proteomic sequences of mosquito-borne flavivirus. Genes Genom. 2014, 36, 31–43. [Google Scholar] [CrossRef]
- Moureau, G.; Cook, S.; Lemey, P.; Nougairede, A.; Forrester, N.L.; Khasnatinov, M.; Charrel, R.N.; Firth, A.E.; Gould, E.A.; De Lamballerie, X. New Insights into Flavivirus Evolution, Taxonomy and Biogeographic History, Extended by Analysis of Canonical and Alternative Coding Sequences. PLoS ONE 2015, 10, e0117849. [Google Scholar] [CrossRef] [PubMed]
- John, H.R.; Scott, R.D.; Zdenek, H. Migratory Birds and Spread of West Nile Virus in the Western Hemisphere. Emerg. Infect. Dis. 2000, 6, 319–328. [Google Scholar]
- Petersen, L.R.; Brault, A.C.; Nasci, R.S. West Nile Virus: Review of the Literature. JAMA 2013, 310, 308–315. [Google Scholar] [CrossRef] [PubMed]
- Brinton, M.A. Replication Cycle and Molecular Biology of the West Nile Virus. Viruses 2013, 6, 13–53. [Google Scholar] [CrossRef]
- Martin, M.-F.; Nisole, S. West Nile Virus Restriction in Mosquito and Human Cells: A Virus under Confinement. Vaccines 2020, 8, 256, West Nile virus: A re-emerging pathog. [Google Scholar] [CrossRef]
- Martin-Acebes, M.A.; Saiz, J.C. West Nile virus: A re-emerging pathogen revisited. World J. Virol. 2012, 1, 51–70. [Google Scholar] [CrossRef]
- Bunning, M.L.; Bowen, R.A.; Cropp, B.C.; Sullivan, K.G.; Davis, B.S.; Komar, N.; Godsey, M.; Baker, D.; Hettler, D.L.; Holmes, D.A.; et al. Experimental Infection of Horses with West Nile virus. Emerg. Infect. Dis. 2002, 8, 380–386. [Google Scholar] [CrossRef]
- Iwamoto, M.; Jernigan, D.B.; Guasch, A.; Trepka, M.J.; Blackmore, C.G.; Hellinger, W.C.; Pham, S.M.; Zaki, S.; Lanciotti, R.S.; Lance-Parker, S.E.; et al. Transmission of West Nile Virus from an Organ Donor to Four Transplant Recipients. N. Engl. J. Med. 2003, 348, 2196–2203. [Google Scholar] [CrossRef] [PubMed]
- Rudolph, K.E.; Moloney, R.M.; Kmush, B.; Cummings, D.A.T.; Lessler, J. Incubation Periods of Mosquito-Borne Viral Infections: A Systematic Review. Am. J. Trop. Med. Hyg. 2014, 90, 882–891. [Google Scholar] [CrossRef] [PubMed]
- Sejvar, J.J. Clinical Manifestations and Outcomes of West Nile Virus Infection. Viruses 2014, 6, 606–623. [Google Scholar] [CrossRef]
- Davis, L.E.; DeBiasi, R.; Goade, D.E.; Haaland, K.Y.; Harrington, J.A.; Harnar, J.B.; Pergam, S.; King, M.K.; DeMasters, B.K.; Tyler, K.L. West Nile virus neuroinvasive disease. Ann. Neurol. 2006, 60, 286–300. [Google Scholar] [CrossRef] [PubMed]
- DeBiasi, R.L.; Tyler, K.L. West Nile virus meningoencephalitis. Nat. Clin. Pract. Neurol. 2006, 2, 264–275. [Google Scholar] [CrossRef] [PubMed]
- Burden, Z.; Fasen, M.; Judkins, B.; Isache, C. A case of West Nile virus encephalitis accompanied by diabetic ketoacidosis and rhabdomyolysis. IDCases 2019, 15, e00505. [Google Scholar] [CrossRef] [PubMed]
- Sejvar, J.J.; Leis, A.A.; Stokic, D.; Van Gerpen, J.A.; Marfin, A.A.; Webb, R.; Haddad, M.B.; Tierney, B.C.; Slavinski, S.A.; Polk, J.L.; et al. Acute Flaccid Paralysis and West Nile Virus Infection. Emerg. Infect. Dis. 2003, 9, 788–793. [Google Scholar] [CrossRef] [PubMed]
- Leis, A.A.; Stokic, D.S. Neuromuscular Manifestations of West Nile Virus Infection. Front. Neurol. 2012, 3, 37. [Google Scholar] [CrossRef]
- Bai, F.; Thompson, E.A.; Vig, P.J.S.; Leis, A.A. Current Understanding of West Nile Virus Clinical Manifestations, Immune Responses, Neuroinvasion, and Immunotherapeutic Implications. Pathogens 2019, 8, 193. [Google Scholar] [CrossRef]
- Hadjichristodoulou, C.; Pournaras, S.; Mavrouli, M.; Marka, A.; Tserkezou, P.; Baka, A.; Billinis, C.; Katsioulis, A.; Psaroulaki, A.; Papa, A.; et al. West Nile Virus Seroprevalence in the Greek Population in 2013: A Nationwide Cross-Sectional Survey. PLoS ONE 2015, 10, e0143803. [Google Scholar] [CrossRef]
- Sambri, V.; Capobianchi, M.R.; Cavrini, F.; Charrel, R.; Donoso-Mantke, O.; Escadafal, C.; Franco, L.; Gaibani, P.; Gould, E.A.; Niedrig, M.; et al. Diagnosis of West Nile Virus Human Infections: Overview and Proposal of Diagnostic Protocols Considering the Results of External Quality Assessment Studies. Viruses 2013, 5, 2329–2348. [Google Scholar] [CrossRef] [PubMed]
- Shi, P.-Y.; Wong, S.J. Serologic diagnosis of West Nile virus infection. Expert Rev. Mol. Diagn. 2003, 3, 733–741. [Google Scholar]
- Barzon, L.; Pacenti, M.; Ulbert, S.; Palù, G. Latest developments and challenges in the diagnosis of human West Nile virus infection. Expert Rev. Anti-Infect. Ther. 2015, 13, 327–342. [Google Scholar] [CrossRef] [PubMed]
- Lustig, Y.; Sofer, D.; Bucris, E.D.; Mendelson, E. Surveillance and Diagnosis of West Nile Virus in the Face of Flavivirus Cross-Reactivity. Front. Microbiol. 2018, 9, 2421. [Google Scholar] [CrossRef]
- Shukla, J.; Saxena, D.; Rathinam, S.; Lalitha, P.; Joseph, C.R.; Sharma, S.; Soni, M.; Rao, P.; Parida, M. Molecular detection and characterization of West Nile virus associated with multifocal retinitis in patients from southern India. Int. J. Infect. Dis. 2012, 16, e53–e59. [Google Scholar] [CrossRef] [PubMed]
- Rossetti, M.; Del Grosso, E.; Ranallo, S.; Mariottini, D.; Idili, A.; Bertucci, A.; Porchetta, A. Programmable RNA-based systems for sensing and diagnostic applications. Anal. Bioanal. Chem. 2019, 411, 4293–4302. [Google Scholar] [CrossRef]
- Garst, A.D.; Edwards, A.L.; Batey, R.T. Riboswitches: Structures and Mechanisms. Cold Spring Harb. Perspect. Biol. 2010, 3, a003533. [Google Scholar]
- Liu, C.; Qi, L.S.; Lucks, J.B.; Segall-Shapiro, T.; Wang, D.; Mutalik, V.; Arkin, A. An adaptor from translational to transcriptional control enables predictable assembly of complex regulation. Nat. Methods 2012, 9, 1088–1094. [Google Scholar] [CrossRef]
- Green, A.A.; Silver, P.A.; Collins, J.J.; Yin, P. Toehold Switches: De-Novo-Designed Regulators of Gene Expression. Cell 2014, 159, 925–939. [Google Scholar] [CrossRef]
- Pardee, K.; Green, A.A.; Ferrante, T.; Cameron, D.E.; DaleyKeyser, A.; Yin, P.; Collins, J.J. Paper-Based Synthetic Gene Networks. Cell 2014, 159, 940–954. [Google Scholar] [CrossRef]
- Sayao, A.-L.; Suchowersky, O.; Al-Khathaami, A.; Klassen, B.; Katz, N.R.; Sevick, R.; Tilley, P.; Fox, J.; Patry, D. Calgary Experience with West Nile Virus Neurological Syndrome during the Late Summer of 2003. Can. J. Neurol. Sci. 2004, 31, 194–203. [Google Scholar] [CrossRef] [PubMed]
- Hart, J.; Tillman, G.; Kraut, M.A.; Chiang, H.S.; Strain, J.F.; Li, Y.; Agrawal, A.G.; Jester, P.; Gnann, J.W.; Whitley, R.; et al. West Nile virus neuroinvasive disease: Neurological manifestations and prospective longitudinal outcomes. BMC Infect. Dis. 2014, 14, 248. [Google Scholar] [CrossRef] [PubMed]
- NPHO. Annual Epidemiological Data of WNV in Greece; NPHO: Marousi, Greece, 2021. [Google Scholar]
- European Centre for Disease Prevention and Control. Vector Control Practices and Strategies Against West Nile Virus; ECDC: Solna, Sweden, 2020. [Google Scholar]
- Conway, J.R.; Lex, A.; Gehlenborg, N. UpSetR: An R package for the visualization of intersecting sets and their properties. Bioinformatics 2017, 33, 2938–2940. [Google Scholar] [CrossRef] [PubMed]
- Zadeh, J.N.; Steenberg, C.D.; Bois, J.S.; Wolfe, B.R.; Pierce, M.B.; Khan, A.R.; Dirks, R.M.; Pierce, N.A. NUPACK: Analysis and design of nucleic acid systems. J. Comput. Chem. 2011, 32, 170–173. [Google Scholar] [CrossRef] [PubMed]
- Pardee, K.; Green, A.A.; Takahashi, M.K.; Braff, D.; Lambert, G.; Lee, J.W.; Ferrante, T.; Ma, D.; Donghia, N.; Fan, M.; et al. Rapid, Low-Cost Detection of Zika Virus Using Programmable Biomolecular Components. Cell 2016, 165, 1255–1266. [Google Scholar] [CrossRef] [PubMed]
- Mirzaian, E.; Durham, M.J.; Hess, K.; Goad, J.A. Mosquito-Borne Illnesses in Travelers: A Review of Risk and Prevention. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2010, 30, 1031–1043. [Google Scholar] [CrossRef]
- Caraballo, H.; King, K. Emergency department management of mosquito-borne illness: Malaria, dengue, and West Nile virus. Emerg. Med. Pract. 2014, 16, 1–23. [Google Scholar]
- May, F.J.; Davis, C.T.; Tesh, R.B. Barrett AD Phylogeography of West Nile virus: From the cradle of evolution in Africa to Eurasia, Australia, and the Americas. J. Virol. 2011, 85, 2964–2974. [Google Scholar] [CrossRef]
- Platonov, A. Outbreak of West Nile Virus Infection, Volgograd Region, Russia, 1999. Emerg. Infect. Dis. 2001, 7, 128–132. [Google Scholar] [CrossRef]
- Tsai, T.F.; Popovici, F.; Cernescu, C.; Campbell, G.L.; Nedelcu, N.I. West Nile encephalitis epidemic in southeastern Romania. Lancet 1998, 352, 767–771. [Google Scholar] [CrossRef]
- Ronca, S.E.; Ruff, J.; Murray, K. A 20-year historical review of West Nile virus since its initial emergence in North America: Has West Nile virus become a neglected tropical disease? PLoS Negl. Trop. Dis. 2021, 15, e0009190. [Google Scholar] [CrossRef] [PubMed]
- Kraftcheck, D.J.; Paterson, J.M.; Alton, B.; Cheung, W.; Goebel, C.; Kennedy, W.; Kraftcheck, D.; Levy, R.; Neimanis, I.; Ohayon, J.; et al. Ontario’s 2003 West Nile virus public education campaign: Was anybody listening? Can. Commun. Dis. Rep. 2003, 29, 189–194. [Google Scholar]
- Saad, M.; Youssef, S.; Kirschke, D.; Shubair, M.; Haddadin, D.; Myers, J.; Moorman, J. Acute flaccid paralysis: The spectrum of a newly recognized complication of West Nile virus infection. J. Infect. 2005, 51, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Dupuis, A.P., 2nd; Marra, P.; Kramer, L. Serologic evidence of West Nile virus transmission, Jamaica, West Indies. Emerg. Infect. Dis. 2003, 9, 860–863. [Google Scholar] [CrossRef]
- Quirin, R.; Salas, M.; Zientara, S.; Zeller, H.; Labie, J.; Murri, S.; Lefrançois, T.; Petitclerc, M.; Martinez, D. West Nile virus, Guadeloupe. Emerg. Infect. Dis. 2004, 10, 706–708. [Google Scholar] [CrossRef]
- Estrada-Franco, J.G.; Navarro-Lopez, R.; Beasley, D.W.; Coffey, L.; Carrara, A.-S.; Da Rosa, A.T.; Clements, T.; Wang, E.; Ludwig, G.V.; Cortes, A.C.; et al. West Nile Virus in Mexico: Evidence of Widespread Circulation since July 2002. Emerg. Infect. Dis. 2003, 9, 1604–1607. [Google Scholar] [CrossRef] [PubMed]
- Morales-Betoulle, M.E.; Morales, H.; Blitvich, B.J.; Powers, A.M.; Davis, E.A.; Klein, R.; Cordón-Rosales, C. West Nile Virus in Horses, Guatemala. Emerg. Infect. Dis. 2006, 12, 1038–1039. [Google Scholar] [CrossRef] [PubMed]
- Cruz, L.; Cardenas, V.; Abarca, M.; Rodriguez, T.; Reyna, R.F.; Serpas, M.V.; Fontaine, R.E.; Beasley, D.W.C.; Rosa, A.P.A.T.D.; Weaver, S.C.; et al. Short report: Serological evidence of West Nile virus activity in El Salvador. Am. J. Trop. Med. Hyg. 2005, 72, 612–615. [Google Scholar] [CrossRef]
- Kilpatrick, A.M.; Meola, M.A.; Moudy, R.M.; Kramer, L.D. Temperature, Viral Genetics, and the Transmission of West Nile Virus by Culex pipiens Mosquitoes. PLOS Pathog. 2008, 4, e1000092. [Google Scholar] [CrossRef]
- Fall, G.; Di Paola, N.; Faye, M.; Dia, M.; de Melo Freire, C.C.; Loucoubar, C.; de Andrade Zanotto, P.M.; Faye, O.; Sall, A.A. Biological and phylogenetic characteristics of West African lineages of West Nile virus. PLoS Negl. Trop. Dis. 2017, 11, e0006078. [Google Scholar] [CrossRef]
- Añez, G.; Grinev, A.; Chancey, C.; Ball, C.; Akolkar, N.; Land, K.J.; Winkelman, V.; Stramer, S.L.; Kramer, L.D.; Rios, M. Evolutionary Dynamics of West Nile Virus in the United States, 1999–2011: Phylogeny, Selection Pressure and Evolutionary Time-Scale Analysis. PLoS Negl. Trop. Dis. 2013, 7, e2245. [Google Scholar] [CrossRef] [PubMed]
- Bakonyi, T.; Ivanics, É.; Erdélyi, K.; Ursu, K.; Ferenczi, E.; Weissenböck, H.; Nowotny, N. Lineage 1 and 2 Strains of Encephalitic West Nile Virus, Central Europe. Emerg. Infect. Dis. 2006, 12, 618–623. [Google Scholar] [CrossRef] [PubMed]
- Sambri, V.; Capobianchi, M.; Charrel, R.; Fyodorova, M.; Gaibani, P.; Gould, E.; Niedrig, M.; Papa, A.; Pierro, A.; Rossini, G.; et al. West Nile virus in Europe: Emergence, epidemiology, diagnosis, treatment, and prevention. Clin. Microbiol. Infect. 2013, 19, 699–704. [Google Scholar] [CrossRef] [PubMed]
- McMullen, A.R.; Albayrak, H.; May, F.J.; Davis, C.T.; Beasley, D.W.C.; Barrett, A.D.T. Molecular evolution of lineage 2 West Nile virus. J. Gen. Virol. 2013, 94 Pt 2, 318–325. [Google Scholar] [CrossRef]
- McLean, R.G.; Ubico, S.R.; Bourne, D.; Komar, N. West Nile Virus in Livestock and Wildlife. Curr. Top. Microbiol. Immunol. 2002, 267, 271–308. [Google Scholar]
- Zehender, G.; Ebranati, E.; Bernini, F.; Presti, A.L.; Rezza, G.; Delogu, M.; Galli, M.; Ciccozzi, M. Phylogeography and epidemiological history of West Nile virus genotype 1a in Europe and the Mediterranean basin. Infect. Genet. Evol. 2011, 11, 646–653. [Google Scholar] [CrossRef]
- Burt, F.J.; Grobbelaar, A.A.; Leman, P.A.; Anthony, F.S.; Gibson, G.V.; Swanepoel, R. Phylogenetic Relationships of Southern African West Nile Virus Isolates. Emerg. Infect. Dis. 2002, 8, 820–826. [Google Scholar] [CrossRef]
- Pacenti, M.; Sinigaglia, A.; Franchin, E.; Pagni, S.; Lavezzo, E.; Montarsi, F.; Capelli, G.; Barzon, L. Human West Nile Virus Lineage 2 Infection: Epidemiological, Clinical, and Virological Findings. Viruses 2020, 12, 458. [Google Scholar] [CrossRef]
- Papa, A.; Danis, K.; Baka, A.; Dougas, G.; Lytras, T.; Theocharopoulos, G.; Chrysagis, D.; Vassiliadou, E.; Kamaria, F.; Liona, A.; et al. Ongoing outbreak of West Nile virus infections in humans in Greece, July–August 2010. Eurosurveillance 2010, 15, 19644. [Google Scholar] [CrossRef]
- Pervanidou, D.; Vakali, A.; Georgakopoulou, T.; Panagiotopoulos, T.; Patsoula, E.; Koliopoulos, G.; Politis, C.; Stamoulis, K.; Gavana, E.; Pappa, S.; et al. West Nile virus in humans, Greece, 2018: The largest seasonal number of cases, 9 years after its emergence in the country. Eurosurveillance 2020, 25, 1900543. [Google Scholar] [CrossRef]
- Coroian, M.; Petrić, M.; Pistol, A.; Sirbu, A.; Domșa, C.; Mihalca, A.D. Human West Nile Meningo-Encephalitis in a Highly Endemic Country: A Complex Epidemiological Analysis on Biotic and Abiotic Risk Factors. Int. J. Environ. Res. Public Health 2020, 17, 8250. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Duan, R.; Duan, Z.; Huang, F.; Xia, F. Fluorescence Signal Amplification Strategies Based on DNA Nanotechnology for miRNA Detection. Chem. Res. Chin. Univ. 2020, 36, 194–202. [Google Scholar] [CrossRef]
- Zheng, J.; Ji, X.; Du, M.; Tian, S.; He, Z. Rational construction of a DNA nanomachine for HIV nucleic acid ultrasensitive sensing. Nanoscale 2018, 10, 17206–17211. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Tang, Y.; Jiang, Y.S.; Bhadra, S.; Du, Y.; Ellington, A.D.; Li, B. Strand-Exchange Nucleic Acid Circuitry with Enhanced Thermo-and Structure- Buffering Abilities Turns Gene Diagnostics Ultra-Reliable and Environmental Compatible. Sci. Rep. 2016, 6, 36605. [Google Scholar] [CrossRef]
- Chau, T.H.T.; Mai, D.H.A.; Pham, D.N.; Le, H.T.Q.; Lee, E.Y. Developments of Riboswitches and Toehold Switches for Molecular Detection—Biosensing and Molecular Diagnostics. Int. J. Mol. Sci. 2020, 21, 3192. [Google Scholar] [CrossRef]
- Aghdam, E.M.; Hejazi, M.S.; Barzegar, A. Riboswitches: From living biosensors to novel targets of antibiotics. Gene 2016, 592, 244–259. [Google Scholar] [CrossRef]
- Park, S.; Lee, J. Detection of Coronaviruses Using RNA Toehold Switch Sensors. Int. J. Mol. Sci. 2021, 22, 1772. [Google Scholar] [CrossRef]
- Cao, M.; Sun, Q.; Zhang, X.; Ma, Y.; Wang, J. Detection and differentiation of respiratory syncytial virus subgroups A and B with colorimetric toehold switch sensors in a paper-based cell-free system. Biosens. Bioelectron. 2021, 182, 113173. [Google Scholar] [CrossRef]
- Ma, D.; Shen, L.; Wu, K.; Diehnelt, C.W.; Green, A.A. Low-cost detection of norovirus using paper-based cell-free systems and synbody-based viral enrichment. Synth. Biol. 2018, 3, ysy018. [Google Scholar] [CrossRef]
- Arce, A.; Guzman Chavez, F.; Gandini, C.; Puig, J.; Matute, T.; Haseloff, J.; Dalchau, N.; Molloy, J.; Pardee, K.; Federici, F. Decentralizing Cell-Free RNA Sensing with the Use of Low-Cost Cell Extracts. Front. Bioeng. Biotechnol. 2021, 9, 727584. [Google Scholar] [CrossRef]
- Cao, Z.; Wang, H.; Wang, L.; Li, L.; Jin, H.; Xu, C.; Feng, N.; Wang, J.; Li, Q.; Zhao, Y.; et al. Visual Detection of West Nile Virus Using Reverse Transcription Loop-Mediated Isothermal Amplification Combined with a Vertical Flow Visualization Strip. Front. Microbiol. 2016, 7, 554. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Tjaden, N.B.; Jaeschke, A.; Lühken, R.; Ziegler, U.; Thomas, S.M.; Beierkuhnlein, C. Evaluating the risk for Usutu virus circulation in Europe: Comparison of environmental niche models and epidemiological models. Int. J. Health Geogr. 2018, 17, 35. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giakountis, A.; Stylianidou, Z.; Zaka, A.; Pappa, S.; Papa, A.; Hadjichristodoulou, C.; Mathiopoulos, K.D. Development of Toehold Switches as a Novel Ribodiagnostic Method for West Nile Virus. Genes 2023, 14, 237. https://doi.org/10.3390/genes14010237
Giakountis A, Stylianidou Z, Zaka A, Pappa S, Papa A, Hadjichristodoulou C, Mathiopoulos KD. Development of Toehold Switches as a Novel Ribodiagnostic Method for West Nile Virus. Genes. 2023; 14(1):237. https://doi.org/10.3390/genes14010237
Chicago/Turabian StyleGiakountis, Antonis, Zoe Stylianidou, Anxhela Zaka, Styliani Pappa, Anna Papa, Christos Hadjichristodoulou, and Kostas D. Mathiopoulos. 2023. "Development of Toehold Switches as a Novel Ribodiagnostic Method for West Nile Virus" Genes 14, no. 1: 237. https://doi.org/10.3390/genes14010237
APA StyleGiakountis, A., Stylianidou, Z., Zaka, A., Pappa, S., Papa, A., Hadjichristodoulou, C., & Mathiopoulos, K. D. (2023). Development of Toehold Switches as a Novel Ribodiagnostic Method for West Nile Virus. Genes, 14(1), 237. https://doi.org/10.3390/genes14010237