Pharmacogenomics of Dementia: Personalizing the Treatment of Cognitive and Neuropsychiatric Symptoms
Abstract
:1. Introduction
2. Dementia
3. Genetics of Dementia
3.1. Alzheimer’s Disease
3.2. Vascular Dementia
3.3. Frontotemporal Dementia
3.4. Lewy Body Dementia
4. Therapeutic Strategies in Dementia
5. Pharmacogenomics of Cognitive Symptoms: Conventional Anti-Dementia Drugs
Drug Name | Drug Class | Associated Gene | Pharmacogenetics Finding | References |
---|---|---|---|---|
Donepezil | Acetylcholin- esterase inhibitor | CYP2D6 | Functional alleles (rs1080985, rs1065852) affect variability in donepezil efficacy | [197,202,205,206,207] |
CYP3A4/5 | Lack of association with donepezil pharmacokinetic parameters | [202,209,210] | ||
APOE | Carriers of high-risk APOE ε4 allele have better response to donepezil treatment | [212,213] | ||
No association between APOE and treatment efficacy | [206,207,215,216] | |||
Better treatment response in APOE ε3 allele carriers | [217] | |||
Combined APOE and CYP2D6 influence on donepezil treatment efficacy | [217,218] | |||
ABCB1 | No association between efficacy of donepezil and ABCB1 polymorphisms | [202,207,209] | ||
ABCA1 | ABCA1 rs2230806 influences donepezil treatment response. Combined effect of APOE and ABCA1 genetic variants | [219] | ||
ESR1 | Effect of ESR1 variants (rs2234693, rs9340799) in donepezil-treated patients | [221] | ||
BCHE | BCHE rs1803274 (K-variant) is associated with donepezil poor treatment response | [224] | ||
No relationship between K-variant or rs1355534 polymorphism and donepezil efficacy | [225,226] | |||
Carriers of APOE ε4 and BCHE K-variant have better response to donepezil therapy | [227] | |||
ChAT | Polymorphisms rs2177370, rs3793790 and rs3810950 associated with AChEI efficacy | [228,229,230] | ||
No association with treatment response | [226] | |||
CHRNA7 | Association between CHRNA7 variants (rs6494223, rs8024987, rs885071) and donepezil efficacy | [231,232] | ||
No association between rs8024987 and treatment response | [233] | |||
PON-1 | PON-1 rs662 associated with AChI treatment (donepezil and rivastigmine) | [236] | ||
Rivastigmine | Acetylcholin- esterase inhibitor | APOE | Better efficacy of combined rivastigmine and memantine therapy in APOE ε4 carriers | [237] |
No association between APOE ε4 allele and treatment response | [238] | |||
Better improvement in non-carriers of APOE ε4 in rivastigmine and placebo group | [239] | |||
BCHE | BCHE K-variant affects treatment response, especially in presence of APOE ε4 allele | [240] | ||
PSEN2 | Best treatment response in patients with PSEN2 +A/−A genotype, alone or in combination with APOE ε3/ε3 or APOE ε4/ε4 genotype | [242] | ||
UGT2B7 | Poor metabolizers with UGT2B7 variant (UGT2B7*2, rs7439366) had poor clinical response | [245] | ||
Galantamine | Acetylcholin- esterase inhibitor | CYP2D6 | Better treatment response and fewer adverse effects in CYP2D6*10 rs1065852 carriers | [210] |
CHRNA7 | Better treatment response in carriers of minor allele variants of rs8024987 or rs6494223 polymorphism | [246] | ||
Memantine | NMDA receptor antagonist | NR1I2 | Memantine clearance was 16% slower in carriers of at least one rs1523130 T allele (CT and TT genotype) | [248] |
CYP2D6 | No significant association with memantine pharmacokinetics or adverse drug reactions | [196] | ||
CYP2C9 | ||||
CYP2A6 | ||||
ABCB1 |
6. Pharmacogenomics of Cognitive Symptoms: Multifactorial Treatments
7. Pharmacogenomics of Non-Cognitive Symptoms: Antipsychotic, Antidepressant, and Antiepileptic Drugs
Drug Name | Drug Class | Associated Gene | Pharmacogenetics Finding | References |
---|---|---|---|---|
Aripiprazole, Brexiprazole, Risperidone | Atypical antipsychotic | CYP2C19, CYP2D6 | Treatment discontinuation associated with PM/UM enzymatic activity | [267] |
Haloperidol, Pimo-zide, Zuclopenthixol | Typical antipsychotic | |||
Various antipsychotics | SLC6A4, SLC6A2, ABCB1, 5-HTTLPR | Variants influence antipsychotic metabolism | [8] | |
Various antipsychotics | DRD2 | Higher response to antipsychotics in Ins/Ins (−141C Ins/Ins), and A1 carriers (Taq 1 A) | [268] | |
Clozapine | Atypical antipsychotic | DRD3 | Ser allele of Ser9Gly associated with better clozapine response | [268] |
Clozapine | Atypical antipsychotic | DRD3 | Gly allele associated with higher risk for tardive dyskinesia | [268] |
Clozapine | Atypical antipsychotic | SLC6A4, SLC6A3 | Associated with clozapine response | [8,266] |
Various antipsychotics | DRD2, HTR2A, GRIK3, Val158Met, SLC6A4, VNTR, ADORA1, ADORA3, ADORA2A, COMT | Associated with antipsychotic-induced extrapyramidal symptoms | [8,266] | |
Various antipsychotics | HTR2A, HTR2C, DRD2, DRD3, DPP6, SOD2, CYP2D6, CNR1, HSPG2 | Associated with antipsychotic-induced tardive dyskinesia | [8] | |
Various antipsychotics | HTR2C, LEP, LEPR | Associated with antipsychotic-induced metabolic syndrome | [8] | |
Various antipsychotics | DRD2, LEP, BDNF, LPL, TPH | Associated with antipsychotic-induced other symptoms | [8] | |
Clozapine | Atypical antipsychotic | COMT | Better clozapine response in Val108Met Met/Met homozygotes | [268] |
Clozapine, Olanzapine, Risperidone | Atypical antipsychotic | 5HTR2A | Variants associated with better response to clozapine (A/A, A-1438G; His allele, His452Tyr), olanzapine (A/A, A-1438G), or risperidone (C/C, T102C) | [268] |
Clozapine Risperidone | Atypical antipsychotic | SLC6A4 | Long allele associated with better risperidone and clozapine response | [268] |
Various antipsychotics | CYP2D6, ACE, AGT, APP, MAPT, APOE, PSEN1, PSEN2, FOS, PRNP | PM or UM enzymatic activity influence therapeutic response | [265] | |
Amitriptyline, Clomipramine, Doxepin, Imipramine, Trimipramine | Tricyclic antidepressant | CYP2C19, CYP2D6 | Treatment discontinuation associated with PM/UM enzymatic activity | [267] |
Citalopram, Escitalopram, Fluvoxamine, Paroxetine, Sertraline | Selective serotonin reuptake inhibitor | |||
Various antidepressants | ABCB1, SLC6A2, SLC6A4, SCN5A, KCNH2, KCNE1, KCNE2, KCNQ1 | Variants influence antidepressant metabolism | [8] | |
Paroxetine, Citalopram, Fluoxetine | Selective serotonin reuptake inhibitor | SLC6A4 | Long allele associated with better response to citalopram, paroxetine, fluoxetine | [268] |
Various antidepressants | CYP2D6, CYP2C19 | Variants associated with antidepressant-induced nightmares, anxiety, panic attacks | [8] | |
Valproic acid | Fatty acids | GRIN2B | 200T>G allele carriers require lower dose of valproic acid | [266] |
Valproic acid | Fatty acids | UGT1A6 | Carriers of 541A>G, 552A>C, and 19T>G alleles need higher dose of valproic acid | [266] |
Carbamezapine | Carboxamides | SCN1A, ABCB1, UGT2B7, ABCC2, CYP1A2, HNF4A, CYP3A5 | Associated with altered carbamazepine metabolism | [266] |
Phenytoin | Hydantoins | SCN1A, CYP2C9, CYP2C19, ABCB1 | Variants influence phenytoin metabolism | [266] |
Clobazam | Benzodiazepine | CYP2C19, CYP3A4, CYP3A5 | Some genotype carriers prone to adverse clobazam reactions | [8] |
8. Pharmacogenomics of Non-Cognitive Symptoms: Anxiolytic, Hypnotic, and Sedative Drugs
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Thummel, K.E.; Lin, Y.S. Sources of Interindividual Variability. Methods Mol. Biol. 2014, 1113, 363–415. [Google Scholar] [CrossRef]
- Gupta, M.; Kaur, H.; Grover, S.; Kukreti, R. Pharmacogenomics and Treatment for Dementia Induced by Alzheimer’s Disease. Pharmacogenomics 2008, 9, 895–903. [Google Scholar] [CrossRef] [PubMed]
- Selkoe, D.J.; Podlisny, M.B. Deciphering the Genetic Basis of Alzheimer’s Disease. Annu. Rev. Genom. Hum. Genet. 2002, 3, 67–99. [Google Scholar] [CrossRef]
- Cacabelos, R. Pharmacogenomics and Therapeutic Prospects in Dementia. Eur. Arch. Psychiatry Clin. Neurosci. 2008, 258, 28–47. [Google Scholar] [CrossRef] [PubMed]
- Cacabelos, R.; Carril, J.C.; Cacabelos, P.; Teijido, O.; Goldgaber, D. Pharmacogenomics of Alzheimer’s Disease: Genetic Determinants of Phenotypic Variation and Therapeutic Outcome. J. Genom. Med. Pharmacogenom. 2016, 1, 151–209. [Google Scholar]
- Arvanitakis, Z.; Shah, R.C.; Bennett, D.A. Diagnosis and Management of Dementia: Review. JAMA 2019, 322, 1589–1599. [Google Scholar] [CrossRef]
- Duong, S.; Patel, T.; Chang, F. Dementia: What Pharmacists Need to Know. Can. Pharm. J. 2017, 150, 118–129. [Google Scholar] [CrossRef] [PubMed]
- Cacabelos, R. Pharmacogenomics of Cognitive Dysfunction and Neuropsychiatric Disorders in Dementia. Int. J. Mol. Sci. 2020, 21, 3059. [Google Scholar] [CrossRef]
- Nichols, E.; Steinmetz, J.D.; Vollset, S.E.; Fukutaki, K.; Chalek, J.; Abd-Allah, F.; Abdoli, A.; Abualhasan, A.; Abu-Gharbieh, E.; Akram, T.T.; et al. Estimation of the Global Prevalence of Dementia in 2019 and Forecasted Prevalence in 2050: An Analysis for the Global Burden of Disease Study 2019. Lancet Public Health 2022, 7, e105–e125. [Google Scholar] [CrossRef] [PubMed]
- Cacabelos, R.; Martínez, R.; Fernández-Novoa, L.; Carril, J.C.; Lombardi, V.; Carrera, I.; Corzo, L.; Tellado, I.; Leszek, J.; McKay, A.; et al. Genomics of Dementia: APOE- and CYP2D6-Related Pharmacogenetics. Int. J. Alzheimer’s Dis. 2012, 2012, 518901. [Google Scholar] [CrossRef]
- Müller, U.; Winter, P.; Graeber, M.B. A Presenilin 1 Mutation in the First Case of Alzheimer’s Disease. Lancet Neurol. 2013, 12, 129–130. [Google Scholar] [CrossRef] [PubMed]
- Lane, C.A.; Hardy, J.; Schott, J.M. Alzheimer’s Disease. Eur. J. Neurol. 2018, 25, 59–70. [Google Scholar] [CrossRef]
- Armstrong, R.A. Risk Factors for Alzheimer’s Disease. Folia Neuropathol. 2019, 57, 87–105. [Google Scholar] [CrossRef]
- Karch, C.M.; Goate, A.M. Alzheimer’s Disease Risk Genes and Mechanisms of Disease Pathogenesis. Biol. Psychiatry 2015, 77, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Jansen, I.E.; Savage, J.E.; Watanabe, K.; Bryois, J.; Williams, D.M.; Steinberg, S.; Sealock, J.; Karlsson, I.K.; Hägg, S.; Athanasiu, L.; et al. Genome-Wide Meta-Analysis Identifies New Loci and Functional Pathways Influencing Alzheimer’s Disease Risk. Nat. Genet. 2019, 51, 404–413. [Google Scholar] [CrossRef]
- Sheppard, O.; Coleman, M. Alzheimer’s Disease: Etiology, Neuropathology and Pathogenesis. In Alzheimer’s Disease: Drug Discovery; Exon Publications: Brisbane City, QLD, Australia, 2020; pp. 1–22. [Google Scholar]
- Hugo, J.; Ganguli, M. Dementia and Cognitive Impairment. Clin. Geriatr. Med. 2014, 30, 421–442. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders; American Psychiatric Association: Washington, DC, USA, 2013; ISBN 0-89042-555-8. [Google Scholar]
- Jellinger, K.A. Morphologic Diagnosis of “Vascular Dementia”—A Critical Update. J. Neurol. Sci. 2008, 270, 1–12. [Google Scholar] [CrossRef]
- Chabriat, H.; Joutel, A.; Dichgans, M.; Tournier-Lasserve, E.; Bousser, M.-G. CADASIL. Lancet Neurol. 2009, 8, 643–653. [Google Scholar] [CrossRef]
- Smith, E.E. Clinical Presentations and Epidemiology of Vascular Dementia. Clin. Sci. 2017, 131, 1059–1068. [Google Scholar] [CrossRef]
- Sneed, J.R.; Culang-Reinlieb, M.E. The Vascular Depression Hypothesis: An Update. Am. J. Geriatr. Psychiatry 2011, 19, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Jellinger, K.A.; Korczyn, A.D. Are Dementia with Lewy Bodies and Parkinson’s Disease Dementia the Same Disease? BMC Med. 2018, 16, 34. [Google Scholar] [CrossRef]
- McKeith, I.G.; Dickson, D.W.; Lowe, J.; Emre, M.; O’Brien, J.T.; Feldman, H.; Cummings, J.; Duda, J.E.; Lippa, C.; Perry, E.K.; et al. Diagnosis and Management of Dementia with Lewy Bodies: Third Report of the DLB Consortium. Neurology 2005, 65, 1863–1872. [Google Scholar] [CrossRef]
- Haider, A.; Spurling, B.C.; Sánchez-Manso, J.C. Lewy Body Dementia. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Shpilyukova, Y.A.; Fedotova, E.Y.; Illarioshkin, S.N. Genetic Diversity in Frontotemporal Dementia. Mol. Biol. 2020, 54, 17–28. [Google Scholar] [CrossRef]
- Onyike, C.U.; Diehl-Schmid, J. The Epidemiology of Frontotemporal Dementia. Int. Rev. Psychiatry 2013, 25, 130–137. [Google Scholar] [CrossRef]
- Borroni, B.; Benussi, A.; Premi, E.; Alberici, A.; Marcello, E.; Gardoni, F.; Di Luca, M.; Padovani, A. Biological, Neuroimaging, and Neurophysiological Markers in Frontotemporal Dementia: Three Faces of the Same Coin. J. Alzheimer’s Dis. 2018, 62, 1113–1123. [Google Scholar] [CrossRef]
- Bretag-Norris, R.; Gallur, L.; Flynn, P. Heterogeneity in the Psychiatric Presentation of Behavioural Variant Frontotemporal Dementia (BvFTD). Australas. Psychiatry 2019, 27, 491–495. [Google Scholar] [CrossRef]
- Khan, I.; De Jesus, O. Frontotemporal Lobe Dementia. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Rabinovici, G.D.; Miller, B.L. Frontotemporal Lobar Degeneration. CNS Drugs 2010, 24, 375–398. [Google Scholar] [CrossRef] [PubMed]
- Samra, K.; MacDougall, A.M.; Bouzigues, A.; Bocchetta, M.; Cash, D.M.; Greaves, C.V.; Convery, R.S.; van Swieten, J.C.; Seelaar, H.; Jiskoot, L.; et al. Language Impairment in the Genetic Forms of Behavioural Variant Frontotemporal Dementia. J. Neurol. 2023, 270, 1976–1988. [Google Scholar] [CrossRef] [PubMed]
- Loy, C.T.; Schofield, P.R.; Turner, A.M.; Kwok, J.B.J. Genetics of Dementia. Lancet 2014, 383, 828–840. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, L.S.; Schellenberg, G.; Lee, W.P. The Role of Structural Variations in Alzheimer’s Disease and Other Neurodegenerative Diseases. Front. Aging Neurosci. 2023, 14, 1073905. [Google Scholar] [CrossRef] [PubMed]
- Nikolac Perkovic, M.; Videtic Paska, A.; Konjevod, M.; Kouter, K.; Svob Strac, D.; Nedic Erjavec, G.; Pivac, N. Epigenetics of Alzheimer’s Disease. Biomolecules 2021, 11, 195. [Google Scholar] [CrossRef] [PubMed]
- Kamboh, M.I. Genomics and Functional Genomics of Alzheimer’s Disease. Neurotherapeutics 2022, 19, 152–172. [Google Scholar] [CrossRef]
- Gallagher, M.D.; Chen-Plotkin, A.S. The Post-GWAS Era: From Association to Function. Am. J. Hum. Genet. 2018, 102, 717–730. [Google Scholar] [CrossRef]
- Cooper, Y.A.; Teyssier, N.; Dräger, N.M.; Guo, Q.; Davis, J.E.; Sattler, S.M.; Yang, Z.; Patel, A.; Wu, S.; Kosuri, S.; et al. Functional Regulatory Variants Implicate Distinct Transcriptional Networks in Dementia. Science 2022, 377, eabi8654. [Google Scholar] [CrossRef]
- Wingo, T.S.; Lah, J.J.; Levey, A.I.; Cutler, D.J. Autosomal Recessive Causes Likely in Early-Onset Alzheimer Disease. Arch. Neurol. 2012, 69, 59–64. [Google Scholar] [CrossRef]
- Gatz, M.; Reynolds, C.A.; Fratiglioni, L.; Johansson, B.; Mortimer, J.A.; Berg, S.; Fiske, A.; Pedersen, N.L. Role of Genes and Environments for Explaining Alzheimer Disease. Arch. Gen. Psychiatry 2006, 63, 168–174. [Google Scholar] [CrossRef]
- De Strooper, B.; Vassar, R.; Golde, T. The Secretases: Enzymes with Therapeutic Potential in Alzheimer Disease. Nat. Rev. Neurol. 2010, 6, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Jarmolowicz, A.I.; Chen, H.Y.; Panegyres, P.K. The Patterns of Inheritance in Early-Onset Dementia: Alzheimer’s Disease and Frontotemporal Dementia. Am. J. Alzheimer’s Dis. Other Demen. 2015, 30, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Kamboh, M.I. Apolipoprotein E Polymorphism and Susceptibility to Alzheimer’s Disease. Hum. Biol. 1995, 67, 195–215. [Google Scholar] [PubMed]
- Long, J.M.; Holtzman, D.M. Alzheimer Disease: An Update on Pathobiology and Treatment Strategies. Cell 2019, 179, 312–339. [Google Scholar] [CrossRef]
- Lumsden, A.L.; Mulugeta, A.; Zhou, A.; Hyppönen, E. Apolipoprotein E (APOE) Genotype-Associated Disease Risks: A Phenome-Wide, Registry-Based, Case-Control Study Utilising the UK Biobank. EBioMedicine 2020, 59, 102954. [Google Scholar] [CrossRef]
- Mahley, R.W. Apolipoprotein E: From Cardiovascular Disease to Neurodegenerative Disorders. J. Mol. Med. 2016, 94, 739–746. [Google Scholar] [CrossRef]
- Medway, C.W.; Abdul-Hay, S.; Mims, T.; Ma, L.; Bisceglio, G.; Zou, F.; Pankratz, S.; Sando, S.B.; Aasly, J.O.; Barcikowska, M.; et al. ApoE Variant p.V236E Is Associated with Markedly Reduced Risk of Alzheimer’s Disease. Mol. Neurodegener. 2014, 9, 11. [Google Scholar] [CrossRef]
- Gerring, Z.F.; Gamazon, E.R.; White, A.; Derks, E.M. Integrative Network-Based Analysis Reveals Gene Networks and Novel Drug Repositioning Candidates for Alzheimer Disease. Neurol. Genet. 2021, 7, e622. [Google Scholar] [CrossRef]
- Alexi, N.; Inge, R.H.; Nicole, G.C.; Johannes, C.M.S.; Miao, Y.; Rong, H.; Claudia, Z.H.; Monique, P.; Jiayang, X.; Yin, W.; et al. Brain Cell Type—Specific Enhancer—Promoter Interactome Maps and Disease-Risk Association. Science 2019, 366, 1134–1139. [Google Scholar] [CrossRef]
- Jones, L.; Lambert, J.C.; Wang, L.S.; Choi, S.H.; Harold, D.; Vedernikov, A.; Escott-Price, V.; Stone, T.; Richards, A.; Bellenguez, C.; et al. Convergent Genetic and Expression Data Implicate Immunity in Alzheimer’s Disease. Alzheimer’s Dement. 2015, 11, 658–671. [Google Scholar] [CrossRef]
- Vialle, R.A.; de Paiva Lopes, K.; Bennett, D.A.; Crary, J.F.; Raj, T. Integrating Whole-Genome Sequencing with Multi-Omic Data Reveals the Impact of Structural Variants on Gene Regulation in the Human Brain. Nat. Neurosci. 2022, 25, 504–514. [Google Scholar] [CrossRef] [PubMed]
- Ming, C.; Wang, M.; Wang, Q.; Neff, R.; Wang, E.; Shen, Q.; Reddy, J.S.; Wang, X.; Allen, M.; Ertekin-Taner, N.; et al. Whole Genome Sequencing–Based Copy Number Variations Reveal Novel Pathways and Targets in Alzheimer’s Disease. Alzheimer’s Dement. 2022, 18, 1846–1867. [Google Scholar] [CrossRef] [PubMed]
- Szigeti, K.; Lal, D.; Li, Y.; Doody, R.S.; Wilhelmsen, K.; Yan, L.; Liu, S.; Ma, C. Genome-Wide Scan for Copy Number Variation Association with Age at Onset of Alzheimer’s Disease. J. Alzheimer’s Dis. 2013, 33, 517–523. [Google Scholar] [CrossRef] [PubMed]
- Nicolas, G.; Charbonnier, C.; Wallon, D.; Quenez, O.; Bellenguez, C.; Grenier-Boley, B.; Rousseau, S.; Richard, A.C.; Rovelet-Lecrux, A.; Le Guennec, K.; et al. SORL1 Rare Variants: A Major Risk Factor for Familial Early-Onset Alzheimer’s Disease. Mol. Psychiatry 2016, 21, 831–836. [Google Scholar] [CrossRef]
- Lambert, J.C.; Heath, S.; Even, G.; Campion, D.; Sleegers, K.; Hiltunen, M.; Combarros, O.; Zelenika, D.; Bullido, M.J.; Tavernier, B.; et al. Genome-Wide Association Study Identifies Variants at CLU and CR1 Associated with Alzheimer’s Disease. Nat. Genet. 2009, 41, 1094–1099. [Google Scholar] [CrossRef] [PubMed]
- Harold, D.; Abraham, R.; Hollingworth, P.; Sims, R.; Gerrish, A.; Hamshere, M.L.; Pahwa, J.S.; Moskvina, V.; Dowzell, K.; Williams, A.; et al. Genome-Wide Association Study Identifies Variants at CLU and PICALM Associated with Alzheimer’s Disease. Nat. Genet. 2009, 41, 1088–1093. [Google Scholar] [CrossRef] [PubMed]
- Suh, J.; Choi, S.H.; Romano, D.M.; Gannon, M.A.; Lesinski, A.N.; Kim, D.Y.; Tanzi, R.E. ADAM10 Missense Mutations Potentiate β-Amyloid Accumulation by Impairing Prodomain Chaperone Function. Neuron 2013, 80, 385–401. [Google Scholar] [CrossRef]
- Chapuis, J.; Hansmannel, F.; Gistelinck, M.; Mounier, A.; Van Cauwenberghe, C.; Kolen, K.V.; Geller, F.; Sottejeau, Y.; Harold, D.; Dourlen, P.; et al. Increased Expression of BIN1 Mediates Alzheimer Genetic Risk by Modulating Tau Pathology. Mol. Psychiatry 2013, 18, 1225–1234. [Google Scholar] [CrossRef] [PubMed]
- Lambert, E.; Saha, O.; Soares Landeira, B.; Melo de Farias, A.R.; Hermant, X.; Carrier, A.; Pelletier, A.; Gadaut, J.; Davoine, L.; Dupont, C.; et al. The Alzheimer Susceptibility Gene BIN1 Induces Isoform-Dependent Neurotoxicity through Early Endosome Defects. Acta Neuropathol. Commun. 2022, 10, 4. [Google Scholar] [CrossRef]
- Forabosco, P.; Ramasamy, A.; Trabzuni, D.; Walker, R.; Smith, C.; Bras, J.; Levine, A.P.; Hardy, J.; Pocock, J.M.; Guerreiro, R.; et al. Insights into TREM2 Biology by Network Analysis of Human Brain Gene Expression Data. Neurobiol. Aging 2013, 34, 2699–2714. [Google Scholar] [CrossRef]
- Duran, J.; Gruart, A.; Varea, O.; López-Soldado, I.; Delgado-García, J.M.; Guinovart, J.J. Lack of Neuronal Glycogen Impairs Memory Formation and Learning-Dependent Synaptic Plasticity in Mice. Front. Cell. Neurosci. 2019, 13, 374. [Google Scholar] [CrossRef] [PubMed]
- Byman, E.; Nägga, K.; Gustavsson, A.M.; Andersson-Assarsson, J.; Hansson, O.; Sonestedt, E.; Wennström, M. Alpha-Amylase 1A Copy Number Variants and the Association with Memory Performance and Alzheimer’s Dementia. Alzheimer’s Res. Ther. 2020, 12, 158. [Google Scholar] [CrossRef]
- De Roeck, A.; Van Broeckhoven, C.; Sleegers, K. The Role of ABCA7 in Alzheimer’s Disease: Evidence from Genomics, Transcriptomics and Methylomics. Acta Neuropathol. 2019, 138, 201–220. [Google Scholar] [CrossRef] [PubMed]
- Le, L.T.M.; Thompson, J.R.; Dehghani-Ghahnaviyeh, S.; Pant, S.; Dang, P.X.; French, J.B.; Kanikeyo, T.; Tajkhorshid, E.; Alam, A. Cryo-EM Structures of Human ABCA7 Provide Insights into Its Phospholipid Translocation Mechanisms. EMBO J. 2023, 42, e111065. [Google Scholar] [CrossRef]
- Larsen, P.A.; Lutz, M.W.; Hunnicutt, K.E.; Mihovilovic, M.; Saunders, A.M.; Yoder, A.D.; Roses, A.D. The Alu Neurodegeneration Hypothesis: A Primate-Specific Mechanism for Neuronal Transcription Noise, Mitochondrial Dysfunction, and Manifestation of Neurodegenerative Disease. Alzheimer’s Dement. 2017, 13, 828–838. [Google Scholar] [CrossRef]
- Chen, S.; Sarasua, S.M.; Davis, N.J.; DeLuca, J.M.; Boccuto, L.; Thielke, S.M.; Yu, C.E. TOMM40 Genetic Variants Associated with Healthy Aging and Longevity: A Systematic Review. BMC Geriatr. 2022, 22, 667. [Google Scholar] [CrossRef]
- Chacinska, A.; Koehler, C.M.; Milenkovic, D.; Lithgow, T.; Pfanner, N. Importing Mitochondrial Proteins: Machineries and Mechanisms. Cell 2009, 138, 628–644. [Google Scholar] [CrossRef] [PubMed]
- Zeitlow, K.; Charlambous, L.; Ng, I.; Gagrani, S.; Mihovilovic, M.; Luo, S.; Rock, D.L.; Saunders, A.; Roses, A.D.; Gottschalk, W.K. The Biological Foundation of the Genetic Association of TOMM40 with Late-Onset Alzheimer’s Disease. Biochim. Biophys. Acta-Mol. Basis Dis. 2017, 1863, 2973–2986. [Google Scholar] [CrossRef]
- Butcher, N.J.; Horne, M.K.; Mellick, G.D.; Fowler, C.J.; Masters, C.L.; Minchin, R.F. Sulfotransferase 1A3/4 Copy Number Variation Is Associated with Neurodegenerative Disease. Pharmacogenom. J. 2018, 18, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Gorelick, P.B.; Scuteri, A.; Black, S.E.; Decarli, C.; Greenberg, S.M.; Iadecola, C.; Launer, L.J.; Laurent, S.; Lopez, O.L.; Nyenhuis, D.; et al. Vascular Contributions to Cognitive Impairment and Dementia: A Statement for Healthcare Professionals from the American Heart Association/American Stroke Association. Stroke 2011, 42, 2672–2713. [Google Scholar] [CrossRef]
- Ikram, M.A.; Bersano, A.; Manso-Calderón, R.; Jia, J.-P.; Schmidt, H.; Middleton, L.; Nacmias, B.; Siddiqi, S.; Adams, H.H.H. Genetics of Vascular Dementia—Review from the ICVD Working Group. BMC Med. 2017, 15, 48. [Google Scholar] [CrossRef] [PubMed]
- Manso-Calderón, R. Genetics in Vascular Dementia. Future Neurol. 2019, 14, FNL5. [Google Scholar] [CrossRef]
- Rutten, J.W.; Haan, J.; Terwindt, G.M.; van Duinen, S.G.; Boon, E.M.J.; Lesnik Oberstein, S.A.J. Interpretation of NOTCH3 Mutations in the Diagnosis of CADASIL. Expert Rev. Mol. Diagn. 2014, 14, 593–603. [Google Scholar] [CrossRef] [PubMed]
- Fukutake, T. Cerebral Autosomal Recessive Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CARASIL): From Discovery to Gene Identification. J. Stroke Cerebrovasc. Dis. 2011, 20, 85–93. [Google Scholar] [CrossRef]
- Clarke, J.T.R. Narrative Review: Fabry Disease. Ann. Intern. Med. 2007, 146, 425–433. [Google Scholar] [CrossRef] [PubMed]
- Richards, A.; van den Maagdenberg, A.M.J.M.; Jen, J.C.; Kavanagh, D.; Bertram, P.; Spitzer, D.; Liszewski, M.K.; Barilla-Labarca, M.-L.; Terwindt, G.M.; Kasai, Y.; et al. C-Terminal Truncations in Human 3′-5′ DNA Exonuclease TREX1 Cause Autosomal Dominant Retinal Vasculopathy with Cerebral Leukodystrophy. Nat. Genet. 2007, 39, 1068–1070. [Google Scholar] [CrossRef]
- Revesz, T.; Holton, J.L.; Lashley, T.; Plant, G.; Frangione, B.; Rostagno, A.; Ghiso, J. Genetics and Molecular Pathogenesis of Sporadic and Hereditary Cerebral Amyloid Angiopathies. Acta Neuropathol. 2009, 118, 115–130. [Google Scholar] [CrossRef] [PubMed]
- Tan, R.; Traylor, M.; Rutten-Jacobs, L.; Markus, H. New Insights into Mechanisms of Small Vessel Disease Stroke from Genetics. Clin. Sci. 2017, 131, 515–531. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.-H.; Tan, L.; Wang, H.-F.; Tan, M.-S.; Tan, L.; Li, J.-Q.; Xu, W.; Zhu, X.-C.; Jiang, T.; Yu, J.-T. Genetics of Vascular Dementia: Systematic Review and Meta-Analysis. J. Alzheime’rs Dis. 2015, 46, 611–629. [Google Scholar] [CrossRef] [PubMed]
- Helbecque, N.; Cottel, D.; Codron, V.; Berr, C.; Amouyel, P. Paraoxonase 1 Gene Polymorphisms and Dementia in Humans. Neurosci. Lett. 2004, 358, 41–44. [Google Scholar] [CrossRef]
- Liu, H.; Liu, M.; Li, W.; Wu, B.; Zhang, S.H.; Fang, Y.; Wang, Y. Association of ACE I/D Gene Polymorphism with Vascular Dementia: A Meta-Analysis. J. Geriatr. Psychiatry Neurol. 2009, 22, 10–22. [Google Scholar] [CrossRef] [PubMed]
- Woo, J.; Lee, C. Genetic Association of the Gene Encoding RPGRIP1L with Susceptibility to Vascular Dementia. Gene 2012, 499, 160–162. [Google Scholar] [CrossRef]
- Kim, Y.; Kong, M.; Lee, C. Association of Intronic Sequence Variant in the Gene Encoding Spleen Tyrosine Kinase with Susceptibility to Vascular Dementia. World J. Biol. Psychiatry 2013, 14, 220–226. [Google Scholar] [CrossRef]
- Eom, S.; Lee, C. Functions of Intronic Nucleotide Variants in the Gene Encoding Pleckstrin Homology like Domain Beta 2 (PHLDB2) on Susceptibility to Vascular Dementia. World J. Biol. Psychiatry 2013, 14, 227–232. [Google Scholar] [CrossRef]
- Greaves, C.V.; Rohrer, J.D. An Update on Genetic Frontotemporal Dementia. J. Neurol. 2019, 266, 2075–2086. [Google Scholar] [CrossRef]
- See, T.M.; Lamarre, A.K.; Lee, S.E.; Miller, B.L. Genetic Causes of Frontotemporal Degeneration. J. Geriatr. Psychiatry Neurol. 2010, 23, 260–268. [Google Scholar] [CrossRef]
- DeJesus-Hernandez, M.; Mackenzie, I.R.; Boeve, B.F.; Boxer, A.L.; Baker, M.; Rutherford, N.J.; Nicholson, A.M.; Finch, N.C.A.; Flynn, H.; Adamson, J.; et al. Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS. Neuron 2011, 72, 245–256. [Google Scholar] [CrossRef] [PubMed]
- Mahoney, C.J.; Beck, J.; Rohrer, J.D.; Lashley, T.; Mok, K.; Shakespeare, T.; Yeatman, T.; Warrington, E.K.; Schott, J.M.; Fox, N.C.; et al. Frontotemporal Dementia with the C9ORF72 Hexanucleotide Repeat Expansion: Clinical, Neuroanatomical and Neuropathological Features. Brain 2012, 135, 736–750. [Google Scholar] [CrossRef]
- Smeyers, J.; Banchi, E.G.; Latouche, M. C9ORF72: What It Is, What It Does, and Why It Matters. Front. Cell. Neurosci. 2021, 15, 661447. [Google Scholar] [CrossRef]
- Brandt, R.; Hundelt, M.; Shahani, N. Tau Alteration and Neuronal Degeneration in Tauopathies: Mechanisms and Models. Biochim. Biophys. Acta-Mol. Basis Dis. 2005, 1739, 331–354. [Google Scholar] [CrossRef] [PubMed]
- Verpillat, P.; Camuzat, A.; Hannequin, D.; Thomas-Anterion, C.; Puel, M.; Belliard, S.; Dubois, B.; Didic, M.; Michel, B.F.; Lacomblez, L.; et al. Association between the Extended Tau Haplotype and Frontotemporal Dementia. Arch. Neurol. 2002, 59, 935–939. [Google Scholar] [CrossRef] [PubMed]
- Baker, M.; Litvan, I.; Houlden, H.; Adamson, J.; Dickson, D.; Perez-Tur, J.; Hardy, J.; Lynch, T.; Bigio, E.; Hutton, M. Association of an Extended Haplotype in the Tau Gene with Progressive Supranuclear Palsy. Hum. Mol. Genet. 1999, 8, 711–715. [Google Scholar] [CrossRef]
- Yu, C.-E.; Bird, T.D.; Bekris, L.M.; Montine, T.J.; Leverenz, J.B.; Steinbart, E.; Galloway, N.M.; Feldman, H.; Woltjer, R.; Miller, C.A.; et al. The Spectrum of Mutations in Progranulin. Arch. Neurol. 2010, 67, 161–170. [Google Scholar] [CrossRef]
- Baker, M.; Mackenzie, I.R.; Pickering-Brown, S.M.; Gass, J.; Rademakers, R.; Lindholm, C.; Snowden, J.; Adamson, J.; Sadovnick, A.D.; Rollinson, S.; et al. Mutations in Progranulin Cause Tau-Negative Frontotemporal Dementia Linked to Chromosome 17. Nature 2006, 442, 916–919. [Google Scholar] [CrossRef] [PubMed]
- Gass, J.; Cannon, A.; Mackenzie, I.R.; Boeve, B.; Baker, M.; Adamson, J.; Crook, R.; Melquist, S.; Kuntz, K.; Petersen, R.; et al. Mutations in Progranulin Are a Major Cause of Ubiquitin-Positive Frontotemporal Lobar Degeneration. Hum. Mol. Genet. 2006, 15, 2988–3001. [Google Scholar] [CrossRef]
- Gijselinck, I.; Van Mossevelde, S.; Van Der Zee, J.; Sieben, A.; Philtjens, S.; Heeman, B.; Engelborghs, S.; Vandenbulcke, M.; De Baets, G.; Bäumer, V.; et al. Loss of TBK1 Is a Frequent Cause of Frontotemporal Dementia in a Belgian Cohort. Neurology 2015, 85, 2116–2125. [Google Scholar] [CrossRef] [PubMed]
- Da, Q.; Yang, X.; Xu, Y.; Gao, G.; Cheng, G.; Tang, H. TANK-Binding Kinase 1 Attenuates PTAP-Dependent Retroviral Budding through Targeting Endosomal Sorting Complex Required for Transport-I. J. Immunol. 2011, 186, 3023–3030. [Google Scholar] [CrossRef]
- Olszewska, D.A.; Lonergan, R.; Fallon, E.M.; Lynch, T. Genetics of Frontotemporal Dementia. Curr. Neurol. Neurosci. Rep. 2016, 16, 107. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, R.; Grassi, M.; Salvi, E.; Borroni, B.; Palluzzi, F.; Pepe, D.; D’Avila, F.; Padovani, A.; Archetti, S.; Rainero, I.; et al. A Genome-Wide Screening and SNPs-to-Genes Approach to Identify Novel Genetic Risk Factors Associated with Frontotemporal Dementia. Neurobiol. Aging 2015, 36, e13–e26. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Lu, J.; Xia, J.; Wen, M.; Wang, C. Long Non-Coding RNA LOC730100 Enhances Proliferation and Invasion of Glioma Cells through Competitively Sponging MiR-760 from FOXA1 MRNA. Biochem. Biophys. Res. Commun. 2019, 512, 558–563. [Google Scholar] [CrossRef]
- Staples, C.J.; Myers, K.N.; Beveridge, R.D.D.; Patil, A.A.; Lee, A.J.X.; Swanton, C.; Howell, M.; Boulton, S.J.; Collis, S.J. The Centriolar Satellite Protein Cep131 Is Important for Genome Stability. J. Cell Sci. 2012, 125, 4770–4779. [Google Scholar] [CrossRef] [PubMed]
- Borner, G.H.H.; Antrobus, R.; Hirst, J.; Bhumbra, G.S.; Kozik, P.; Jackson, L.P.; Sahlender, D.A.; Robinson, M.S. Multivariate Proteomic Profiling Identifies Novel Accessory Proteins of Coated Vesicles. J. Cell Biol. 2012, 197, 141–160. [Google Scholar] [CrossRef]
- Guerreiro, R.; Escott-Price, V.; Hernandez, D.G.; Kun-Rodrigues, C.; Ross, O.A.; Orme, T.; Neto, J.L.; Carmona, S.; Dehghani, N.; Eicher, J.D.; et al. Heritability and Genetic Variance of Dementia with Lewy Bodies. Neurobiol. Dis. 2019, 127, 492–501. [Google Scholar] [CrossRef]
- Orme, T.; Guerreiro, R.; Bras, J. The Genetics of Dementia with Lewy Bodies: Current Understanding and Future Directions. Curr. Neurol. Neurosci. Rep. 2018, 18, 67. [Google Scholar] [CrossRef]
- Guo, P.; Gong, W.; Li, Y.; Liu, L.; Yan, R.; Wang, Y.; Zhang, Y.; Yuan, Z. Pinpointing Novel Risk Loci for Lewy Body Dementia and the Shared Genetic Etiology with Alzheimer’s Disease and Parkinson’s Disease: A Large-Scale Multi-Trait Association Analysis. BMC Med. 2022, 20, 214. [Google Scholar] [CrossRef] [PubMed]
- Guerreiro, R.; Ross, O.A.; Kun-Rodrigues, C.; Hernandez, D.G.; Orme, T.; Eicher, J.D.; Shepherd, C.E.; Parkkinen, L.; Darwent, L.; Heckman, M.G.; et al. Investigating the Genetic Architecture of Dementia with Lewy Bodies: A Two-Stage Genome-Wide Association Study. Lancet Neurol. 2018, 17, 64–74. [Google Scholar] [CrossRef] [PubMed]
- Corder, E.H.; Saunders, A.M.; Strittmatter, W.J.; Schmechel, D.E.; Gaskell, P.C.; Small, G.W.; Roses, A.D.; Haines, J.L.; Pericak-Vance, M.A. Gene Dose of Apolipoprotein E Type 4 Allele and the Risk of Alzheimer’s Disease in Late Onset Families. Science 1993, 261, 921–923. [Google Scholar] [CrossRef]
- Federoff, M.; Jimenez-Rolando, B.; Nalls, M.A.; Singleton, A.B. A Large Study Reveals No Association between APOE and Parkinson’s Disease. Neurobiol. Dis. 2012, 46, 389–392. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, A.S.; Ravid, R.; Kamphorst, W.; Jørgensen, O.S. Apolipoprotein E Ε4 in an Autopsy Series of Various Dementing Disorders. J. Alzheimer’s Dis. 2003, 5, 119–125. [Google Scholar] [CrossRef]
- Miller, D.W.; Hague, S.M.; Clarimon, J.; Baptista, M.; Gwinn-Hardy, K.; Cookson, M.R.; Singleton, A.B. α-Synuclein in Blood and Brain from Familial Parkinson Disease with SNCA Locus Triplication. Neurology 2004, 62, 1835–1838. [Google Scholar] [CrossRef]
- Funahashi, Y.; Yoshino, Y.; Yamazaki, K.; Mori, Y.; Mori, T.; Ozaki, Y.; Sao, T.; Ochi, S.; Iga, J.I.; Ueno, S.I. DNA Methylation Changes at SNCA Intron 1 in Patients with Dementia with Lewy Bodies. Psychiatry Clin. Neurosci. 2017, 71, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Gegg, M.E.; Schapira, A.H.V. The Role of Glucocerebrosidase in Parkinson Disease Pathogenesis. FEBS J. 2018, 285, 3591–3603. [Google Scholar] [CrossRef]
- Creese, B.; Bell, E.; Johar, I.; Francis, P.; Ballard, C.; Aarsland, D. Glucocerebrosidase Mutations and Neuropsychiatric Phenotypes in Parkinson’s Disease and Lewy Body Dementias: Review and Meta-Analyses. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2018, 177, 232–241. [Google Scholar] [CrossRef]
- Jinn, S.; Drolet, R.E.; Cramer, P.E.; Wong, A.H.K.; Toolan, D.M.; Gretzula, C.A.; Voleti, B.; Vassileva, G.; Disa, J.; Tadin-Strapps, M.; et al. TMEM175 Deficiency Impairs Lysosomal and Mitochondrial Function and Increases α-Synuclein Aggregation. Proc. Natl. Acad. Sci. USA 2017, 114, 2389–2394. [Google Scholar] [CrossRef]
- Filippini, A.; Mutti, V.; Faustini, G.; Longhena, F.; Ramazzina, I.; Rizzi, F.; Kaganovich, A.; Roosen, D.A.; Landeck, N.; Duffy, M.; et al. Extracellular Clusterin Limits the Uptake of α-Synuclein Fibrils by Murine and Human Astrocytes. Glia 2021, 69, 681–696. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Wei, J.; Mialki, R.K.; Mallampalli, D.F.; Chen, B.B.; Coon, T.; Zou, C.; Mallampalli, R.K.; Zhao, Y. F-Box Protein FBXL19-Mediated Ubiquitination and Degradation of the Receptor for IL-33 Limits Pulmonary Inflammation. Nat. Immunol. 2012, 13, 651–658. [Google Scholar] [CrossRef] [PubMed]
- Colom-Cadena, M.; Gelpi, E.; Martí, M.J.; Charif, S.; Dols-Icardo, O.; Blesa, R.; Clarimón, J.; Lleó, A. MAPT H1 Haplotype Is Associated with Enhanced α-Synuclein Deposition in Dementia with Lewy Bodies. Neurobiol. Aging 2013, 34, 936–942. [Google Scholar] [CrossRef] [PubMed]
- Coppola, G.; Chinnathambi, S.; Lee, J.J.Y.; Dombroski, B.A.; Baker, M.C.; Soto-Ortolaza, A.I.; Lee, S.E.; Klein, E.; Huang, A.Y.; Sears, R.; et al. Evidence for a Role of the Rare p.A152T Variant in MAPT in Increasing the Risk for FTD-Spectrum and Alzheimer’s Diseases. Hum. Mol. Genet. 2012, 21, 3500–3512. [Google Scholar] [CrossRef]
- Kaivola, K.; Chia, R.; Ding, J.; Rasheed, M.; Fujita, M.; Menon, V.; Walton, R.L.; Collins, R.L.; Billingsley, K.; Brand, H.; et al. Genome-Wide Structural Variant Analysis Identifies Risk Loci for Non-Alzheimer’s Dementias. Cell Genom. 2023, 3, 100316. [Google Scholar] [CrossRef]
- Mallmann, R.T.; Klugbauer, N. Genetic Inactivation of Two-Pore Channel 1 Impairs Spatial Learning and Memory. Behav. Genet. 2020, 50, 401–410. [Google Scholar] [CrossRef]
- Osawa, T.; Mizuno, Y.; Fujita, Y.; Takatama, M.; Nakazato, Y.; Okamoto, K. Optineurin in Neurodegenerative Diseases. Neuropathology 2011, 31, 569–574. [Google Scholar] [CrossRef]
- Pottier, C.; Bieniek, K.F.; Finch, N.C.; van de Vorst, M.; Baker, M.; Perkersen, R.; Brown, P.; Ravenscroft, T.; van Blitterswijk, M.; Nicholson, A.M.; et al. Whole-Genome Sequencing Reveals Important Role for TBK1 and OPTN Mutations in Frontotemporal Lobar Degeneration without Motor Neuron Disease. Acta Neuropathol. 2015, 130, 77–92. [Google Scholar] [CrossRef]
- Chu, L.W. Alzheimer’s Disease: Early Diagnosis and Treatment. Hong Kong Med. J. 2012, 18, 228–237. [Google Scholar] [PubMed]
- Briggs, R.; Kennelly, S.P.; O’Neill, D. Drug Treatments in Alzheimer’s Disease. Clin. Med. 2016, 16, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Colović, M.B.; Krstić, D.Z.; Lazarević-Pašti, T.D.; Bondžić, A.M.; Vasić, V.M. Acetylcholinesterase Inhibitors: Pharmacology and Toxicology. Curr. Neuropharmacol. 2013, 11, 315–335. [Google Scholar] [CrossRef]
- Qaseem, A.; Snow, V.; Cross, J.T.J.; Forciea, M.A.; Hopkins, R.J.; Shekelle, P.; Adelman, A.; Mehr, D.; Schellhase, K.; Campos-Outcalt, D.; et al. Current Pharmacologic Treatment of Dementia: A Clinical Practice Guideline from the American College of Physicians and the American Academy of Family Physicians. Ann. Intern. Med. 2008, 148, 370–378. [Google Scholar] [CrossRef] [PubMed]
- Raina, P.; Santaguida, P.; Ismaila, A.; Patterson, C.; Cowan, D.; Levine, M.; Booker, L.; Oremus, M. Effectiveness of Cholinesterase Inhibitors and Memantine for Treating Dementia: Evidence Review for a Clinical Practice Guideline. Ann. Intern. Med. 2008, 148, 379–397. [Google Scholar] [CrossRef] [PubMed]
- Overshott, R.; Burns, A. Treatment of Dementia. Neurol. Pract. 2005, 76, v53–v59. [Google Scholar] [CrossRef]
- Bohnen, N.I.; Kaufer, D.I.; Ivanco, L.S.; Lopresti, B.; Koeppe, R.A.; Davis, J.G.; Mathis, C.A.; Moore, R.Y.; DeKosky, S.T. Cortical Cholinergic Function Is More Severely Affected in Parkinsonian Dementia than in Alzheimer Disease: An in Vivo Positron Emission Tomographic Study. Arch. Neurol. 2003, 60, 1745–1748. [Google Scholar] [CrossRef] [PubMed]
- Tiraboschi, P.; Hansen, L.A.; Alford, M.; Sabbagh, M.N.; Schoos, B.; Masliah, E.; Thal, L.J.; Corey-Bloom, J. Cholinergic Dysfunction in Diseases with Lewy Bodies. Neurology 2000, 54, 407–411. [Google Scholar] [CrossRef]
- Doody, R.S.; Ferris, S.H.; Salloway, S.; Sun, Y.; Goldman, R.; Watkins, W.E.; Xu, Y.; Murthy, A.K. Donepezil Treatment of Patients with MCI: A 48-Week Randomized, Placebo-Controlled Trial. Neurology 2009, 72, 1555–1561. [Google Scholar] [CrossRef]
- Shah, R.S.; Lee, H.-G.; Xiongwei, Z.; Perry, G.; Smith, M.A.; Castellani, R.J. Current Approaches in the Treatment of Alzheimer’s Disease. Biomed. Pharmacother. 2008, 62, 199–207. [Google Scholar] [CrossRef]
- Rogawski, M.A.; Wenk, G.L. The Neuropharmacological Basis for the Use of Memantine in the Treatment of Alzheimer’s Disease. CNS Drug Rev. 2003, 9, 275–308. [Google Scholar] [CrossRef]
- Matsunaga, S.; Kishi, T.; Iwata, N. Memantine Monotherapy for Alzheimer’s Disease: A Systematic Review and Meta-Analysis. PLoS ONE 2015, 10, e0123289. [Google Scholar] [CrossRef]
- Kishi, T.; Matsunaga, S.; Oya, K.; Nomura, I.; Ikuta, T.; Iwata, N. Memantine for Alzheimer’s Disease: An Updated Systematic Review and Meta-Analysis. J. Alzheimer’s Dis. 2017, 60, 401–425. [Google Scholar] [CrossRef]
- Kavirajan, H.; Schneider, L.S. Efficacy and Adverse Effects of Cholinesterase Inhibitors and Memantine in Vascular Dementia: A Meta-Analysis of Randomised Controlled Trials. Lancet Neurol. 2007, 6, 782–792. [Google Scholar] [CrossRef] [PubMed]
- Orgogozo, J.-M.; Rigaud, A.-S.; Stöffler, A.; Möbius, H.-J.; Forette, F. Efficacy and Safety of Memantine in Patients with Mild to Moderate Vascular Dementia: A Randomized, Placebo-Controlled Trial (MMM 300). Stroke 2002, 33, 1834–1839. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.-F.; Yu, J.-T.; Tang, S.-W.; Jiang, T.; Tan, C.-C.; Meng, X.-F.; Wang, C.; Tan, M.-S.; Tan, L. Efficacy and Safety of Cholinesterase Inhibitors and Memantine in Cognitive Impairment in Parkinson’s Disease, Parkinsons Disease Dementia, and Dementia with Lewy Bodies: Systematic Review with Meta-Analysis and Trial Sequential analysis. J. Neurol. Neurosurg. Psychiatry 2015, 86, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Aarsland, D.; Ballard, C.; Walker, Z.; Bostrom, F.; Alves, G.; Kossakowski, K.; Leroi, I.; Pozo-Rodriguez, F.; Minthon, L.; Londos, E. Memantine in Patients with Parkinson’s Disease Dementia or Dementia with Lewy Bodies: A Double-Blind, Placebo-Controlled, Multicentre Trial. Lancet Neurol. 2009, 8, 613–618. [Google Scholar] [CrossRef]
- Guo, J.; Wang, Z.; Liu, R.; Huang, Y.; Zhang, N.; Zhang, R. Memantine, Donepezil, or Combination Therapy-What Is the Best Therapy for Alzheimer’s Disease? A Network Meta-Analysis. Brain Behav. 2020, 10, e01831. [Google Scholar] [CrossRef] [PubMed]
- Haddad, H.W.; Malone, G.W.; Comardelle, N.J.; Degueure, A.E.; Kaye, A.M.; Kaye, A.D. Aducanumab, a Novel Anti-Amyloid Monoclonal Antibody, for the Treatment of Alzheimer’s Disease: A Comprehensive Review. Health Psychol. Res. 2022, 10, 31925. [Google Scholar] [CrossRef]
- Decourt, B.; Boumelhem, F.; Pope, E.D., 3rd; Shi, J.; Mari, Z.; Sabbagh, M.N. Critical Appraisal of Amyloid Lowering Agents in AD. Curr. Neurol. Neurosci. Rep. 2021, 21, 39. [Google Scholar] [CrossRef]
- Sevigny, J.; Chiao, P.; Bussière, T.; Weinreb, P.H.; Williams, L.; Maier, M.; Dunstan, R.; Salloway, S.; Chen, T.; Ling, Y.; et al. The Antibody Aducanumab Reduces Aβ Plaques in Alzheimer’s Disease. Nature 2016, 537, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Kuller, L.H.; Lopez, O.L. ENGAGE and EMERGE: Truth and Consequences? Alzheimer’s Dement. 2021, 17, 692–695. [Google Scholar] [CrossRef]
- Andrews, J.S.; Desai, U.; Kirson, N.Y.; Zichlin, M.L.; Ball, D.E.; Matthews, B.R. Disease Severity and Minimal Clinically Important Differences in Clinical Outcome Assessments for Alzheimer’s Disease Clinical Trials. Alzheimer’s Dement. 2019, 5, 354–363. [Google Scholar] [CrossRef] [PubMed]
- Alexander, G.C.; Emerson, S.; Kesselheim, A.S. Evaluation of Aducanumab for Alzheimer Disease: Scientific Evidence and Regulatory Review Involving Efficacy, Safety, and Futility. JAMA 2021, 325, 1717–1718. [Google Scholar] [CrossRef]
- Swanson, C.J.; Zhang, Y.; Dhadda, S.; Wang, J.; Kaplow, J.; Lai, R.Y.K.; Lannfelt, L.; Bradley, H.; Rabe, M.; Koyama, A.; et al. A Randomized, Double-Blind, Phase 2b Proof-of-Concept Clinical Trial in Early Alzheimer’s Disease with Lecanemab, an Anti-Aβ Protofibril Antibody. Alzheimer’s Res. Ther. 2021, 13, 80. [Google Scholar] [CrossRef]
- van Dyck, C.H.; Swanson, C.J.; Aisen, P.; Bateman, R.J.; Chen, C.; Gee, M.; Kanekiyo, M.; Li, D.; Reyderman, L.; Cohen, S.; et al. Lecanemab in Early Alzheimer’s Disease. N. Engl. J. Med. 2023, 388, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Logovinsky, V.; Satlin, A.; Lai, R.; Swanson, C.; Kaplow, J.; Osswald, G.; Basun, H.; Lannfelt, L. Safety and Tolerability of BAN2401—A Clinical Study in Alzheimer’s Disease with a Protofibril Selective Aβ Antibody. Alzheimer’s Res. Ther. 2016, 8, 14. [Google Scholar] [CrossRef] [PubMed]
- Sims, J.R.; Zimmer, J.A.; Evans, C.D.; Lu, M.; Ardayfio, P.; Sparks, J.; Wessels, A.M.; Shcherbinin, S.; Wang, H.; Monkul Nery, E.S.; et al. Donanemab in Early Symptomatic Alzheimer Disease: The TRAILBLAZER-ALZ 2 Randomized Clinical Trial. JAMA 2023, 330, 512–527. [Google Scholar] [CrossRef] [PubMed]
- Tariot, P.N.; Solomon, P.R.; Morris, J.C.; Kershaw, P.; Lilienfeld, S.; Ding, C. A 5-Month, Randomized, Placebo-Controlled Trial of Galantamine in AD. The Galantamine USA-10 Study Group. Neurology 2000, 54, 2269–2276. [Google Scholar] [CrossRef]
- Hughes, R.E.; Nikolic, K.; Ramsay, R.R. One for All? Hitting Multiple Alzheimer’s Disease Targets with One Drug. Front. Neurosci. 2016, 10, 177. [Google Scholar] [CrossRef]
- Morphy, R.; Rankovic, Z. The Physicochemical Challenges of Designing Multiple Ligands. J. Med. Chem. 2006, 49, 4961–4970. [Google Scholar] [CrossRef] [PubMed]
- Youdim, M.B.H.; Buccafusco, J.J. Multi-Functional Drugs for Various CNS Targets in the Treatment of Neurodegenerative Disorders. Trends Pharmacol. Sci. 2005, 26, 27–35. [Google Scholar] [CrossRef]
- Davies, P. Challenging the Cholinergic Hypothesis in Alzheimer Disease. JAMA 1999, 281, 1433–1434. [Google Scholar] [CrossRef]
- Musial, A.; Bajda, M.; Malawska, B. Recent Developments in Cholinesterases Inhibitors for Alzheimers Disease Treatment. Curr. Med. Chem. 2007, 14, 2654–2679. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Thompson, R.; Zhang, H.; Xu, H. APP Processing in Alzheimer’s Disease. Mol. Brain 2011, 4, 3. [Google Scholar] [CrossRef]
- Aso, E.; Ferrer, I. CB2 Cannabinoid Receptor As Potential Target against Alzheimer’s Disease. Front. Neurosci. 2016, 10, 243. [Google Scholar] [CrossRef]
- Lalut, J.; Karila, D.; Dallemagne, P.; Rochais, C. Modulating 5-HT4 and 5-HT6 Receptors in Alzheimer’s Disease Treatment. Future Med. Chem. 2017, 9, 781–795. [Google Scholar] [CrossRef] [PubMed]
- Mössner, R.; Schmitt, A.; Syagailo, Y.; Gerlach, M.; Riederer, P.; Lesch, K.P. The Serotonin Transporter in Alzheimer’s and Parkinson’s Disease. In Advances in Research on Neurodegeneration; Springer: Berlin/Heidelberg, Germany, 2000; pp. 345–350. [Google Scholar]
- Patrono, C. Cardiovascular Effects of Cyclooxygenase-2 Inhibitors: A Mechanistic and Clinical Perspective. Br. J. Clin. Pharmacol. 2016, 82, 957–964. [Google Scholar] [CrossRef]
- Desale, S.E.; Chinnathambi, S. Role of Dietary Fatty Acids in Microglial Polarization in Alzheimer’s Disease. J. Neuroinflamm. 2020, 17, 93. [Google Scholar] [CrossRef]
- Ulasov, A.V.; Rosenkranz, A.A.; Georgiev, G.P.; Sobolev, A.S. Nrf2/Keap1/ARE Signaling: Towards Specific Regulation. Life Sci. 2022, 291, 120111. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.-Q.; Xia, C.-L.; Chen, S.-B.; Tan, J.-H.; Ou, T.-M.; Huang, S.-L.; Li, D.; Gu, L.-Q.; Huang, Z.-S. Design, Synthesis, and Biological Evaluation of 2-Arylethenylquinoline Derivatives as Multifunctional Agents for the Treatment of Alzheimer’s Disease. Eur. J. Med. Chem. 2015, 89, 349–361. [Google Scholar] [CrossRef]
- Ismaili, L.; Refouvelet, B.; Benchekroun, M.; Brogi, S.; Brindisi, M.; Gemma, S.; Campiani, G.; Filipic, S.; Agbaba, D.; Esteban, G.; et al. Multitarget Compounds Bearing Tacrine- and Donepezil-like Structural and Functional Motifs for the Potential Treatment of Alzheimer’s Disease. Prog. Neurobiol. 2017, 151, 4–34. [Google Scholar] [CrossRef]
- Unzeta, M.; Esteban, G.; Bolea, I.; Fogel, W.A.; Ramsay, R.R.; Youdim, M.B.H.; Tipton, K.F.; Marco-Contelles, J. Multi-Target Directed Donepezil-Like Ligands for Alzheimer’s Disease. Front. Neurosci. 2016, 10, 205. [Google Scholar] [CrossRef]
- Li, Y.; Peng, P.; Tang, L.; Hu, Y.; Hu, Y.; Sheng, R. Design, Synthesis and Evaluation of Rivastigmine and Curcumin Hybrids as Site-Activated Multitarget-Directed Ligands for Alzheimer’s Disease Therapy. Bioorg. Med. Chem. 2014, 22, 4717–4725. [Google Scholar] [CrossRef]
- Mazzanti, G.; Di Giacomo, S. Curcumin and Resveratrol in the Management of Cognitive Disorders: What Is the Clinical Evidence? Molecules 2016, 21, 1243. [Google Scholar] [CrossRef]
- Cheong, S.L.; Tiew, J.K.; Fong, Y.H.; Leong, H.W.; Chan, Y.M.; Chan, Z.L.; Kong, E.W.J. Current Pharmacotherapy and Multi-Target Approaches for Alzheimer’s Disease. Pharmaceuticals 2022, 15, 1560. [Google Scholar] [CrossRef]
- Douglas, S.; James, I.; Ballard, C. Non-Pharmacological Interventions in Dementia. Adv. Psychiatr. Treat. 2004, 10, 171–179. [Google Scholar] [CrossRef]
- Finkel, S.I.; Costa e Silva, J.; Cohen, G.; Miller, S.; Sartorius, N. Behavioral and Psychological Signs and Symptoms of Dementia: A Consensus Statement on Current Knowledge and Implications for Research and Treatment. Int. Psychogeriatr. 1996, 8, 497–500. [Google Scholar] [CrossRef]
- Tible, O.P.; Riese, F.; Savaskan, E.; von Gunten, A. Best Practice in the Management of Behavioural and Psychological Symptoms of Dementia. Ther. Adv. Neurol. Disord. 2017, 10, 297–309. [Google Scholar] [CrossRef] [PubMed]
- Bessey, L.J.; Walaszek, A. Management of Behavioral and Psychological Symptoms of Dementia. Curr. Psychiatry Rep. 2019, 21, 66. [Google Scholar] [CrossRef]
- Preuss, U.W.; Wong, J.W.M.; Koller, G. Treatment of Behavioral and Psychological Symptoms of Dementia: A Systematic Review. Psychiatr. Pol. 2016, 50, 679–715. [Google Scholar] [CrossRef] [PubMed]
- Vuic, B.; Konjevod, M.; Tudor, L.; Milos, T.; Nikolac Perkovic, M.; Nedic Erjavec, G.; Pivac, N.; Uzun, S.; Mimica, N.; Svob Strac, D. Tailoring the Therapeutic Interventions for Behavioral and Psychological Symptoms of Dementia. Expert Rev. Neurother. 2022, 22, 707–720. [Google Scholar] [CrossRef] [PubMed]
- Brodaty, H.; Arasaratnam, C. Meta-Analysis of Nonpharmacological Interventions for Neuropsychiatric Symptoms of Dementia. Am. J. Psychiatry 2012, 169, 946–953. [Google Scholar] [CrossRef]
- Berg-Weger, M.; Stewart, D.B. Non-Pharmacologic Interventions for Persons with Dementia. Mo. Med. 2017, 114, 116–119. [Google Scholar] [PubMed]
- Lykkeslet, E.; Gjengedal, E.; Skrondal, T.; Storjord, M.-B. Sensory Stimulation—A Way of Creating Mutual Relations in Dementia Care. Int. J. Qual. Stud. Health Well-Being 2014, 9, 23888. [Google Scholar] [CrossRef]
- Finnema, E.; Dröes, R.M.; Ribbe, M.; Van Tilburg, W. The Effects of Emotion-Oriented Approaches in the Care for Persons Suffering from Dementia: A Review of the Literature. Int. J. Geriatr. Psychiatry 2000, 15, 141–161. [Google Scholar] [CrossRef]
- D’Onofrio, G.; Sancarlo, D.; Seripa, D.; Ricciardi, F.; Giuliani, F.; Panza, F.; Greco, A. Non-Pharmacological Approaches in the Treatment of Dementia. In Update on Dementia; IntechOpen: London, UK, 2016; pp. 477–491. [Google Scholar] [CrossRef]
- Lodha, P. Nonpharmacological Management of Dementia: A Review. Indian J. Priv. Psychiatry 2019, 13, 62–70. [Google Scholar] [CrossRef]
- Burgio, L.; Fisher, S. Application of Psychosocial Interventions for Treating Behavioral and Psychological Symptoms of Dementia. Int. Psychogeriatr. 2000, 12, 351–358. [Google Scholar] [CrossRef]
- Olazarán, J.; Reisberg, B.; Clare, L.; Cruz, I.; Peña-Casanova, J.; Del Ser, T.; Woods, B.; Beck, C.; Auer, S.; Lai, C.; et al. Nonpharmacological Therapies in Alzheimer’s Disease: A Systematic Review of Efficacy. Dement. Geriatr. Cogn. Disord. 2010, 30, 161–178. [Google Scholar] [CrossRef]
- Yury, C.A.; Fisher, J.E. Meta-Analysis of the Effectiveness of Atypical Antipsychotics for the Treatment of Behavioural Problems in Persons with Dementia. Psychother. Psychosom. 2007, 76, 213–218. [Google Scholar] [CrossRef]
- Schneider, L.S.; Tariot, P.N.; Dagerman, K.S.; Davis, S.M.; Hsiao, J.K.; Ismail, M.S.; Lebowitz, B.D.; Lyketsos, C.G.; Ryan, J.M.; Stroup, T.S.; et al. Effectiveness of Atypical Antipsychotic Drugs in Patients with Alzheimer’s Disease. N. Engl. J. Med. 2006, 355, 1525–1538. [Google Scholar] [CrossRef]
- Aalten, P.; Verhey, F.R.J.; Boziki, M.; Bullock, R.; Byrne, E.J.; Camus, V.; Caputo, M.; Collins, D.; De Deyn, P.P.; Elina, K.; et al. Neuropsychiatric Syndromes in Dementia. Results from the European Alzheimer Disease Consortium: Part I. Dement. Geriatr. Cogn. Disord. 2007, 24, 457–463. [Google Scholar] [CrossRef]
- Meyer, C.; O’Keefe, F. Non-Pharmacological Interventions for People with Dementia: A Review of Reviews. Dementia 2020, 19, 1927–1954. [Google Scholar] [CrossRef]
- Dyer, S.M.; Crotty, M.; Laver, K.; Pond, C.D.; Cumming, R.G.; Whitehead, C.; Crotty, M. Clinical Practice Guidelines and Principles of Care for People with Dementia in Australia. Aust. Fam. Physician 2016, 45, 884–889. [Google Scholar] [PubMed]
- National Collaborating Centre for Mental Health. Dementia: A NICE-SCIE Guideline on Supporting People with Dementia and Their Carers in Health and Social Care; British Psychological Society (UK): Leicester, UK, 2007; ISBN 978-1-85433-451-0. [Google Scholar]
- Ballard, C.; Orrell, M.; Sun, Y.; Moniz-Cook, E.; Stafford, J.; Whitaker, R.; Woods, B.; Corbett, A.; Banerjee, S.; Testad, I.; et al. Impact of Antipsychotic Review and Non-Pharmacological Intervention on Health-Related Quality of Life in People with Dementia Living in Care Homes: WHELD-a Factorial Cluster Randomised Controlled Trial. Int. J. Geriatr. Psychiatry 2017, 32, 1094–1103. [Google Scholar] [CrossRef]
- van der Steen, J.T.; van Soest-Poortvliet, M.C.; van der Wouden, J.C.; Bruinsma, M.S.; Scholten, R.J.; Vink, A.C. Music-Based Therapeutic Interventions for People with Dementia. Cochrane Database Syst. Rev. 2017, 5, CD003477. [Google Scholar] [CrossRef]
- Orgeta, V.; Qazi, A.; Spector, A.E.; Orrell, M. Psychological Treatments for Depression and Anxiety in Dementia and Mild Cognitive Impairment. Cochrane Database Syst. Rev. 2014, 2014, CD009125. [Google Scholar] [CrossRef] [PubMed]
- Noetzli, M.; Eap, C.B. Pharmacodynamic, Pharmacokinetic and Pharmacogenetic Aspects of Drugs Used in the Treatment of Alzheimer’s Disease. Clin. Pharmacokinet. 2013, 52, 225–241. [Google Scholar] [CrossRef] [PubMed]
- McKeage, K. Memantine. CNS Drugs 2009, 23, 881–897. [Google Scholar] [CrossRef]
- Cacabelos, R. Donepezil in Alzheimer’s Disease: From Conventional Trials to Pharmacogenetics. Neuropsychiatr. Dis. Treat. 2007, 3, 303–333. [Google Scholar]
- Ovejero-Benito, M.C.; Ochoa, D.; Enrique-Benedito, T.; Del Peso-Casado, M.; Zubiaur, P.; Navares, M.; Román, M.; Abad-Santos, F. Pharmacogenetics of Donepezil and Memantine in Healthy Subjects. J. Pers. Med. 2022, 12, 788. [Google Scholar] [CrossRef]
- Pilotto, A.; Franceschi, M.; D’Onofrio, G.; Bizzarro, A.; Mangialasche, F.; Cascavilla, L.; Paris, F.; Matera, M.G.; Pilotto, A.; Daniele, A.; et al. Effect of a CYP2D6 Polymorphism on the Efficacy of Donepezil in Patients with Alzheimer Disease. Neurology 2009, 73, 761–767. [Google Scholar] [CrossRef]
- Klimkowicz-Mrowiec, A.; Wolkow, P.; Sado, M.; Dziubek, A.; Pera, J.; Dziedzic, T.; Szczudlik, A.; Slowik, A. Influence of Rs1080985 Single Nucleotide Polymorphism of the CYP2D6 Gene on Response to Treatment with Donepezil in Patients with Alzheimer’s Disease. Neuropsychiatr. Dis. Treat. 2013, 9, 1029–1033. [Google Scholar] [CrossRef]
- Ortner, M.; Stange, M.; Schneider, H.; Schröder, C.; Buerger, K.; Müller, C.; Müller-Sarnowski, F.; Diehl-Schmid, J.; Förstl, H.; Grimmer, T.; et al. Therapeutic Drug Monitoring of Rivastigmine and Donepezil Under Consideration of CYP2D6 Genotype-Dependent Metabolism of Donepezil. Drug Des. Devel. Ther. 2020, 14, 3251–3262. [Google Scholar] [CrossRef]
- Kagawa, Y.; Yamamoto, Y.; Ueno, A.; Maeda, T.; Obi, T. Impact of CYP2D6, CYP3A5, and ABCB1 Polymorphisms on Plasma Concentrations of Donepezil and Its Metabolite in Patients with Alzheimer Disease. Ther. Drug Monit. 2021, 43, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Seripa, D.; Bizzarro, A.; Pilotto, A.; D’onofrio, G.; Vecchione, G.; Gallo, A.P.; Cascavilla, L.; Paris, F.; Grandone, E.; Mecocci, P.; et al. Role of Cytochrome P4502D6 Functional Polymorphisms in the Efficacy of Donepezil in Patients with Alzheimer’s Disease. Pharmacogenet. Genom. 2011, 21, 225–230. [Google Scholar] [CrossRef] [PubMed]
- Noetzli, M.; Guidi, M.; Ebbing, K.; Eyer, S.; Wilhelm, L.; Michon, A.; Thomazic, V.; Stancu, I.; Alnawaqil, A.-M.; Bula, C.; et al. Population Pharmacokinetic Approach to Evaluate the Effect of CYP2D6, CYP3A, ABCB1, POR and NR1I2 Genotypes on Donepezil Clearance. Br. J. Clin. Pharmacol. 2014, 78, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Wang, X.; Wan, L.; Fu, J.; Huo, Y.; Zhao, Y.; Guo, C. Gene Polymorphisms Affecting the Pharmacokinetics and Pharmacodynamics of Donepezil Efficacy. Front. Pharmacol. 2020, 11, 934. [Google Scholar] [CrossRef] [PubMed]
- Varsaldi, F.; Miglio, G.; Scordo, M.G.; Dahl, M.-L.; Villa, L.M.; Biolcati, A.; Lombardi, G. Impact of the CYP2D6 Polymorphism on Steady-State Plasma Concentrations and Clinical Outcome of Donepezil in Alzheimer’s Disease Patients. Eur. J. Clin. Pharmacol. 2006, 62, 721–726. [Google Scholar] [CrossRef] [PubMed]
- Zanger, U.M.; Fischer, J.; Raimundo, S.; Stüven, T.; Evert, B.O.; Schwab, M.; Eichelbaum, M. Comprehensive Analysis of the Genetic Factors Determining Expression and Function of Hepatic CYP2D6. Pharmacogenetics 2001, 11, 573–585. [Google Scholar] [CrossRef]
- Zhong, Y.; Zheng, X.; Miao, Y.; Wan, L.; Yan, H.; Wang, B. Effect of CYP2D6*10 and APOE Polymorphisms on the Efficacy of Donepezil in Patients with Alzheimer’s Disease. Am. J. Med. Sci. 2013, 345, 222–226. [Google Scholar] [CrossRef]
- Yaowaluk, T.; Senanarong, V.; Limwongse, C.; Boonprasert, R.; Kijsanayotin, P. Influence of CYP2D6, CYP3A5, ABCB1, APOE Polymorphisms and Nongenetic Factors on Donepezil Treatment in Patients with Alzheimer’s Disease and Vascular Dementia. Pharmgenom. Pers. Med. 2019, 12, 209–224. [Google Scholar] [CrossRef]
- McEneny-King, A.; Edginton, A.N.; Rao, P.P.N. Investigating the Binding Interactions of the Anti-Alzheimer’s Drug Donepezil with CYP3A4 and P-Glycoprotein. Bioorg. Med. Chem. Lett. 2015, 25, 297–301. [Google Scholar] [CrossRef]
- Magliulo, L.; Dahl, M.-L.; Lombardi, G.; Fallarini, S.; Villa, L.M.; Biolcati, A.; Scordo, M.G. Do CYP3A and ABCB1 Genotypes Influence the Plasma Concentration and Clinical Outcome of Donepezil Treatment? Eur. J. Clin. Pharmacol. 2011, 67, 47–54. [Google Scholar] [CrossRef]
- Ma, S.L.; Tang, N.L.S.; Wat, K.H.Y.; Tang, J.H.Y.; Lau, K.H.; Law, C.B.; Chiu, J.; Tam, C.C.W.; Poon, T.K.; Lin, K.L.; et al. Effect of CYP2D6 and CYP3A4 Genotypes on the Efficacy of Cholinesterase Inhibitors in Southern Chinese Patients with Alzheimer’s Disease. Am. J. Alzheimer’s Dis. Other Demen. 2019, 34, 302–307. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.-C.; Liu, C.-C.; Kanekiyo, T.; Xu, H.; Bu, G. Apolipoprotein E and Alzheimer Disease: Risk, Mechanisms and Therapy. Nat. Rev. Neurol. 2013, 9, 106–118. [Google Scholar] [CrossRef]
- Bizzarro, A.; Marra, C.; Acciarri, A.; Valenza, A.; Tiziano, F.D.; Brahe, C.; Masullo, C. Apolipoprotein E Epsilon4 Allele Differentiates the Clinical Response to Donepezil in Alzheimer’s Disease. Dement. Geriatr. Cogn. Disord. 2005, 20, 254–261. [Google Scholar] [CrossRef]
- Choi, S.H.; Kim, S.Y.; Na, H.R.; Kim, B.-K.; Yang, D.W.; Kwon, J.C.; Park, M.Y. Effect of ApoE Genotype on Response to Donepezil in Patients with Alzheimer’s Disease. Dement. Geriatr. Cogn. Disord. 2008, 25, 445–450. [Google Scholar] [CrossRef] [PubMed]
- Borroni, B.; Colciaghi, F.; Pastorino, L.; Archetti, S.; Corsini, P.; Cattabeni, F.; Di Luca, M.; Padovani, A. ApoE Genotype Influences the Biological Effect of Donepezil on APP Metabolism in Alzheimer Disease: Evidence from a Peripheral Model. Eur. Neuropsychopharmacol. J. Eur. Coll. Neuropsychopharmacol. 2002, 12, 195–200. [Google Scholar] [CrossRef]
- Santoro, A.; Siviero, P.; Minicuci, N.; Bellavista, E.; Mishto, M.; Olivieri, F.; Marchegiani, F.; Chiamenti, A.M.; Benussi, L.; Ghidoni, R.; et al. Effects of Donepezil, Galantamine and Rivastigmine in 938 Italian Patients with Alzheimer’s Disease: A Prospective, Observational Study. CNS Drugs 2010, 24, 163–176. [Google Scholar] [CrossRef]
- Waring, J.F.; Tang, Q.; Robieson, W.Z.; King, D.P.; Das, U.; Dubow, J.; Dutta, S.; Marek, G.J.; Gault, L.M. APOE-ε4 Carrier Status and Donepezil Response in Patients with Alzheimer’s Disease. J. Alzheimer’s Dis. 2015, 47, 137–148. [Google Scholar] [CrossRef]
- Lu, J.; Fu, J.; Zhong, Y.; Chen, P.; Yang, Q.; Zhao, Y.; Wan, L.; Guo, C. The Roles of Apolipoprotein E3 and CYP2D6 (Rs1065852) Gene Polymorphisms in the Predictability of Responses to Individualized Therapy with Donepezil in Han Chinese Patients with Alzheimer’s Disease. Neurosci. Lett. 2016, 614, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Cacabelos, R.; Martínez-Bouza, R. Genomics and Pharmacogenomics of Dementia. CNS Neurosci. Ther. 2011, 17, 566–576. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Fu, J.; Zhong, Y.; Yang, Q.; Huang, J.; Li, J.; Huo, Y.; Zhao, Y.; Wan, L.; Guo, C. Association between ABCA1 Gene Polymorphisms and the Therapeutic Response to Donepezil Therapy in Han Chinese Patients with Alzheimer’s Disease. Brain Res. Bull. 2018, 140, 1–4. [Google Scholar] [CrossRef]
- Bortz, J.; Klatt, K.C.; Wallace, T.C. Perspective: Estrogen and the Risk of Cognitive Decline: A Missing Choline(Rgic) Link? Adv. Nutr. 2022, 13, 376–387. [Google Scholar] [CrossRef] [PubMed]
- Scacchi, R.; Gambina, G.; Broggio, E.; Corbo, R.M. Sex and ESR1 Genotype May Influence the Response to Treatment with Donepezil and Rivastigmine in Patients with Alzheimer’s Disease. Int. J. Geriatr. Psychiatry 2014, 29, 610–615. [Google Scholar] [CrossRef] [PubMed]
- Pope, C.N.; Brimijoin, S. Cholinesterases and the Fine Line between Poison and Remedy. Biochem. Pharmacol. 2018, 153, 205–216. [Google Scholar] [CrossRef]
- Podoly, E.; Shalev, D.E.; Shenhar-Tsarfaty, S.; Bennett, E.R.; Ben Assayag, E.; Wilgus, H.; Livnah, O.; Soreq, H. The Butyrylcholinesterase K Variant Confers Structurally Derived Risks for Alzheimer Pathology. J. Biol. Chem. 2009, 284, 17170–17179. [Google Scholar] [CrossRef] [PubMed]
- Sokolow, S.; Li, X.; Chen, L.; Taylor, K.D.; Rotter, J.I.; Rissman, R.A.; Aisen, P.S.; Apostolova, L.G. Deleterious Effect of Butyrylcholinesterase K-Variant in Donepezil Treatment of Mild Cognitive Impairment. J. Alzheimer’s Dis. 2017, 56, 229–237. [Google Scholar] [CrossRef] [PubMed]
- Blesa, R.; Bullock, R.; He, Y.; Bergman, H.; Gambina, G.; Meyer, J.; Rapatz, G.; Nagel, J.; Lane, R. Effect of Butyrylcholinesterase Genotype on the Response to Rivastigmine or Donepezil in Younger Patients with Alzheimer’s Disease. Pharmacogenet. Genom. 2006, 16, 771–774. [Google Scholar] [CrossRef]
- Scacchi, R.; Gambina, G.; Moretto, G.; Corbo, R.M. Variability of AChE, BChE, and ChAT Genes in the Late-Onset Form of Alzheimer’s Disease and Relationships with Response to Treatment with Donepezil and Rivastigmine. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2009, 150, 502–507. [Google Scholar] [CrossRef]
- De Beaumont, L.; Pelleieux, S.; Lamarre-Théroux, L.; Dea, D.; Poirier, J. Butyrylcholinesterase K and Apolipoprotein E-ε4 Reduce the Age of Onset of Alzheimer’s Disease, Accelerate Cognitive Decline, and Modulate Donepezil Response in Mild Cognitively Impaired Subjects. J. Alzheimer’s Dis. 2016, 54, 913–922. [Google Scholar] [CrossRef]
- Yoon, H.; Myung, W.; Lim, S.-W.; Kang, H.S.; Kim, S.; Won, H.-H.; Carroll, B.J.; Kim, D.K. Association of the Choline Acetyltransferase Gene with Responsiveness to Acetylcholinesterase Inhibitors in Alzheimer’s Disease. Pharmacopsychiatry 2015, 48, 111–117. [Google Scholar] [CrossRef]
- Harold, D.; Macgregor, S.; Patterson, C.E.; Hollingworth, P.; Moore, P.; Owen, M.J.; Williams, J.; O’Donovan, M.; Passmore, P.; McIlroy, S.; et al. A Single Nucleotide Polymorphism in CHAT Influences Response to Acetylcholinesterase Inhibitors in Alzheimer’s Disease. Pharmacogenet. Genom. 2006, 16, 75–77. [Google Scholar] [CrossRef]
- Lee, K.U.; Lee, J.H.; Lee, D.Y.; Youn, J.C.; Kim, J.L.; Moon, S.W.; Kim, B.-J.; Ryu, S.-H.; Kim, M.D.; Lee, C.-U.; et al. The Effect of Choline Acetyltransferase Genotype on Donepezil Treatment Response in Patients with Alzheimer’s Disease. Clin. Psychopharmacol. Neurosci. 2015, 13, 168–173. [Google Scholar] [CrossRef]
- Braga, I.L.S.; Silva, P.N.; Furuya, T.K.; Santos, L.C.; Pires, B.C.; Mazzotti, D.R.; Bertolucci, P.H.; Cendoroglo, M.S.; Smith, M.C. Effect of APOE and CHRNA7 Genotypes on the Cognitive Response to Cholinesterase Inhibitor Treatment at Different Stages of Alzheimer’s Disease. Am. J. Alzheimer’s Dis. Other Demen. 2015, 30, 139–144. [Google Scholar] [CrossRef]
- Weng, P.-H.; Chen, J.-H.; Chen, T.-F.; Sun, Y.; Wen, L.-L.; Yip, P.-K.; Chu, Y.-M.; Chen, Y.-C. CHRNA7 Polymorphisms and Response to Cholinesterase Inhibitors in Alzheimer’s Disease. PLoS ONE 2013, 8, e84059. [Google Scholar] [CrossRef]
- Clarelli, F.; Mascia, E.; Santangelo, R.; Mazzeo, S.; Giacalone, G.; Galimberti, D.; Fusco, F.; Zuffi, M.; Fenoglio, C.; Franceschi, M.; et al. CHRNA7 Gene and Response to Cholinesterase Inhibitors in an Italian Cohort of Alzheimer’s Disease Patients. J. Alzheimer’s Dis. 2016, 52, 1203–1208. [Google Scholar] [CrossRef] [PubMed]
- Khalaf, F.K.; Connolly, J.; Khatib-Shahidi, B.; Albehadili, A.; Tassavvor, I.; Ranabothu, M.; Eid, N.; Dube, P.; Khouri, S.J.; Malhotra, D.; et al. Paraoxonases at the Heart of Neurological Disorders. Int. J. Mol. Sci. 2023, 24, 6881. [Google Scholar] [CrossRef]
- Humbert, R.; Adler, D.A.; Disteche, C.M.; Hassett, C.; Omiecinski, C.J.; Furlong, C.E. The Molecular Basis of the Human Serum Paraoxonase Activity Polymorphism. Nat. Genet. 1993, 3, 73–76. [Google Scholar] [CrossRef] [PubMed]
- Pola, R.; Flex, A.; Ciaburri, M.; Rovella, E.; Valiani, A.; Reali, G.; Silveri, M.C.; Bernabei, R. Responsiveness to Cholinesterase Inhibitors in Alzheimer’s Disease: A Possible Role for the 192 Q/R Polymorphism of the PON-1 Gene. Neurosci. Lett. 2005, 382, 338–341. [Google Scholar] [CrossRef] [PubMed]
- Han, H.J.; Kim, B.C.; Lee, J.-Y.; Ryu, S.-H.; Na, H.R.; Yoon, S.J.; Park, H.Y.; Shin, J.H.; Cho, S.-J.; Yi, H.-A.; et al. Response to Rivastigmine Transdermal Patch or Memantine plus Rivastigmine Patch Is Affected by Apolipoprotein E Genotype in Alzheimer Patients. Dement. Geriatr. Cogn. Disord. 2012, 34, 167–173. [Google Scholar] [CrossRef]
- Blesa, R.; Aguilar, M.; Casanova, J.P.; Boada, M.; Martínez, S.; Alom, J.; de la Hoz, C.H.; Sancho, J.; Fernández, O.; Gil-Neciga, E.; et al. Relationship between the Efficacy of Rivastigmine and Apolipoprotein E (Epsilon4) in Patients with Mild to Moderately Severe Alzheimer Disease. Alzheimer Dis. Assoc. Disord. 2006, 20, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Farlow, M.; Lane, R.; Kudaravalli, S.; He, Y. Differential Qualitative Responses to Rivastigmine in APOE Epsilon 4 Carriers and Noncarriers. Pharmacogenom. J. 2004, 4, 332–335. [Google Scholar] [CrossRef] [PubMed]
- Han, H.J.; Kwon, J.C.; Kim, J.E.; Kim, S.G.; Park, J.-M.; Park, K.W.; Park, K.C.; Park, K.H.; Moon, S.Y.; Seo, S.W.; et al. Effect of Rivastigmine or Memantine Add-on Therapy Is Affected by Butyrylcholinesterase Genotype in Patients with Probable Alzheimer’s Disease. Eur. Neurol. 2015, 73, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Riazanskaia, N.; Lukiw, W.J.; Grigorenko, A.; Korovaitseva, G.; Dvoryanchikov, G.; Moliaka, Y.; Nicolaou, M.; Farrer, L.; Bazan, N.G.; Rogaev, E. Regulatory Region Variability in the Human Presenilin-2 (PSEN2) Gene: Potential Contribution to the Gene Activity and Risk for AD. Mol. Psychiatry 2002, 7, 891–898. [Google Scholar] [CrossRef] [PubMed]
- Zamani, M.; Mehri, M.; Kollaee, A.; Yenki, P.; Ghaffarpor, M.; Harirchian, M.H.; Shahbazi, M. Pharmacogenetic Study on the Effect of Rivastigmine on PS2 and APOE Genes in Iranian Alzheimer Patients. Dement. Geriatr. Cogn. Dis. Extra 2011, 1, 180–189. [Google Scholar] [CrossRef]
- Carrier, J.S.; Turgeon, D.; Journault, K.; Hum, D.W.; Bélanger, A. Isolation and Characterization of the Human UGT2B7 Gene. Biochem. Biophys. Res. Commun. 2000, 272, 616–621. [Google Scholar] [CrossRef]
- Innocenti, F.; Liu, W.; Fackenthal, D.; Ramírez, J.; Chen, P.; Ye, X.; Wu, X.; Zhang, W.; Mirkov, S.; Das, S.; et al. Single Nucleotide Polymorphism Discovery and Functional Assessment of Variation in the UDP-Glucuronosyltransferase 2B7 Gene. Pharmacogenet. Genom. 2008, 18, 683–697. [Google Scholar] [CrossRef]
- Sonali, N.; Tripathi, M.; Sagar, R.; Velpandian, T.; Subbiah, V. Clinical Effectiveness of Rivastigmine Monotherapy and Combination Therapy in Alzheimer’s Patients. CNS Neurosci. Ther. 2013, 19, 91–97. [Google Scholar] [CrossRef]
- Russo, P.; Kisialiou, A.; Moroni, R.; Prinzi, G.; Fini, M. Effect of Genetic Polymorphisms (SNPs) in CHRNA7 Gene on Response to Acetylcholinesterase Inhibitors (AChEI) in Patients with Alzheimer’s Disease. Curr. Drug Targets 2017, 18, 1179–1190. [Google Scholar] [CrossRef]
- Ciarimboli, G. Role of Organic Cation Transporters in Drug-Induced Toxicity. Expert Opin. Drug Metab. Toxicol. 2011, 7, 159–174. [Google Scholar] [CrossRef]
- Noetzli, M.; Guidi, M.; Ebbing, K.; Eyer, S.; Wilhelm, L.; Michon, A.; Thomazic, V.; Alnawaqil, A.-M.; Maurer, S.; Zumbach, S.; et al. Population Pharmacokinetic Study of Memantine: Effects of Clinical and Genetic Factors. Clin. Pharmacokinet. 2013, 52, 211–223. [Google Scholar] [CrossRef]
- D’Argenio, G.; Petillo, O.; Margarucci, S.; Torpedine, A.; Calarco, A.; Koverech, A.; Boccia, A.; Paolella, G.; Peluso, G. Colon OCTN2 Gene Expression Is Up-Regulated by Peroxisome Proliferator-Activated Receptor Gamma in Humans and Mice and Contributes to Local and Systemic Carnitine Homeostasis. J. Biol. Chem. 2010, 285, 27078–27087. [Google Scholar] [CrossRef]
- Klaassen, C.D.; Slitt, A.L. Regulation of Hepatic Transporters by Xenobiotic Receptors. Curr. Drug Metab. 2005, 6, 309–328. [Google Scholar] [CrossRef] [PubMed]
- Maeda, T.; Oyabu, M.; Yotsumoto, T.; Higashi, R.; Nagata, K.; Yamazoe, Y.; Tamai, I. Effect of Pregnane X Receptor Ligand on Pharmacokinetics of Substrates of Organic Cation Transporter Oct1 in Rats. Drug Metab. Dispos. 2007, 35, 1580–1586. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Idle, J.R.; Gonzalez, F.J. The Pregnane X Receptor: From Bench to Bedside. Expert Opin. Drug Metab. Toxicol. 2008, 4, 895–908. [Google Scholar] [CrossRef] [PubMed]
- Raulin, A.-C.; Doss, S.V.; Trottier, Z.A.; Ikezu, T.C.; Bu, G.; Liu, C.-C. ApoE in Alzheimer’s Disease: Pathophysiology and Therapeutic Strategies. Mol. Neurodegener. 2022, 17, 72. [Google Scholar] [CrossRef] [PubMed]
- Cacabelos, R.; Fernández-Novoa, L.; Martínez-Bouza, R.; McKay, A.; Carril, J.C.; Lombardi, V.; Corzo, L.; Carrera, I.; Tellado, I.; Nebril, L.; et al. Future Trends in the Pharmacogenomics of Brain Disorders and Dementia: Influence of APOE and CYP2D6 Variants. Pharmaceuticals 2010, 3, 3040–3100. [Google Scholar] [CrossRef]
- Grzegorzewski, J.; Brandhorst, J.; König, M. Physiologically Based Pharmacokinetic (PBPK) Modeling of the Role of CYP2D6 Polymorphism for Metabolic Phenotyping with Dextromethorphan. Front. Pharmacol. 2022, 13, 1029073. [Google Scholar] [CrossRef]
- Cacabelos, R.; Llovo, R.; Fraile, C.; Fernández-Novoa, L. Pharmacogenetic Aspects of Therapy with Cholinesterase Inhibitors: The Role of CYP2D6 in Alzheimer’s Disease Pharmacogenetics. Curr. Alzheimer Res. 2007, 4, 479–500. [Google Scholar] [CrossRef]
- Cacabelos, R.; Alvarez, A.; Fenández-Novoa, L.; Lombardi, V.R. A Pharmacogenomic Approach to Alzheimer’s Disease. Acta Neurol. Scand. Suppl. 2000, 176, 12–19. [Google Scholar] [CrossRef]
- Wang, J.-H.; Wu, Y.-J.; Tee, B.L.; Lo, R.Y. Medical Comorbidity in Alzheimer’s Disease: A Nested Case-Control Study. J. Alzheimer’s Dis. 2018, 63, 773–781. [Google Scholar] [CrossRef]
- Gauthier, S. Cholinergic Adverse Effects of Cholinesterase Inhibitors in Alzheimer’s Disease: Epidemiology and Management. Drugs Aging 2001, 18, 853–862. [Google Scholar] [CrossRef] [PubMed]
- Rammes, G.; Danysz, W.; Parsons, C.G. Pharmacodynamics of Memantine: An Update. Curr. Neuropharmacol. 2008, 6, 55–78. [Google Scholar] [CrossRef] [PubMed]
- Cummings, J.; Aisen, P.; Apostolova, L.G.; Atri, A.; Salloway, S.; Weiner, M. Aducanumab: Appropriate Use Recommendations. J. Prev. Alzheimer’s Dis. 2021, 8, 398–410. [Google Scholar] [CrossRef] [PubMed]
- Cummings, J.; Apostolova, L.; Rabinovici, G.D.; Atri, A.; Aisen, P.; Greenberg, S.; Hendrix, S.; Selkoe, D.; Weiner, M.; Petersen, R.C.; et al. Lecanemab: Appropriate Use Recommendations. J. Prev. Alzheimer’s Dis. 2023, 10, 362–377. [Google Scholar] [CrossRef] [PubMed]
- Reyderman, L.; Hayato, S.; Reddy, H.; Takenaka, O.; Yasuda, S.; Swanson, C.J.; Willis, B.A.; Hussein, Z. Modeled Impact of APOE4 Genotype on ARIA-E Incidence in Patients Treated With Lecanemab. Alzheimer’s Dement. 2022, 18, e069402. [Google Scholar] [CrossRef]
- Gottesman, R.T.; Stern, Y. Behavioral and Psychiatric Symptoms of Dementia and Rate of Decline in Alzheimer’s Disease. Front. Pharmacol. 2019, 10, 1062. [Google Scholar] [CrossRef] [PubMed]
- Cacabelos, R. Pharmacogenomics and Therapeutic Strategies for Dementia. Expert Rev. Mol. Diagn. 2009, 9, 567–611. [Google Scholar] [CrossRef]
- Cacabelos, R. Pharmacogenomics of Drugs Used to Treat Brain Disorders. Expert Rev. Precis. Med. Drug Dev. 2020, 5, 181–234. [Google Scholar] [CrossRef]
- Pardiñas, A.F.; Owen, M.J.; Walters, J.T.R. Pharmacogenomics: A Road Ahead for Precision Medicine in Psychiatry. Neuron 2021, 109, 3914–3929. [Google Scholar] [CrossRef]
- Tauser, R.-G. Pharmacogenomics in Psychiatric Disorders. Brain Resaerch Artif. Intell. Neurosci. 2020, 11, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Cacabelos, R. Pharmacogenomics, Nutrigenomics and Therapeutic Optimization in Alzheimer’s Disease. Aging Health 2005, 1, 303–348. [Google Scholar] [CrossRef]
- Leung, D.K.Y.; Chan, W.C.; Spector, A.; Wong, G.H.Y. Prevalence of Depression, Anxiety, and Apathy Symptoms across Dementia Stages: A Systematic Review and Meta-Analysis. Int. J. Geriatr. Psychiatry 2021, 36, 1330–1344. [Google Scholar] [CrossRef] [PubMed]
- Breitve, M.H.; Hynninen, M.J.; Brønnick, K.; Chwiszczuk, L.J.; Auestad, B.H.; Aarsland, D.; Rongve, A. A Longitudinal Study of Anxiety and Cognitive Decline in Dementia with Lewy Bodies and Alzheimer’s Disease. Alzheimer’s Res. Ther. 2016, 8, 3. [Google Scholar] [CrossRef]
- Macedo, A.C.; Balouch, S.; Tabet, N. Is Sleep Disruption a Risk Factor for Alzheimer’s Disease? J. Alzheimer’s Dis. 2017, 58, 993–1002. [Google Scholar] [CrossRef]
- Cipriani, G.; Lucetti, C.; Danti, S.; Nuti, A. Sleep Disturbances and Dementia. Psychogeriatrics 2015, 15, 65–74. [Google Scholar] [CrossRef]
- Lim, A.S.P.; Kowgier, M.; Yu, L.; Buchman, A.S.; Bennett, D.A. Sleep Fragmentation and the Risk of Incident Alzheimer’s Disease and Cognitive Decline in Older Persons. Sleep 2013, 36, 1027–1032. [Google Scholar] [CrossRef] [PubMed]
- Santo, L.; Rui, P.; Ashman, J.J. Physician Office Visits at Which Benzodiazepines Were Prescribed: Findings from 2014–2016 National Ambulatory Medical Care Survey. Natl. Health Stat. Rep. 2020, 137, 1–16. [Google Scholar]
- Liu, L.; Jia, L.; Jian, P.; Zhou, Y.; Zhou, J.; Wu, F.; Tang, Y. The Effects of Benzodiazepine Use and Abuse on Cognition in the Elders: A Systematic Review and Meta-Analysis of Comparative Studies. Front. Psychiatry 2020, 11, 755. [Google Scholar] [CrossRef] [PubMed]
- Griffin, C.E., 3rd; Kaye, A.M.; Bueno, F.R.; Kaye, A.D. Benzodiazepine Pharmacology and Central Nervous System-Mediated Effects. Ochsner J. 2013, 13, 214–223. [Google Scholar]
- Tiwari, A.K.; Souza, R.P.; Müller, D.J. Pharmacogenetics of Anxiolytic Drugs. J. Neural Transm. 2009, 116, 667–677. [Google Scholar] [CrossRef]
- Fukasawa, T.; Suzuki, A.; Otani, K. Effects of Genetic Polymorphism of Cytochrome P450 Enzymes on the Pharmacokinetics of Benzodiazepines. J. Clin. Pharm. Ther. 2007, 32, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Dean, L. Diazepam Therapy and CYP2C19 Genotype. In Medical Genetics Summaries [Internet]; Pratt, V., Scott, S., Pirmohamed, M., Esquivel, B., Kattman, B., Malheiro, A., Eds.; National Center for Biotechnology Information (US): Bethesda, MD, USA, 2012. [Google Scholar]
- Zubiaur, P.; Figueiredo-Tor, L.; Villapalos-García, G.; Soria-Chacartegui, P.; Navares-Gómez, M.; Novalbos, J.; Matas, M.; Calleja, S.; Mejía-Abril, G.; Román, M.; et al. Association between CYP2C19 and CYP2B6 Phenotypes and the Pharmacokinetics and Safety of Diazepam. Biomed. Pharmacother. 2022, 155, 113747. [Google Scholar] [CrossRef] [PubMed]
- Ham, A.C.; Ziere, G.; Broer, L.; Swart, K.M.A.; Enneman, A.W.; van Dijk, S.C.; van Wijngaarden, J.P.; van der Zwaluw, N.L.; Brouwer-Brolsma, E.M.; Dhonukshe-Rutten, R.A.M.; et al. CYP2C9 Genotypes Modify Benzodiazepine-Related Fall Risk: Original Results from Three Studies with Meta-Analysis. J. Am. Med. Dir. Assoc. 2017, 18, e1–e88. [Google Scholar] [CrossRef]
- Gaedigk, A.; Ingelman-Sundberg, M.; Miller, N.A.; Leeder, J.S.; Whirl-Carrillo, M.; Klein, T.E. The Pharmacogene Variation (PharmVar) Consortium: Incorporation of the Human Cytochrome P450 (CYP) Allele Nomenclature Database. Clin. Pharmacol. Ther. 2018, 103, 399–401. [Google Scholar] [CrossRef] [PubMed]
- Hicks, J.K.; Sangkuhl, K.; Swen, J.J.; Ellingrod, V.L.; Müller, D.J.; Shimoda, K.; Bishop, J.R.; Kharasch, E.D.; Skaar, T.C.; Gaedigk, A.; et al. Clinical Pharmacogenetics Implementation Consortium Guideline (CPIC) for CYP2D6 and CYP2C19 Genotypes and Dosing of Tricyclic Antidepressants: 2016 Update. Clin. Pharmacol. Ther. 2017, 102, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Skryabin, V.Y.; Zastrozhin, M.S.; Torrado, M.V.; Grishina, E.A.; Ryzhikova, K.A.; Shipitsyn, V.V.; Galaktionova, T.E.; Sorokin, A.S.; Bryun, E.A.; Sychev, D.A. How Do CYP2C19*2 and CYP2C19*17 Genetic Polymorphisms Affect the Efficacy and Safety of Diazepam in Patients with Alcohol Withdrawal Syndrome? Drug Metab. Pers. Ther. 2020, 35, 20190026. [Google Scholar] [CrossRef]
- Skryabin, V.Y.; Zastrozhin, M.; Torrado, M.; Grishina, E.; Ryzhikova, K.; Shipitsyn, V.; Galaktionova, T.; Sorokin, A.; Bryun, E.; Sychev, D. Effects of CYP2C19*17 Genetic Polymorphisms on the Steady-State Concentration of Diazepam in Patients with Alcohol Withdrawal Syndrome. Hosp. Pharm. 2021, 56, 592–596. [Google Scholar] [CrossRef] [PubMed]
- Ho, T.T.; Noble, M.; Tran, B.A.; Sunjic, K.; Gupta, S.V.; Turgeon, J.; Crutchley, R.D. Clinical Impact of the CYP2C19 Gene on Diazepam for the Management of Alcohol Withdrawal Syndrome. J. Pers. Med. 2023, 13, 285. [Google Scholar] [CrossRef]
- Bertilsson, L.; Henthorn, T.K.; Sanz, E.; Tybring, G.; Säwe, J.; Villén, T. Importance of Genetic Factors in the Regulation of Diazepam Metabolism: Relationship to S-Mephenytoin, but Not Debrisoquin, Hydroxylation Phenotype. Clin. Pharmacol. Ther. 1989, 45, 348–355. [Google Scholar] [CrossRef]
- Qin, X.P.; Xie, H.G.; Wang, W.; He, N.; Huang, S.L.; Xu, Z.H.; Ou-Yang, D.S.; Wang, Y.J.; Zhou, H.H. Effect of the Gene Dosage of CgammaP2C19 on Diazepam Metabolism in Chinese Subjects. Clin. Pharmacol. Ther. 1999, 66, 642–646. [Google Scholar] [CrossRef] [PubMed]
- Seo, T.; Nagata, R.; Ishitsu, T.; Murata, T.; Takaishi, C.; Hori, M.; Nakagawa, K. Impact of CYP2C19 Polymorphisms on the Efficacy of Clobazam Therapy. Pharmacogenomics 2008, 9, 527–537. [Google Scholar] [CrossRef] [PubMed]
- Phillips, K.M.; Rodriguez-Lopez, J.M.; Webb, A.J. Elevations in Norclobazam Concentrations and Altered Mental Status in CYP2C19 Poor Metabolizer Phenotype: A Case Report. Neurohospitalist 2023, 13, 434–437. [Google Scholar] [CrossRef]
- Riva, A.; Roberti, R.; D’Onofrio, G.; Vari, M.S.; Amadori, E.; De Giorgis, V.; Cerminara, C.; Specchio, N.; Pietrafusa, N.; Tombini, M.; et al. A Real-Life Pilot Study of the Clinical Application of Pharmacogenomics Testing on Saliva in Epilepsy. Epilepsia Open 2023, 8, 1142–1150. [Google Scholar] [CrossRef] [PubMed]
- Li-Wan-Po, A.; Girard, T.; Farndon, P.; Cooley, C.; Lithgow, J. Pharmacogenetics of CYP2C19: Functional and Clinical Implications of a New Variant CYP2C19*17. Br. J. Clin. Pharmacol. 2010, 69, 222–230. [Google Scholar] [CrossRef] [PubMed]
- Denisov, I.G.; Grinkova, Y.V.; McLean, M.A.; Camp, T.; Sligar, S.G. Midazolam as a Probe for Heterotropic Drug-Drug Interactions Mediated by CYP3A4. Biomolecules 2022, 12, 853. [Google Scholar] [CrossRef]
- Hsu, M.-H.; Johnson, E.F. Active-Site Differences between Substrate-Free and Ritonavir-Bound Cytochrome P450 (CYP) 3A5 Reveal Plasticity Differences between CYP3A5 and CYP3A4. J. Biol. Chem. 2019, 294, 8015–8022. [Google Scholar] [CrossRef]
- Kuehl, P.; Zhang, J.; Lin, Y.; Lamba, J.; Assem, M.; Schuetz, J.; Watkins, P.B.; Daly, A.; Wrighton, S.A.; Hall, S.D.; et al. Sequence Diversity in CYP3A Promoters and Characterization of the Genetic Basis of Polymorphic CYP3A5 Expression. Nat. Genet. 2001, 27, 383–391. [Google Scholar] [CrossRef]
- Wong, M.; Balleine, R.L.; Collins, M.; Liddle, C.; Clarke, C.L.; Gurney, H. CYP3A5 Genotype and Midazolam Clearance in Australian Patients Receiving Chemotherapy. Clin. Pharmacol. Ther. 2004, 75, 529–538. [Google Scholar] [CrossRef]
- Kharasch, E.D.; Walker, A.; Isoherranen, N.; Hoffer, C.; Sheffels, P.; Thummel, K.; Whittington, D.; Ensign, D. Influence of CYP3A5 Genotype on the Pharmacokinetics and Pharmacodynamics of the Cytochrome P4503A Probes Alfentanil and Midazolam. Clin. Pharmacol. Ther. 2007, 82, 410–426. [Google Scholar] [CrossRef]
- Floyd, M.D.; Gervasini, G.; Masica, A.L.; Mayo, G.; George, A.L.J.; Bhat, K.; Kim, R.B.; Wilkinson, G.R. Genotype-Phenotype Associations for Common CYP3A4 and CYP3A5 Variants in the Basal and Induced Metabolism of Midazolam in European- and African-American Men and Women. Pharmacogenetics 2003, 13, 595–606. [Google Scholar] [CrossRef]
- He, P.; Court, M.H.; Greenblatt, D.J.; Von Moltke, L.L. Genotype-Phenotype Associations of Cytochrome P450 3A4 and 3A5 Polymorphism with Midazolam Clearance In Vivo. Clin. Pharmacol. Ther. 2005, 77, 373–387. [Google Scholar] [CrossRef]
- Tolle-Sander, S.; Rautio, J.; Wring, S.; Polli, J.W.; Polli, J.E. Midazolam Exhibits Characteristics of a Highly Permeable P-Glycoprotein Substrate. Pharm. Res. 2003, 20, 757–764. [Google Scholar] [CrossRef]
- Park, J.Y.; Kim, B.J.; Lee, S.W.; Kang, H.; Kim, J.W.; Jang, I.-J.; Kim, J.G. Influence of Midazolam-Related Genetic Polymorphism on Conscious Sedation during Upper Gastrointestinal Endoscopy in a Korean Population. Sci. Rep. 2019, 9, 16001. [Google Scholar] [CrossRef] [PubMed]
- Greenblatt, D.J. Clinical Pharmacokinetics of Oxazepam and Lorazepam. Clin. Pharmacokinet. 1981, 6, 89–105. [Google Scholar] [CrossRef] [PubMed]
- Ching, N.R.; Alzghari, A.K.; Alzghari, S.K. The Relationship of UGT2B15 Pharmacogenetics and Lorazepam for Anxiety. Cureus 2018, 10, e3133. [Google Scholar] [CrossRef]
- Meech, R.; Hu, D.G.; McKinnon, R.A.; Mubarokah, S.N.; Haines, A.Z.; Nair, P.C.; Rowland, A.; Mackenzie, P.I. The UDP-Glycosyltransferase (UGT) Superfamily: New Members, New Functions, and Novel Paradigms. Physiol. Rev. 2019, 99, 1153–1222. [Google Scholar] [CrossRef]
- Chung, J.-Y.; Cho, J.-Y.; Yu, K.-S.; Kim, J.-R.; Jung, H.-R.; Lim, K.-S.; Jang, I.-J.; Shin, S.-G. Effect of the UGT2B15 Genotype on the Pharmacokinetics, Pharmacodynamics, and Drug Interactions of Intravenous Lorazepam in Healthy Volunteers. Clin. Pharmacol. Ther. 2005, 77, 486–494. [Google Scholar] [CrossRef] [PubMed]
- Mijderwijk, H.; Klimek, M.; van Beek, S.; van Schaik, R.H.N.; Duivenvoorden, H.J.; Stolker, R.J. Implication of UGT2B15 Genotype Polymorphism on Postoperative Anxiety Levels in Patients Receiving Lorazepam Premedication. Anesth. Analg. 2016, 123, 1109–1115. [Google Scholar] [CrossRef] [PubMed]
- Dolder, C.; Nelson, M.; McKinsey, J. Use of Non-Benzodiazepine Hypnotics in the Elderly: Are All Agents the Same? CNS Drugs 2007, 21, 389–405. [Google Scholar] [CrossRef]
- Von Moltke, L.L.; Greenblatt, D.J.; Granda, B.W.; Duan, S.X.; Grassi, J.M.; Venkatakrishnan, K.; Harmatz, J.S.; Shader, R.I. Zolpidem Metabolism in Vitro: Responsible Cytochromes, Chemical Inhibitors, and in Vivo Correlations. Br. J. Clin. Pharmacol. 1999, 48, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.; Shi, Y.; Xiang, P. CYP3A4 and CYP2C19 Genetic Polymorphisms and Zolpidem Metabolism in the Chinese Han Population: A Pilot Study. Forensic Sci. Int. 2013, 227, 77–81. [Google Scholar] [CrossRef]
- Byeon, J.-Y.; Kim, Y.-H.; Kim, S.-H.; Lee, C.-M.; Jung, E.-H.; Chae, W.-K.; Jang, C.-G.; Lee, S.-Y.; Lee, Y.J. Effects of Genetic Polymorphisms of CYP2C19 on the Pharmacokinetics of Zolpidem. Arch. Pharm. Res. 2018, 41, 861–866. [Google Scholar] [CrossRef] [PubMed]
- Jung, E.H.; Lee, C.-M.; Byeon, J.-Y.; Shin, H.-B.; Oh, K.-Y.; Cho, C.-K.; Lim, C.W.; Jang, C.-G.; Lee, S.-Y.; Lee, Y.J. Relationship between Plasma Exposure of Zolpidem and CYP2D6 Genotype in Healthy Korean Subjects. Arch. Pharm. Res. 2020, 43, 976–981. [Google Scholar] [CrossRef] [PubMed]
- Byeon, J.-Y.; Kim, Y.-H.; Kim, S.-H.; Lee, C.-M.; Jung, E.-H.; Chae, W.-K.; Jang, C.-G.; Lee, S.-Y.; Lee, Y.J. The Influences of CYP2C9*1/*3 Genotype on the Pharmacokinetics of Zolpidem. Arch. Pharm. Res. 2018, 41, 931–936. [Google Scholar] [CrossRef] [PubMed]
- Roses, A.D. Pharmacogenetics and Drug Development: The Path to Safer and More Effective Drugs. Nat. Rev. Genet. 2004, 5, 645–656. [Google Scholar] [CrossRef] [PubMed]
Dementia | Prevalence | Prevalence of Sporadic Cases | Highly Associated Genes | Other Involved Genes |
---|---|---|---|---|
AD | 60–80% | 95–90% | Early-onset: APP, PSEN1, PSEN2 Late-onset: APOE | CR1, BIN1, ADAM10, SORL1, SIRT1, BACE1, TREM2, AMY1A, ABCA7, TOMM40, SULTA3/4 |
VaD | 15% | Mostly sporadic | VaD due to monogenic disorders: NOTCH3, HTRA1, GLA, APP, PSEN1, PSEN2, COL4A1 | APOE, MTHFR, PON1, RPGRIP1L, PHLDB2, SYK |
FTD | 2.7% (total population) 10.2% (younger population) | 70% | C9ORF72, MAPT, GRN | TBK1, VCP, OPTN, TARDP, CHMP2B, TREM2, UBQLN2, SQSTM1, FUS, LOC730100, CEP131, ENTHD2, C17orf89, CHCHD10, SIGMAR1, CCNF, TIA1 |
LBD | 4.2% (total population) 7.5% (older population) | >80% | APOE, SNCA, GBA | BIN1, TMEM175, CLU, FBXL19, MAPT, TPCN1, OPTN |
Gene | Multifactorial Therapy Protocol | Study Length | Responders (Best to Worse) | References |
---|---|---|---|---|
APOE | CDP-choline (1000 mg/day) piracetam (2400 mg/day) anapsos/calagualine (360 mg/day) | 2 years | APOE-3/4 > APOE-2/3 > APOE-3/3 > APOE-2/4 > APOE-4/4 | [257] |
CYP2D6 | CDP-choline (500 mg/day) piracetam (1600 mg/day) nicergoline (5 mg/day) donepezil (5 mg/day) | 1 year | EM > IM > PM > UM | [256] |
PS1 | CDP-choline (1000 mg/day) piracetam (2400 mg/day) anapsos/calagualine (360 mg/day) | 2 years | PS1-2/2 = PS1-1/2 > PS1 1/1 | [257] |
PS2 | CDP-choline (1000 mg/day) piracetam (2400 mg/day) anapsos/calagualine (360 mg/day) | 2 years | PS2− > PS2+ | [257] |
Drug Name | Drug Class | Associated Gene | Pharmacogenetics Finding | Reference |
---|---|---|---|---|
Diazepam | Benzodiaze-pine, GABA-A receptor agonist | CYP2C19 | Variants CYP2C19*2 to CYP2C19*8 associated with partial or complete inactivation of enzymes, resulting in poor drug metabolism | [279] |
CYP2C19*17 variant associated with increased enzyme activity (extensive metabolizers) | [284] | |||
CYP2C19*2 allele raises risk of side effects, whereas CYP2C19*17 minimizes risk of side effects but decreases its efficacy | [285,286] | |||
Clearance decreases as number of low metabolizing CYP2C19 alleles increases | [281,289] | |||
CYP2B6 | CYP2B6 genotype affects diazepam pharmacokinetic variability | [281] | ||
CYP2C9 | CYP2C9*2 and CYP2C9*3 alleles associated with poor diazepam metabolism and increased risk of falls among the elderly population | [282] | ||
Clobazam | Benzodiazepine, GABA-A receptor agonist | CYP2C19 | Response rate to clobazam and occurrence of side effects are higher among carriers of CYP2C19*2 and CYP2C19*3 variants, with evident gene–dose effect | [290,291] |
CYP2C19*17 allele associated with increased enzymatic activity, but magnitude of observed effects is smaller than one for poor metabolizing alleles | [292] | |||
Midazolam | Benzodiazepine, GABA-A receptor agonist | CYP3A5 | Mean clearance is lower in CYP3A5*3 allele carriers | [297] |
Limited or no functional significance of polymorphisms resulting in common variants, including CYP3A4*1B, CYP3A5*3, CYP3A5*6, and CYP3A5*7 | [298,299,300] | |||
MDR1 | Plasma concentration and sedation grade associated with MDR1 1236C>T SNP | [302] | ||
Lorazepam | Benzodiazepine, GABA-A receptor agonist | UGT2B15 | UGT2B15*2 variant associated with lower systemic clearance and metabolic activity of lorazepam and higher lorazepam concentrations in homozygotes | [306] |
UGT2B15*2 homozygotes, especially women, have greater postoperative anxiety reduction after lorazepam premedication | [307] | |||
Zolpidem | Imidazopyridine, GABA-A receptor agonist | CYP3A | CYP3A4*18 variant associated with increased zolpidem metabolism | [310] |
CYP2C19 | CYP2C19*2 variant associated with reduced zolpidem metabolism | [310] | ||
No effect of CYP2C19 genotype on pharmacokinetic parameters of zolpidem | [311] | |||
CYP2D6 | No effect of CYP2D6 genotype on pharmacokinetic parameters of zolpidem | [312] | ||
CYP2C9 | No effect of CYP2C9 genotype on pharmacokinetic parameters of zolpidem | [313] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vuic, B.; Milos, T.; Tudor, L.; Nikolac Perkovic, M.; Konjevod, M.; Nedic Erjavec, G.; Farkas, V.; Uzun, S.; Mimica, N.; Svob Strac, D. Pharmacogenomics of Dementia: Personalizing the Treatment of Cognitive and Neuropsychiatric Symptoms. Genes 2023, 14, 2048. https://doi.org/10.3390/genes14112048
Vuic B, Milos T, Tudor L, Nikolac Perkovic M, Konjevod M, Nedic Erjavec G, Farkas V, Uzun S, Mimica N, Svob Strac D. Pharmacogenomics of Dementia: Personalizing the Treatment of Cognitive and Neuropsychiatric Symptoms. Genes. 2023; 14(11):2048. https://doi.org/10.3390/genes14112048
Chicago/Turabian StyleVuic, Barbara, Tina Milos, Lucija Tudor, Matea Nikolac Perkovic, Marcela Konjevod, Gordana Nedic Erjavec, Vladimir Farkas, Suzana Uzun, Ninoslav Mimica, and Dubravka Svob Strac. 2023. "Pharmacogenomics of Dementia: Personalizing the Treatment of Cognitive and Neuropsychiatric Symptoms" Genes 14, no. 11: 2048. https://doi.org/10.3390/genes14112048
APA StyleVuic, B., Milos, T., Tudor, L., Nikolac Perkovic, M., Konjevod, M., Nedic Erjavec, G., Farkas, V., Uzun, S., Mimica, N., & Svob Strac, D. (2023). Pharmacogenomics of Dementia: Personalizing the Treatment of Cognitive and Neuropsychiatric Symptoms. Genes, 14(11), 2048. https://doi.org/10.3390/genes14112048