Transcriptome-Based Comparative Expression Profiling of Sweet Potato during a Compatible Response with Root-Knot Nematode Meloidogyne incognita Infection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Functional Annotation
2.3. RNA Isolation and Gene Expression Analysis
2.4. Statistical Analysis
3. Results
3.1. Identification of the RKN-Compatible Response in Susceptible Sweet Potato Cultivars
3.2. Shared Compatible Responses to RKN Infection in RKN-Susceptible Sweet Potato Cultivars
3.3. Cultivar-Specific Compatible Responses to RKN Infection in RKN-Susceptible Sweet Potato Cultivars
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Palomares-Rius, J.E.; Kikuchi, T. Omics fields of study related to plant-parasitic nematodes. J. Integ. Omic. 2013, 3, 1–10. [Google Scholar] [CrossRef]
- Abad, P.; Favery, B.; Rosso, M.N.; Castagnone-Sereno, P. Root-knot nematode parasitism and host response: Molecular basis of a sophisticated interaction. Mol. Plant Pathol. 2003, 4, 217–224. [Google Scholar] [CrossRef]
- Abad, P.; Gouzy, J.; Aury, J.M.; Castagnone-Sereno, P.; Danchin, E.G.J.; Deleury, E.; Perfus-Barbeoch, L.; Anthouard, V.; Artiguenave, F.; Blok, V.C.; et al. Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nat. Biotechnol. 2008, 26, 909–915. [Google Scholar] [CrossRef]
- Bird, D.M. Manipulation of host gene expression by root-knot nematodes. J. Parasitol. 1996, 82, 881–888. [Google Scholar] [CrossRef]
- Caillaud, M.C.; Dubreuil, G.; Quentin, M.; Barbeoch, L.P.; Lecomte, P.; Engler, J.; Abad, P.; Rosso, M.N.; Favery, B. Root-knot nematodes manipulate plant cell functions during a compatible interaction. J. Plant Physiol. 2008, 165, 104–113. [Google Scholar] [CrossRef] [PubMed]
- Williamson, V.M.; Gleason, C.A. Plant–nematode interactions. Curr. Opin. Plant Biol. 2003, 6, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Davis, E.L.; Hussey, R.S.; Mitchum, M.G.; Baum, T.J. Parasitism proteins in nematode-plant interactions. Curr. Opin. Plant Biol. 2008, 11, 360–366. [Google Scholar] [CrossRef] [PubMed]
- Holbein, J.; Grundler, F.M.W.; Siddique, S. Plant basal resistance to nematodes: An update. J. Exp. Bot. 2016, 67, 2049–2061. [Google Scholar] [CrossRef] [PubMed]
- Postnikova, O.A.; Hult, M.; Shao, J.; Skantar, A.; Nemchinov, L.G. Transcriptome analysis of resistant and susceptible alfalfa cultivars infected with root-knot nematode Meloidogyne incognita. PLoS ONE 2015, 10, e0118269. [Google Scholar] [CrossRef] [PubMed]
- Xing, X.; Li, X.; Zhang, M.; Wang, Y.; Liu, B.; Xi, Q.; Zhao, K.; Wu, Y.; Yang, T. Transcriptome analysis of resistant and susceptible tobacco (Nicotiana tabacum) in response to root-knot nematode Meloidogyne incognita infection. Biochem. Biophy. Res. Com. 2017, 482, 1114–1121. [Google Scholar] [CrossRef]
- Shukla, N.; Yadav, R.; Kaur, P.; Rasmussen, S.; Goel, S.; Agarwal, M.; Jagannath, A.; Gupta, R.; Kumar, A. Transcriptome analysis of root-knot nematode (Meloidogyne incognita)-infected tomato (Solanum lycopersicum) roots reveals complex gene expression profiles and metabolic networks of both host and nematode during susceptible and resistance responses. Mol. Plant Pathol. 2018, 19, 615–633. [Google Scholar] [CrossRef] [PubMed]
- Macharia, T.N.; Bellieny-Rabelo, D.; Moleleki, L.N. Transcriptome profiling of potato (Solanum tuberosum L.) responses to root-knot nematode (Meloidogyne javanica) infestation during a compatible interaction. Microorganisms 2020, 8, 1443. [Google Scholar] [PubMed]
- Petitot, A.S.; Dereeper, A.; Silva, C.D.; Guy, J.; Fernandez, D. Analyses of the root-knot nematode (Meloidogyne graminicola) transcriptome during host infection highlight specific gene expression profiling in resistant rice plants. Pathogens 2020, 9, 644. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhao, D.; Shuang, L.; Xiao, D.; Xuan, Y.; Duan, Y.; Chen, L.; Wang, Y.; Liu, X.; Fan, H.; et al. Transcriptome analysis of rice roots in response to root-knot nematode infection. Int. J. Mol. Sci. 2020, 21, 848. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhang, H.; Tan, J.; Huang, S.; Chen, X.; Jiang, D.; Xiao, X. Transcriptome analysis of eggplant root in response to root-knot nematode infection. Pathogens 2021, 10, 470. [Google Scholar] [CrossRef] [PubMed]
- Diaz, J.T.; Chinn, M.S.; Truong, V.D. Simultaneous saccharification and fermentation of industrial sweetpotatoes for ethanol production and anthocyanins extraction. Indust. Crops Prod. 2014, 62, 53–60. [Google Scholar] [CrossRef]
- Grace, M.H.; Yousef, G.G.; Gustafson, S.J.; Truong, V.D.; Yencho, G.C.; Lila, M.A. Phytochemical changes in phenolics, anthocyanins, ascorbic acid, and carotenoids associated with sweetpotato storage and impacts on bioactive properties. Food. Chem. 2014, 145, 717–724. [Google Scholar] [CrossRef]
- Kistner, M.H.; Daiber, K.C.; Bester, C. The effect of root-knot nematodes (Meloidogyne spp.) and dry land conditions on the production of sweetpotato. J. S. Afr. Soc. Hortic. Sci. 1993, 3, 108–110. [Google Scholar]
- Clark, C.A.; Moyer, J.W. Compendium of Sweet Potato Diseases; APS Press: Saint Paul, MN, USA, 1998. [Google Scholar]
- Sano, Z.; Iwahori, H. Regional variation in pathogenicity of Meloidogyne incognita populations on sweetpotato in Kyushu Okinawa, Japan. Jpn. J. Nematol. 2005, 35, 1–12. [Google Scholar] [CrossRef]
- Choi, D.R.; Lee, J.K.; Park, B.Y.; Chung, M.N. Occutrrence of root knot nematodes in sweet potato fields and resistance screening of sweetpotato cultivars. Kor. J. Appl. Entomol. 2006, 45, 211–216. [Google Scholar]
- Cervantes-Flores, J.C.; Yencho, G.C.; Davis, E.L. Efficient evaluation of resistance to three root-knot nematode species in selected sweetpotato cultivars. Hort. Sci. 2002, 37, 390–392. [Google Scholar] [CrossRef]
- Osunlola, O.S.; Fawole, B. Pathogenicity of root-knot nematode (Meloidogyne incognita) on sweet potato (Ipomoea batatas L.). Int. J. Agric. Res. 2015, 6, 47–53. [Google Scholar]
- Brito, J.A.; Desaeger, J.; Dickson, D.W. Reproduction of Meloidogyne enterolobii on selected root-knot nematode resistant sweetpotato (Ipomoea batatas) cultivars. J. Nematol. 2020, 52, 1–6. [Google Scholar] [CrossRef]
- Cervantes-Flores, J.C.; Yencho, G.C.; Davis, E.L. Host reactions of sweetpotato genotypes to root-knot nematodes and variation in virulence of Meloidogyne incognita populations. Hort. Sci. 2002, 37, 1112–1116. [Google Scholar] [CrossRef]
- Karuri, H.W.; Olago, D.; Neilson, R.; Mararo, E.; Villinger, J. A survey of root knot nematodes and resistance to Meloidogyne incognita in sweet potato varieties from Kenyan fields. Crop Protec. 2017, 92, 114–121. [Google Scholar] [CrossRef]
- Mcharo, M.; LaBonte, D.R.; Clark, C.; Hoy, M.; Oard, J.M. Molecular marker variability for southern root-knot nematode resistance in sweetpotato. Euphytica 2005, 144, 125–132. [Google Scholar] [CrossRef]
- Cervantes-Flores, J.C.; Yencho, G.C.; Pecota, K.V.; Sosinski, B.; Mwanga, R.O.M. Detection of quantitative trait loci and inheritance of root-knot nematode resistance in sweetpotato. Hort. Sci. 2008, 133, 844–851. [Google Scholar] [CrossRef]
- Oloka, B.M.; Pereira, G.D.S.; Amankwaah, V.A.; Mollinari, M.; Pecota, K.V.; Yada, B.; Olukolu, B.A.; Zeng, Z.B.; Yencho, G.C. Discovery of a major QTL for root-knot nematode (Meloidogyne incognita) resistance in cultivated sweetpotato (Ipomoea batatas). Theor. Appl. Genet. 2021, 134, 1945–1955. [Google Scholar] [CrossRef] [PubMed]
- Asamizu, E.; Shirasawa, K.; Hirakawa, H.; Iwahori, H. Root-knot nematode genetic diversity associated with host compatibility to sweetpotato cultivars. Mol. Plant Pathol. 2020, 21, 1088–1098. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, H.; Tanaka, M.; Takahata, Y.; Matsui, K.; Iwahori, H.; Sano, Z.I.; Yoshinaga, M. Development of AFLP-derived SCAR markers associated with resistance to two races of southern root-knot nematode in sweetpotato. Euphytica 2012, 188, 175–185. [Google Scholar] [CrossRef]
- Obata, N.; Tabuchi, H.; Kurihara, M.; Yamamoto, E.; Shirasawa, K.; Monden, Y. Mapping of nematode resistance in hexaploid sweetpotato using a next-generation sequencing-based association study. Front. Plant Sci. 2022, 13, 858747. [Google Scholar] [CrossRef]
- Lee, I.H.; Shim, D.; Jeong, J.C.; Sung, Y.W.; Nam, K.J.; Yang, J.W.; Ha, J.; Lee, J.J.; Kim, Y.H. Transcriptome analysis of root-knot nematode (Meloidogyne incognita)-resistant and susceptible sweetpotato cultivars. Planta 2019, 249, 431–444. [Google Scholar] [CrossRef]
- Lee, I.H.; Kim, H.S.; Nam, K.J.; Lee, K.L.; Yang, J.W.; Kwak, S.S.; Lee, J.J.; Shim, D.; Kim, Y.H. The defense response involved in sweetpotato resistance to root-knot nematode Meloidogyne incognita: Comparison of root transcriptomes of resistant and susceptible sweetpotato cultivars with respect to induced and constitutive defense responses. Front. Plant Sci. 2021, 12, 671677. [Google Scholar] [CrossRef]
- Yang, J.W.; Park, S.U.; Lee, H.U.; Nam, K.J.; Lee, K.L.; Lee, J.J.; Kim, J.H.; Kwak, S.S.; Kim, H.S.; Kim, Y.H. Differential responses of antioxidant enzymes and lignin metabolism in susceptible and resistant sweetpotato cultivars during root-knot nematode infection. Antioxidants 2023, 12, 1164. [Google Scholar] [CrossRef] [PubMed]
- Park, S.C.; Kim, Y.H.; Ji, C.Y.; Park, S.; Jeong, J.C.; Lee, H.S.; Kwak, S.S. Stable internal reference genes for the normalization of real-time PCR in different sweetpotato cultivars subjected to abiotic stress conditions. PLoS ONE 2012, 7, 51502. [Google Scholar] [CrossRef]
- Bellafiore, S.; Briggs, S.P. Nematode effectors and plant responses to infection. Curr. Opin. Plant Biol. 2010, 13, 442–448. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.Z.; Gao, B.L.; Maier, T.; Allen, R.; Davis, E.L.; Baum, T.J.; Hussey, R.S. A profile of putative parasitism genes expressed in the esophageal gland cells of the root-knot nematode Meloidogyne incognita. Mol. Plant Microbe Interact. 2003, 16, 376–381. [Google Scholar] [CrossRef]
- Ali, M.A.; Abbas, A.; Azeem, F.; Javed, N.; Bohlmann, H. Plant-nematode interactions: From genomics to metabolomics. Int. J. Agric. Biol. 2015, 17, 1071–1082. [Google Scholar]
- Gheysen, G.; Fenoll, C. Gene expression in nematode feeding sites. Annu. Rev. Phytopathol. 2002, 40, 191–219. [Google Scholar] [CrossRef] [PubMed]
- Rebeccam, D.; Patricka, R.; Patriciam, M.; Jane, L. Germins: A diverse protein family important for crop improvement. Plant Sci. 2009, 177, 499–510. [Google Scholar]
- Woo, E.J.; Dunwell, J.M.; Goodenough, P.W.; Marvier, A.C.; Pickersgill, R.W. Germin is a manganese containing homohexamer with oxalate oxidase and superoxide dismutase activities. Nat. Struct. Biol. 2000, 7, 1036–1040. [Google Scholar] [PubMed]
- Fan, Z.; Gu, H.; Chen, X.; Song, H.; Wang, Q.; Liu, M.; Qu, L.J.; Chen, Z. Cloning and expression analysis of Zmglp1, a new germin-like protein gene in maize. Biochem. Biophys. Res. Commun. 2005, 331, 1257–1263. [Google Scholar] [CrossRef] [PubMed]
- Rietz, S.; Bernsdorff, F.E.M.; Cai, D. Members of the germin-like protein family in Brassica napus are candidates for the initiation of an oxidative burst that impedes pathogenesis of Sclerotinia sclerotiorum. J. Exp. Bot. 2012, 63, 5507–5519. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Huang, X.; Liu, S.; Tang, M.; Hu, W.; Pan, S. Characterization of germin-like protein with polyphenol oxidase activity from Satsuma mandarine. Biochem. Bioph. Res. Commun. 2014, 449, 313–318. [Google Scholar] [CrossRef]
- Sakamoto, A.; Nishimura, T.; Miyaki, Y.; Watanabe, S.; Takagi, H.; Izumi, S.; Shimada, H. In vitro and in vivo evidence for oxalate oxidase activity of a germin-like protein from azalea. Biochem. Bioph. Res. Commun. 2015, 458, 536–542. [Google Scholar] [CrossRef]
- Park, H.C.; Kim, M.L.; Kang, Y.H.; Jeon, J.M.; Yoo, J.H.; Kim, M.C.; Park, C.Y.; Jeong, J.C.; Moon, B.C.; Lee, J.H.; et al. Pathogen- and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor. Plant Physiol. 2004, 135, 2150–2161. [Google Scholar] [CrossRef]
- Liu, Q.; Yang, J.; Yan, S.; Zhang, S.; Zhao, J.; Wang, W.; Yang, T.; Wang, X.; Mao, X.; Dong, J.; et al. The germin-like protein OsGLP2-1 enhances resistance to fungal blast and bacterial blight in rice. Plant Mol. Biol. 2016, 92, 411–423. [Google Scholar] [CrossRef]
- Zhang, N.; Guan, R.; Yang, Y.; Bai, Z.; Ge, F.; Liu, D. Isolation and characterization of a Fusarium oxysporum-resistant gene LrGLP1 from Lilium regale Wilson. Vitr. Cell Dev. Bio. Plant. 2017, 53, 461–468. [Google Scholar] [CrossRef]
- Leon, J.; Lawton, M.A.; Raskin, I. Hydrogen peroxide stimulates salicylic acid biosynthesis in tobacco. Plant Physiol. 1995, 108, 1673–1678. [Google Scholar] [CrossRef]
- Lou, Y.; Baldwin, I.T. Silencing of a germin-like gene in Nicotiana attenuata improves performance of native herbivores. Plant Physiol. 2006, 140, 1126–1136. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, G. The multigene family encoding Germin-like proteins of barley. Regulation and function in basal host resistance. Plant Physiol. 2006, 142, 181–192. [Google Scholar] [CrossRef]
- Godfrey, D.; Able, A.J.; Dry, I.B. Induction of a grapevine germin-like protein (VvGLP3) gene is closely linked to the site of erysiphe necator infection: A possible role in defense. Mol. Plant Microbe Interact. 2007, 20, 1112–1125. [Google Scholar] [CrossRef] [PubMed]
- Niyogi, K.K.; Fink, G.R. Two anthranilate synthase genes in Arabidopsis: Defense-related regulation of the tryptophan pathway. Plant Cell 1992, 4, 721–733. [Google Scholar] [PubMed]
- Beeching, J.R. High sequence conservation between isocitrate lyase from Escherichia coli and Ricinus communis. Prot. Seq. Data Anal. 1989, 2, 463–466. [Google Scholar]
- Atomi, H.; Ueda, M.; Hikida, M.; Hishida, T.; Teranishi, Y.; Tanaka, A. Peroxisomal isocitrate lyase of the n-alkane-assimilating yeast Candida tropicalis: Gene analysis and characterization. J. Biochem. 1990, 107, 262–266. [Google Scholar] [CrossRef] [PubMed]
- Dunn, M.F.; Ramírez-Trujillo, J.A.; Hernández-Lucas, I. Major roles of isocitrate lyase and malate synthase in bacterial and fungal pathogenesis. Microbiology 2009, 155, 3166–3175. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Xie, H.; Song, M.; Lu, J.; Ma, P.; Huang, B.; Wang, M.; Tian, Y.; Chen, F.; Peng, J.; et al. Cut–dip–budding delivery system enables genetic modifications in plants without tissue culture. Innovation 2023, 4, 100345. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sung, Y.W.; Kim, J.; Yang, J.-W.; Shim, D.; Kim, Y.-H. Transcriptome-Based Comparative Expression Profiling of Sweet Potato during a Compatible Response with Root-Knot Nematode Meloidogyne incognita Infection. Genes 2023, 14, 2074. https://doi.org/10.3390/genes14112074
Sung YW, Kim J, Yang J-W, Shim D, Kim Y-H. Transcriptome-Based Comparative Expression Profiling of Sweet Potato during a Compatible Response with Root-Knot Nematode Meloidogyne incognita Infection. Genes. 2023; 14(11):2074. https://doi.org/10.3390/genes14112074
Chicago/Turabian StyleSung, Yeon Woo, Jaewook Kim, Jung-Wook Yang, Donghwan Shim, and Yun-Hee Kim. 2023. "Transcriptome-Based Comparative Expression Profiling of Sweet Potato during a Compatible Response with Root-Knot Nematode Meloidogyne incognita Infection" Genes 14, no. 11: 2074. https://doi.org/10.3390/genes14112074
APA StyleSung, Y. W., Kim, J., Yang, J. -W., Shim, D., & Kim, Y. -H. (2023). Transcriptome-Based Comparative Expression Profiling of Sweet Potato during a Compatible Response with Root-Knot Nematode Meloidogyne incognita Infection. Genes, 14(11), 2074. https://doi.org/10.3390/genes14112074