Advances in CircRNAs in the Past Decade: Review of CircRNAs Biogenesis, Regulatory Mechanisms, and Functions in Plants
Abstract
:1. Introduction
2. Classification of circRNAs
2.1. Exonic circRNAs
2.2. Intronic circRNAs
2.3. Exon-Intron circRNAs
2.4. Intergenic circRNAs
3. Biogenesis of circRNAs
3.1. Direct Backsplicing Model
3.1.1. Intron Pairing Drives Cyclization
3.1.2. Trans-Acting Factors Drive Cyclization
3.2. Exon Jumping Model
4. Interaction Mechanisms of circRNAs with Other Biological Macromolecules
4.1. CircRNAs and Their Parental Genes
4.2. CircRNAs and miRNAs
4.2.1. CircRNAs Act as miRNA Sponges
4.2.2. Predictive Web Tools for circRNA–miRNA Interactions
4.2.3. Detection Methods for circRNA–miRNA Interactions
- (1)
- Luciferase reporter assays
- (2)
- Antisense oligonucleotide (ASO) pulldown
- (3)
- Labeled microRNA pulldown assays
- (4)
- CircRNA–miRNA interaction assays
- (5)
- RNA fluorescence in situ hybridization
- (6)
- Silencing and overexpression experiments
4.3. CircRNAs and Proteins
4.3.1. CircRNA–Protein Interactions
4.3.2. CircRNA–Protein Interactions Prediction Web Tool
4.3.3. Detection Methods for circRNA–Protein Interactions
- (1)
- RNase protection assays
- (2)
- RNA pulldown assays
- (3)
- RNA immunoprecipitation
- (4)
- Electrophoretic mobility shift assays
- (5)
- Fluorescence in situ hybridization and immunofluorescence
4.4. CircRNAs and mRNAs
5. The Physiological Importance of circRNA in Plants
5.1. CircRNAs Serving as miRNA Sponges
5.2. CircRNAs Regulate Gene Expression
5.3. Interactions between circRNAs and Proteins
5.4. CircRNAs Have Potential Translation Functions
6. Involvement of circRNAs in Plant Growth and Development
6.1. CircRNAs Involved in Plant Embryogenesis
6.2. Regulating Plant Nutritional Growth via circRNAs
6.3. Regulation of Reproductive Growth via circRNAs
6.3.1. Regulation of Flower Development
6.3.2. Regulation of Fruit Development
7. Roles of circRNAs in Plant Stress Responses
7.1. Responses of circRNAs to Biostress
7.1.1. CircRNAs and Plant Viral Infections
7.1.2. CircRNAs and Bacterial Infections
7.1.3. CircRNAs and Fungal Infections
7.1.4. CircRNAs and Insect Attacks
7.2. CircRNA Response to Abiotic Stresses
7.2.1. CircRNAs and Temperature Stress
7.2.2. CircRNAs and Water Stress
7.2.3. CircRNAs and Salt Stress
7.2.4. CircRNAs and Nutrient Stress
Types of Stress to Plants | Stimuli in the Environment | Plant Species | Tissues | Number of Differentially Expressed circRNAs | Reference |
---|---|---|---|---|---|
Viral infections | Maize Iranian mosaic virus | Maize | Leaf | 160 | [197] |
Tomato yellow leaf curl virus | Tomato | Leaf | 115 | [150] | |
Cucumber green mottle mosaic virus | Watermelon | Leaf | 548 | [13] | |
Tomato leaf curl Bangalore virus | Tomato | Leaf | 165 | [198] | |
Bacterial infections | Pectobacterium carotovorum subsp. brasiliense | Potato | Stem | 429 | [10] |
Pseudomonas syringae pv. actinidiae | Kiwifruit | Leaf | 584 | [16] | |
Xanthomonas oryzae pv. oryzae | Rice | Leaf | 276 | [200] | |
Fungal infections | Magnaporthe oryzae | Rice | Leaf | 636 | [202] |
Powdery mildew | Melon | Leaf | 40 | [146] | |
Verticillium wilt | Gossypium | Root/stem | 280 | [203] | |
Wilt disease | Soybean | Leaf | 24 | [205] | |
Plasmodiophora brassicae | Brassica rapa | Root | 231 | [206] | |
Lasiodiplodia theobromae | Tea | Leaf | 345 | [215] | |
Insect attacks | Cotton bollworm | Soybean | Leaf | 199 | [9] |
Helopeltis theivora | Tea | Leaf | 34 | [218] | |
Temperature stress | Heat stress | Arabidopsis | Seedling | 439 | [222] |
Heat stress | Cucumbers | Leaf | 6 | [223] | |
Heat stress | Tomato | Seed | 73 | [224] | |
Low-temperature treatment | Tomato | Leaf | 1759 | [226] | |
Chilling | Bell pepper | Fruit pericarp | 36 | [12] | |
Cold stress | Tea | Tender bud or young leaves | 250 | [227] | |
Water stress | Dehydration Stress | Wheat | Seedling | 62 | [6] |
Drought stress | Birch-leaf pear | Leaf | 33 | [20] | |
Drought Stress | Moso bamboo | Leaf | 52 | [230] | |
Drought Responses | Sugar beet | Leaf | 17 | [231] | |
Salt stress | Salt stress | Cucumber | Root/leaf | 1934/44 | [14] |
Salt stress | Tomato | Root | 107 | [237] | |
Salt stress | Rice | Root | 188 | [238] | |
Nutrient stress | Low nitrogen stress | Wheat | Root | 29 | [243] |
Nitrogen stress | Maize | Leaf/root | 24/22 | [244] | |
Low phosphorus stress | Soybean | Root | 120 | [245] | |
Phosphorus deficiency | Rice | Root | 27 | [21] | |
Calcium deficiency | Chinese cabbage | Leaf | 23 | [246] | |
Excess copper | Citrus junos Sieb. Ex Tanaka | Root/leaf | 45/17 | [247] |
8. Conclusions and Future Prospects
- (1)
- Functional validation: Although circRNAs in plants are known to exhibit diverse biological functions, many conclusions have been based on RNA-seq analysis and bioinformatics prediction. The biological functions of circRNAs are often inferred through GO or KEGG annotation and enrichment analyses of their parental genes, whereas few studies have validated the biological functions of circRNAs. Additionally, challenges exist in the technologies for overexpressing or silencing circRNAs in plants, such as avoiding effects on the expression of parental genes when knocking down or knocking out circRNAs, or minimizing interference from exogenous genes and neighboring genes.
- (2)
- In-depth investigation of the regulatory mechanisms of circRNAs: The mechanisms underlying circRNA biogenesis and degradation, as well the study of circRNA–miRNA interactions and regulation of circRNAs’ downstream genes, should be explored. These studies would further elucidate the biological functions and regulatory mechanisms of circRNAs, and aid in understanding the functions of circRNAs in processes such as plant growth, development, and aging.
- (3)
- Revealing the interactions between circRNAs and other biomolecules (such as miRNAs and proteins): Beyond circRNAs, many other biomolecules are present in plants, such as miRNAs, long non-coding RNAs, and proteins, some of which may have functional crosstalk or interactions with circRNAs. Future research should investigate the interactions among these biomolecules, and elucidate their synergistic roles in regulating gene expression in plants. This exploration would reveal additional details regarding their involvement in plant growth, development, and stress responses.
- (4)
- Application of circRNAs as biomarkers: In plants, circRNAs serve as biomarkers for AS variants of plant exons, and the potential applications of biomarkers in plant breeding have been explored. Thorough understanding of circRNAs will be crucial for improving crop breeding and stress resistance.
- (5)
- Conducting research on the application of circRNAs in plants: Further exploration of the potential applications of circRNAs, such as for plant genetic improvement, stress resistance breeding, and development of RNA pesticides, would provide new insights and methods for plant production and agricultural development.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, L.L.; Yang, L. Regulation of circRNA biogenesis. RNA Biol. 2015, 12, 381–388. [Google Scholar] [CrossRef]
- Szabo, L.; Salzman, J. Detecting circular RNAs: Bioinformatic and experimental challenges. Nat. Rev. Genet. 2016, 17, 679–692. [Google Scholar] [CrossRef]
- Guria, A.; Sharma, P.; Natesan, S.; Pandi, G. Circular RNAs-the road less traveled. Front. Mol. Biosci. 2020, 6, 146. [Google Scholar] [CrossRef]
- Wang, P.L.; Bao, Y.; Yee, M.C.; Barrett, S.P.; Hogan, G.J.; Olsen, M.N.; Dinneny, J.R.; Brown, P.O.; Salzman, J. Circular RNA is expressed across the eukaryotic tree of life. PLoS ONE 2014, 9, e90859. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.T.; Cui, L.L.; Zhou, Y.; Zhu, C.R.; Fan, D.L.; Gong, H.; Zhao, Q.; Zhou, C.C.; Zhao, Y.; Lu, D.F.; et al. Transcriptome-wide investigation of circular RNAs in rice. RNA 2015, 21, 2076–2087. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.X.; Yang, M.; Wei, S.M.; Qin, F.J.; Zhao, H.J.; Suo, B. Identification of circular RNAs and their targets in leaves of Triticum aestivum L. under dehydration stress. Front. Plant Sci. 2017, 7, 2024. [Google Scholar] [CrossRef] [PubMed]
- Darbani, B.; Noeparvar, S.; Borg, S. Identification of circular RNAs from the parental genes involved in multiple aspects of cellular metabolism in barley. Front. Plant Sci. 2016, 7, 776. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, P.; Fan, Y.; Lu, Q.; Li, Q.; Yan, J.B.; Muehlbauer, G.J.; Schnable, P.S.; Dai, M.Q.; Li, L. Circular RNAs mediated by transposons are associated with transcriptomic and phenotypic variation in maize. New Phytol. 2018, 217, 1292–1306. [Google Scholar] [CrossRef]
- Zhao, W.; Zhang, C.; Shen, X.J.; Xiao, L.; Lu, J.H.; Zhang, Y.X.; Guo, W.; Jiao, Y.Q. Characterization of circRNAs associated with resistance to defoliating insects in soybean. Oil Crop Sci. 2017, 2, 23–37. [Google Scholar] [CrossRef]
- Zhou, R.; Zhu, Y.X.; Zhao, J.; Fang, Z.W.; Wang, S.P.; Yin, J.L.; Chu, Z.H.; Ma, D.F. Transcriptome-wide identification and characterization of potato circular RNAs in response to Pectobacterium carotovorum subspecies brasiliense infection. Int. J. Mol. Sci. 2017, 19, 71. [Google Scholar] [CrossRef]
- Zuo, J.H.; Wang, Q.; Zhu, B.Z.; Luo, Y.B.; Gao, L.P. Deciphering the roles of circRNAs on chilling injury in tomato. Biochem. Biophys. Res. Commun. 2016, 479, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Zuo, J.H.; Wang, Y.X.; Zhu, B.Z.; Luo, Y.B.; Wang, Q.; Gao, L.P. Analysis of the coding and non-coding RNA transcriptomes in response to bell pepper chilling. Int. J. Mol. Sci. 2018, 19, 2001. [Google Scholar] [CrossRef]
- Sun, Y.Y.; Zhang, H.Q.; Fan, M.; He, Y.J.; Guo, P.G. Genome-wide identification of long non-coding RNAs and circular RNAs reveal their ceRNA networks in response to cucumber green mottle mosaic virus infection in watermelon. Arch. Virol. 2020, 165, 1177–1190. [Google Scholar] [CrossRef]
- Zhu, Y.X.; Jia, J.H.; Yang, L.; Xia, Y.C.; Zhang, H.L.; Jia, J.B.; Zhou, R.; Nie, P.Y.; Yin, J.L.; Ma, D.F.; et al. Identification of cucumber circular RNAs responsive to salt stress. BMC Plant Biol. 2019, 19, 164. [Google Scholar] [CrossRef]
- Zhao, T.; Wang, L.Y.; Li, S.; Xu, M.; Guan, X.Y.; Zhou, B.L. Characterization of conserved circular RNA in polyploid Gossypium species and their ancestors. FEBS Lett. 2017, 591, 3660–3669. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.P.; Liu, Y.F.; Li, D.W.; Li, L.; Zhang, Q.; Wang, S.B.; Huang, H.W. Identification of circular RNAs in kiwifruit and their species-specific response to bacterial canker pathogen invasion. Front. Plant Sci. 2017, 8, 413. [Google Scholar] [CrossRef]
- Tong, W.; Yu, J.; Hou, Y.; Li, F.D.; Zhou, Q.Y.; Wei, C.L.; Bennetzen, J.L. Circular RNA architecture and differentiation during leaf bud to young leaf development in tea (Camellia sinensis). Planta 2018, 248, 1417–1429. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.Y.; Diao, S.F.; Zhang, T.; Chen, D.G.; He, C.Y.; Zhang, J.G. Identification and characterization of circular RNAs during the sea buckthorn fruit development. RNA Biol. 2019, 16, 354–361. [Google Scholar] [CrossRef]
- Wang, D.J.; Gao, Y.; Sun, S.M.; Li, L.W.; Wang, K. Expression characteristics in roots, phloem, leaves, flowers and fruits of apple circRNA. Genes 2022, 13, 712. [Google Scholar] [CrossRef]
- Wang, J.X.; Lin, J.; Wang, H.; Li, X.G.; Yang, Q.S.; Li, H.; Chang, Y.H. Identification and characterization of circRNAs in Pyrus betulifolia Bunge under drought stress. PLoS ONE 2018, 13, e0200692. [Google Scholar] [CrossRef]
- Ye, C.Y.; Chen, L.; Liu, C.; Zhu, Q.H.; Fan, L. Widespread noncoding circular RNAs in plants. New Phytol. 2015, 208, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.W.; Li, X.; Zhang, P.J.; Wang, J.J.; Zhou, Y.C.; Chen, M. Circular RNA: An emerging key player in RNA world. Brief. Bioinform. 2017, 18, 547–557. [Google Scholar] [CrossRef] [PubMed]
- Memczak, S.; Jens, M.; Elefsinioti, A.; Torti, F.; Krueger, J.; Rybak, A.; Maier, L.; Mackowiak, S.D.; Gregersen, L.H.; Munschauer, M.; et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 2013, 495, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Kristensen, L.S.; Andersen, M.S.; Stagsted, L.V.W.; Ebbesen, K.K.; Hansen, T.B.; Kjems, J. The biogenesis, biology and characterization of circular RNAs. Nat. Rev. Genet. 2019, 20, 675–691. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.J.; Li, S.D.; Chen, M. Characterization and function of circular RNAs in plants. Front. Mol. Biosci. 2020, 7, 19. [Google Scholar] [CrossRef] [PubMed]
- Eger, N.; Schoppe, L.; Schuster, S.; Laufs, U.; Boeckel, J.N. Circular RNA splicing. Adv. Exp. Med. Biol. 2018, 1087, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yang, L.; Chen, L.L. The biogenesis, functions, and challenges of circular RNAs. Mol. Cell 2018, 71, 428–442. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.F.; Zhang, Y.C.; Chen, Y.-Q.; Yu, Y. Circular RNAs roll into the regulatory network of plants. Biochem. Biophys. Res. Commun. 2017, 488, 382–386. [Google Scholar] [CrossRef] [PubMed]
- Lai, X.; Bazin, J.; Webb, S.; Crespi, M.; Zubieta, C.; Conn, S.J. CircRNAs in plants. Adv. Exp. Med. Biol. 2018, 1087, 329–343. [Google Scholar] [CrossRef]
- Bolha, L.; Ravnik-Glavač, M.; Glavač, D. Circular RNAs: Biogenesis, function, and a role as possible cancer biomarkers. Int. J. Genom. 2017, 2017, 6218353. [Google Scholar] [CrossRef]
- Chu, Q.J.; Shen, E.H.; Ye, C.Y.; Fan, L.J.; Zhu, Q.H. Emerging roles of plant circular RNAs. J. Plant Cell Dev. 2018, 1, 1–14. [Google Scholar] [CrossRef]
- Chen, L.; Wang, C.L.; Sun, H.Y.; Wang, J.X.; Liang, Y.C.; Wang, Y.; Wong, G. The bioinformatics toolbox for circRNA discovery and analysis. Brief. Bioinform. 2021, 22, 1706–1728. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.R.; Bhattacharya, M.; Bhakta, S.; Saha, A.; Lee, S.S.; Chakraborty, C. Recent research progress on circular RNAs: Biogenesis, properties, functions, and therapeutic potential. Mol. Ther. Nucleic Acids 2021, 25, 355–371. [Google Scholar] [CrossRef]
- Jeck, W.R.; Sorrentino, J.A.; Wang, K.; Slevin, M.K.; Burd, C.E.; Liu, J.; Marzluff, W.F.; Sharpless, N.E. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 2013, 19, 141–157. [Google Scholar] [CrossRef]
- Li, X.; Zhang, J.L.; Lei, Y.N.; Liu, X.Q.; Xue, W.; Zhang, Y.; Nan, F.; Gao, X.; Zhang, J.; Wei, J.; et al. Linking circular intronic RNA degradation and function in transcription by RNase H1. Sci. China Life Sci. 2021, 64, 1795–1809. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, X.O.; Chen, T.; Xiang, J.F.; Yin, Q.F.; Xing, Y.H.; Zhu, S.; Yang, L.; Chen, L.L. Circular intronic long noncoding RNAs. Mol. Cell 2013, 51, 792–806. [Google Scholar] [CrossRef]
- Li, Z.Y.; Huang, C.; Bao, C.; Chen, L.; Lin, M.; Wang, X.L.; Zhong, G.L.; Yu, B.; Hu, W.C.; Dai, L.M.; et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat. Struct. Mol. Biol. 2015, 22, 256–264. [Google Scholar] [CrossRef] [PubMed]
- Qu, S.B.; Zhong, Y.; Shang, R.Z.; Zhang, X.; Song, W.J.; Kjems, J.; Li, H.M. The emerging landscape of circular RNA in life processes. RNA Biol. 2017, 14, 992–999. [Google Scholar] [CrossRef] [PubMed]
- Long, F.; Li, L.; Xie, C.B.; Ma, M.; Wu, Z.W.; Lu, Z.X.; Liu, B.Y.; Yang, M.; Zhang, F.; Ning, Z.P.; et al. Intergenic circRNA circ_0007379 inhibits colorectal cancer progression by modulating miR-320a biogenesis in a KSRP-dependent manner. Int. J. Biol. Sci. 2023, 19, 3781–3803. [Google Scholar] [CrossRef]
- Saaoud, F.; Charles Drummer, I.V.; Shao, Y.; Sun, Y.; Lu, Y.F.; Xu, K.M.; Ni, D.; Jiang, X.H.; Wang, H.; Yang, X. Circular RNAs are a novel type of non-coding RNAs in ROS regulation, cardiovascular metabolic inflammations and cancers. Pharmacol. Ther. 2021, 220, 107715. [Google Scholar] [CrossRef]
- Chen, L.L. The expanding regulatory mechanisms and cellular functions of circular RNAs. Nat. Rev. Mol. Cell Biol. 2020, 21, 475–490. [Google Scholar] [CrossRef]
- Liu, R.Q.; Ma, Y.; Guo, T.; Li, G.L. Identification, biogenesis, function, and mechanism of action of circular RNAs in plants. Plant Commun. 2023, 4, 100430. [Google Scholar] [CrossRef] [PubMed]
- Jeck, W.R.; Sharpless, N.E. Detecting and characterizing circular RNAs. Nat. Biotechnol. 2014, 32, 453–461. [Google Scholar] [CrossRef] [PubMed]
- Ashwal-Fluss, R.; Meyer, M.; Pamudurti, N.R.; Ivanov, A.; Bartok, O.; Hanan, M.; Evantal, N.; Memczak, S.; Rajewsky, N.; Kadener, S. CircRNA biogenesis competes with pre-mRNA splicing. Mol. Cell 2014, 56, 55–66. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.O.; Wang, H.B.; Zhang, Y.; Lu, X.H.; Chen, L.L.; Yang, L. Complementary sequence-mediated exon circularization. Cell 2014, 159, 134–147. [Google Scholar] [CrossRef] [PubMed]
- He, A.T.; Liu, J.L.; Li, F.Y.; Yang, B.B. Targeting circular RNAs as a therapeutic approach: Current strategies and challenges. Sig. Transduct. Target. Ther. 2021, 6, 185. [Google Scholar] [CrossRef] [PubMed]
- Liang, D.M.; Wilusz, J.E. Short intronic repeat sequences facilitate circular RNA production. Genes Dev. 2014, 28, 2233–2247. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Li, J.; Luo, M.; Li, H.; Chen, Q.J.; Wang, L.; Song, S.; Zhao, L.P.; Xu, W.P.; Zhang, C.X.; et al. Characterization and cloning of grape circular RNAs identified the cold resistance-related Vv-circATS1. Plant Physiol. 2019, 180, 966–985. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Cheng, Y.H.; Zhang, C.; You, Q.B.; Shen, X.J.; Guo, W.; Jiao, Y.Q. Genome-wide identification and characterization of circular RNAs by high throughput sequencing in soybean. Sci. Rep. 2017, 7, 5636. [Google Scholar] [CrossRef]
- Wang, Y.S.; Gao, Y.B.; Zhang, H.X.; Wang, H.H.; Liu, X.Q.; Xu, X.; Zhang, Z.Y.; Kohnen, M.V.; Hu, K.Q.; Wang, H.Y.; et al. Genome-wide profiling of circular RNAs in the rapidly growing shoots of moso bamboo (Phyllostachys edulis). Plant Cell Physiol. 2019, 60, 1354–1373. [Google Scholar] [CrossRef]
- Conn, S.J.; Pillman, K.A.; Toubia, J.; Conn, V.M.; Salmanidis, M.; Phillips, C.A.; Roslan, S.; Schreiber, A.W.; Gregory, P.A.; Goodall, G.J. The RNA binding protein quaking regulates formation of circRNAs. Cell 2015, 160, 1125–1134. [Google Scholar] [CrossRef] [PubMed]
- Du, W.W.; Zhang, C.; Yang, W.; Yong, T.; Awan, F.M.; Yang, B.B. Identifying and characterizing circRNA-protein interaction. Theranostics 2017, 7, 4183–4191. [Google Scholar] [CrossRef] [PubMed]
- Thatcher, L.F.; Kamphuis, L.G.; Hane, J.K.; Oñate-Sánchez, L.; Singh, K.B. The Arabidopsis KH-domain RNA-binding protein ESR1 functions in components of jasmonate signalling, unlinking growth restraint and resistance to stress. PLoS ONE 2015, 10, e0126978. [Google Scholar] [CrossRef] [PubMed]
- Mockler, T.C.; Yu, X.H.; Shalitin, D.; Parikh, D.; Michael, T.P.; Liou, J.; Huang, J.; Smith, Z.; Alonso, J.M.; Ecker, J.R.; et al. Regulation of flowering time in Arabidopsis by K homology domain proteins. Proc. Natl. Acad. Sci. USA 2004, 101, 12759–12764. [Google Scholar] [CrossRef]
- Lorković, Z.J.; Barta, A. Genome analysis: RNA recognition motif (RRM) and K homology (KH) domain RNA-binding proteins from the flowering plant Arabidopsis thaliana. Nucleic Acids Res. 2002, 30, 623–635. [Google Scholar] [CrossRef] [PubMed]
- Kramer, M.C.; Liang, D.M.; Tatomer, D.C.; Gold, B.; March, Z.M.; Cherry, S.; Wilusz, J.E. Combinatorial control of Drosophila circular RNA expression by intronic repeats, hnRNPs, and SR proteins. Genes Dev. 2015, 29, 2168–2182. [Google Scholar] [CrossRef] [PubMed]
- Errichelli, L.; Dini Modigliani, S.; Laneve, P.; Colantoni, A.; Legnini, I.; Capauto, D.; Rosa, A.; De Santis, R.; Scarfò, R.; Peruzzi, G.; et al. FUS affects circular RNA expression in murine embryonic stem cell-derived motor neurons. Nat. Commun. 2017, 8, 14741. [Google Scholar] [CrossRef] [PubMed]
- Nishikura, K. Functions and regulation of RNA editing by ADAR deaminases. Annu. Rev. Biochem. 2010, 79, 321–349. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Reckman, Y.J.; Aufiero, S.; van den Hoogenhof, M.M.; van der Made, I.; Beqqali, A.; Koolbergen, D.R.; Rasmussen, T.B.; van der Velden, J.; Creemers, E.E.; et al. RBM20 regulates circular RNA production from the titin gene. Circ. Res. 2016, 119, 996–1003. [Google Scholar] [CrossRef]
- Aktaş, T.; Avşar Ilık, İ.; Maticzka, D.; Bhardwaj, V.; Pessoa Rodrigues, C.; Mittler, G.; Manke, T.; Backofen, R.; Akhtar, A. DHX9 suppresses RNA processing defects originating from the Alu invasion of the human genome. Nature 2017, 544, 115–119. [Google Scholar] [CrossRef]
- Kelly, S.; Greenman, C.; Cook, P.R.; Papantonis, A. Exon skipping is correlated with exon circularization. J. Mol. Biol. 2015, 427, 2414–2417. [Google Scholar] [CrossRef] [PubMed]
- Zaphiropoulos, P.G. Circular RNAs from transcripts of the rat cytochrome P450 2C24 gene: Correlation with exon skipping. Proc. Natl. Acad. Sci. USA 1996, 93, 6536–6541. [Google Scholar] [CrossRef] [PubMed]
- Zaphiropoulos, P.G. Exon skipping and circular RNA formation in transcripts of the human cytochrome P-450 2C18 gene in epidermis and of the rat androgen binding protein gene in testis. Mol. Cell. Biol. 1997, 17, 2985–2993. [Google Scholar] [CrossRef] [PubMed]
- Surono, A.; Takeshima, Y.; Wibawa, T.; Ikezawa, M.; Nonaka, I.; Matsuo, M. Circular dystrophin RNAs consisting of exons that were skipped by alternative splicing. Hum. Mol. Genet. 1999, 8, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Barrett, S.P.; Wang, P.L.; Salzman, J. Circular RNA biogenesis can proceed through an exon-containing lariat precursor. Elife 2015, 9, e07540. [Google Scholar] [CrossRef] [PubMed]
- Rogozin, I.B.; Carmel, L.; Csuros, M.; Koonin, E.V. Origin and evolution of spliceosomal introns. Biol. Direct 2012, 7, 11. [Google Scholar] [CrossRef]
- Zhang, X.T.; Zhang, Y.; Wang, T.Y.; Li, Z.W.; Cheng, J.P.; Ge, H.R.; Tang, Q.; Chen, K.; Liu, L.; Lu, C.Y.; et al. A comprehensive map of intron branchpoints and lariat RNAs in plants. Plant Cell 2019, 31, 956–973. [Google Scholar] [CrossRef] [PubMed]
- Salzman, J. Circular RNA expression: Its potential regulation and function. Trends Genet. 2016, 32, 309–316. [Google Scholar] [CrossRef]
- Chen, N.F.; Zhao, G.; Yan, X.; Lv, Z.; Yin, H.M.; Zhang, S.L.; Song, W.; Li, X.; Li, L.Y.; Du, Z.H.; et al. A novel FLI1 exonic circular RNA promotes metastasis in breast cancer by coordinately regulating TET1 and DNMT1. Genome Biol. 2018, 19, 218. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.L.; Zhang, J.W.; Tian, Y.H.; Gao, Y.; Dong, X.; Chen, W.B.; Yuan, X.N.; Yin, W.N.; Xu, J.J.; Chen, K.; et al. CircRNA inhibits DNA damage repair by interacting with host gene. Mol. Cancer 2020, 19, 128. [Google Scholar] [CrossRef]
- Li, Y.; Chen, B.; Huang, S.L. Identification of circRNAs for miRNA targets by Argonaute2 RNA immunoprecipitation and luciferase screening assays. Methods Mol. Biol. 2018, 1724, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Das, D.; Das, A.; Panda, A.C. Antisense oligo pulldown of circular RNA for downstream analysis. Bio. Protoc. 2021, 11, e4088. [Google Scholar] [CrossRef] [PubMed]
- Hsu, R.J.; Yang, H.J.; Tsai, H.J. Labeled microRNA pull-down assay system: An experimental approach for high-throughput identification of microRNA-target mRNAs. Nucleic Acids Res. 2009, 37, e77. [Google Scholar] [CrossRef] [PubMed]
- Jiao, J.; Duan, C.J.; Zheng, J.; Li, D.Y.; Li, C.; Wang, Z.Y.; Gao, T.; Xiang, Y. Development of a two-in-one integrated assay for the analysis of circRNA-microRNA interactions. Biosens. Bioelectron. 2021, 178, 113032. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Sinha, T.; Panda, A.C. Regulation of microRNA by circular RNA. Wiley Interdiscip. Rev. RNA 2023, 15, e1820. [Google Scholar] [CrossRef]
- Panda, A.C.; Grammatikakis, I.; Kim, K.M.; De, S.; Martindale, J.L.; Munk, R.; Yang, X.L.; Abdelmohsen, K.; Gorospe, M. Identification of senescence-associated circular RNAs (SAC-RNAs) reveals senescence suppressor circPVT1. Nucleic Acids Res. 2017, 45, 4021–4035. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Kong, R.J.; Wu, C.; Wang, S.; Liu, Z.X.; Liu, S.P.; Li, S.P.; Chen, T.; Mao, C.B.; Liu, S.R. Circ-MALAT1 functions as both an mRNA translation brake and a microRNA sponge to promote self-renewal of hepatocellular cancer stem cells. Adv. Sci. 2019, 7, 1900949. [Google Scholar] [CrossRef] [PubMed]
- Louche, A.; Salcedo, S.P.; Bigot, S. Protein-protein interactions: Pull-down assays. Methods Mol. Biol. 2017, 1615, 247–255. [Google Scholar] [CrossRef]
- Martindale, J.L.; Gorospe, M.; Idda, M.L. Ribonucleoprotein immunoprecipitation (RIP) analysis. Bio. Protoc. 2020, 10, e3488. [Google Scholar] [CrossRef]
- Hellman, L.M.; Fried, M.G. Electrophoretic mobility shift assay (EMSA) for detecting protein-nucleic acid interactions. Nat. Protoc. 2007, 2, 1849–1861. [Google Scholar] [CrossRef]
- Im, K.; Mareninov, S.; Diaz, M.F.P.; Yong, W.H. An introduction to performing immunofluorescence staining. Methods Mol. Biol. 2019, 1879, 299–311. [Google Scholar] [CrossRef]
- Huber, D.; Voith von Voithenberg, L.; Kaigala, G.V. Fluorescence in situ hybridization (FISH): History, limitations and what to expect from micro-scale FISH? Micro Nano Eng. 2018, 1, 15–24. [Google Scholar] [CrossRef]
- Yang, Y.; Fan, X.; Mao, M.; Song, X.; Wu, P.; Zhang, Y.; Jin, Y.; Yang, Y.; Chen, L.L.; Wang, Y.; et al. Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res. 2017, 27, 626–641. [Google Scholar] [CrossRef] [PubMed]
- Pamudurti, N.R.; Bartok, O.; Jens, M.; Ashwal-Fluss, R.; Stottmeister, C.; Ruhe, L.; Hanan, M.; Wyler, E.; Perez-Hernandez, D.; Ramberger, E.; et al. Translation of circRNAs. Mol. Cell 2017, 66, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, H.; Xi, F.; Wang, H.; Han, X.; Wei, W.; Zhang, H.; Zhang, Q.; Zheng, Y.; Zhu, Q.; et al. Profiling of circular RNA N6-methyladenosine in moso bamboo (Phyllostachys edulis) using nanopore-based direct RNA sequencing. J. Integr. Plant Biol. 2020, 62, 1823–1838. [Google Scholar] [CrossRef] [PubMed]
- AbouHaidar, M.G.; Venkataraman, S.; Golshani, A.; Liu, B.; Ahmad, T. Novel coding, translation, and gene expression of a replicating covalently closed circular RNA of 220 nt. Proc. Natl. Acad. Sci. USA 2014, 111, 14542–14547. [Google Scholar] [CrossRef] [PubMed]
- Shao, T.; Pan, Y.H.; Xiong, X.D. Circular RNA: An important player with multiple facets to regulate its parental gene expression. Mol. Ther. Nucleic Acids 2021, 23, 369–376. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.F.; Jiang, N.; Chen, X.F.; Zhou, X.H.; Ding, L.; Duan, F. R-loop structure: The formation and the effects on genomic stability. Yi Chuans 2014, 36, 1185–1194. [Google Scholar] [CrossRef]
- Abdelmohsen, K.; Panda, A.C.; Munk, R.; Grammatikakis, I.; Dudekula, D.B.; De, S.; Kim, J.; Noh, J.H.; Kim, K.M.; Martindale, J.L.; et al. Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by circPABPN1. RNA Biol. 2017, 14, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.L.; Hou, C.F.; Chen, C.; Guo, Y.X.; Yuan, W.T.; Yin, D.T.; Liu, J.B.; Sun, Z.Q. The role of N6-methyladenosine (M6A) modification in the regulation of circRNAs. Mol. Cancer 2020, 19, 105. [Google Scholar] [CrossRef]
- Roundtree, I.A.; Evans, M.E.; Pan, T.; He, C. Dynamic RNA modifications in gene expression regulation. Cell 2017, 169, 1187–1200. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Molinie, B.; Daneshvar, K.; Pondick, J.V.; Wang, J.; Van Wittenberghe, N.; Xing, Y.; Giallourakis, C.C.; Mullen, A.C. Genome-wide maps of M6A circRNAs identify widespread and cell-type-specific methylation patterns that are distinct from mRNAs. Cell Rep. 2017, 20, 2262–2276. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.H.; Song, P.Z.; Wang, Y.; Lu, Z.K.; Tang, Q.; Yu, Q.; Xiao, Y.; Zhang, X.; Duan, H.C.; Jia, G. The m6A reader ECT2 controls trichome morphology by affecting mRNA stability in Arabidopsis. Plant Cell 2018, 30, 968–985. [Google Scholar] [CrossRef] [PubMed]
- Hansen, T.B.; Jensen, T.I.; Clausen, B.H.; Bramsen, J.B.; Finsen, B.; Damgaard, C.K.; Kjems, J. Natural RNA circles function as efficient microRNA sponges. Nature 2013, 495, 384–388. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.L.; Zhu, H.; Shi, Y.X.; Wu, W.Z.; Cai, H.J.; Chen, X.J. Cir-ITCH plays an inhibitory role in colorectal cancer by regulating the Wnt/β-Catenin pathway. PLoS ONE 2015, 10, e0131225. [Google Scholar] [CrossRef]
- Wang, M.N.; Chen, B.; Ru, Z.X.; Cong, L. CircRNA circ-ITCH suppresses papillary thyroid cancer progression through miR-22-3p/CBL/β-Catenin pathway. Biochem. Biophys. Res. Commun. 2018, 504, 283–288. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.H.; Wang, L.; Chen, J.M.; Gao, H.Y.; Zhao, W.; Huang, Y.J.; Jiang, T.T.; Zhou, J.H.; Chen, Y.G. The circular RNA circ-ITCH suppresses ovarian carcinoma progression through targeting miR-145/RASA1 signaling. Biochem. Biophys. Res. Commun. 2018, 505, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.D.; Yuan, W.B.; Yang, X.; Li, P.; Wang, J.Z.; Han, J.; Tao, J.; Li, P.C.; Yang, H.W.; Lv, Q.; et al. Circular RNA circ-ITCH inhibits bladder cancer progression by sponging miR-17/miR-224 and regulating p21, PTEN expression. Mol. Cancer 2018, 17, 19. [Google Scholar] [CrossRef] [PubMed]
- Ghosal, S.; Das, S.; Sen, R.; Basak, P.; Chakrabarti, J. Circ2Traits: A comprehensive database for circular RNA potentially associated with disease and traits. Front. Genet. 2013, 4, 283. [Google Scholar] [CrossRef]
- Li, J.H.; Liu, S.; Zhou, H.; Qu, L.H.; Yang, J.H. starBase v2.0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-seq data. Nucleic Acids Res. 2014, 42, D92–D97. [Google Scholar] [CrossRef]
- Dudekula, D.B.; Panda, A.C.; Grammatikakis, I.; De, S.; Abdelmohsen, K.; Gorospe, M. CircInteractome: A web tool for exploring circular RNAs and their interacting proteins and microRNAs. RNA Biol. 2016, 13, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.C.; Li, J.R.; Sun, C.H.; Andrews, E.; Chao, R.F.; Lin, F.M.; Weng, S.L.; Hsu, S.D.; Huang, C.C.; Cheng, C.; et al. CircNet: A database of circular RNAs derived from transcriptome sequencing data. Nucleic Acids Res. 2016, 44, D209–D215. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.Z.; Wang, L.; Li, S.Z.; Zhang, Q.R.; Zhang, Q.L.; Tang, W.H.; Wang, K.; Song, K.; Sablok, G.; Sun, X.Y.; et al. AtCircDB: A tissue-specific database for Arabidopsis circular RNAs. Brief. Bioinform. 2019, 20, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.J.; Meng, X.W.; Chen, H.J.; Liu, Y.J.; Xue, J.T.; Zhou, Y.C.; Chen, M. PlantCircNet: A database for plant circRNA–miRNA–mRNA regulatory networks. Database 2017, 2017, bax089. [Google Scholar] [CrossRef] [PubMed]
- Chu, Q.J.; Zhang, X.C.; Zhu, X.T.; Liu, C.; Mao, L.F.; Ye, C.Y.; Zhu, Q.H.; Fan, L.J. PlantcircBase: A database for plant circular RNAs. Mol. Plant 2017, 10, 1126–1128. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.Y.; Wang, H.H.; Zhang, H.X.; Liu, S.; Wang, Y.S.; Gao, Y.B.; Xi, F.H.; Zhao, L.Z.; Liu, B.; Reddy, A.S.N.; et al. The interplay between microRNA and alternative splicing of linear and circular RNAs in eleven plant species. Bioinformatics 2019, 35, 3119–3126. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.J.; Hao, Z.Q.; Yin, S.W.; Li, G.L. GreenCircRNA: A database for plant circRNAs that act as miRNA decoys. Database 2020, 2020, baaa039. [Google Scholar] [CrossRef] [PubMed]
- Chiang, T.W.; Mai, T.L.; Chuang, T.J. CircMiMi: A stand-alone software for constructing circular RNA-microRNA-mRNA interactions across species. BMC Bioinform. 2022, 23, 164. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, M.; Schwartz, L.; Ciora, O.A.; Trummer, N.; Willruth, L.L.; Jankowski, J.; Lee, H.K.; Baumbach, J.; Furth, P.; Hennighausen, L.; et al. CircRNA-sponging: A pipeline for extensive analysis of circRNA expression and their role in miRNA sponging. Bioinform. Adv. 2023, 3, vbad093. [Google Scholar] [CrossRef]
- Panda, A.C.; Gorospe, M. Detection and analysis of circular RNAs by RT-PCR. Bio. Protoc. 2018, 8, e2775. [Google Scholar] [CrossRef]
- Li, C.; Nong, W.Y.; Zhao, S.C.; Lin, X.; Xie, Y.C.; Cheung, M.Y.; Xiao, Z.X.; Wong, A.Y.P.; Chan, T.F.; Hui, J.H.L.; et al. Differential microRNA expression, microRNA arm switching, and microRNA:long noncoding RNA interaction in response to salinity stress in soybean. BMC Genom. 2022, 23, 65. [Google Scholar] [CrossRef] [PubMed]
- Lv, D.J.; Cen, S.R.; Yang, S.X.; Zou, Z.H.; Zhong, J.F.; Pan, Z.J.; Deng, N.; Li, Y.B.; Wu, K.H.; Wang, J.M.; et al. Hsa_circ_0063329 inhibits prostate cancer growth and metastasis by modulating the miR-605-5p/tgif2 axis. Cell Cycle 2023, 22, 1101–1115. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.H.; Wang, B.B.; Zhou, F.Q.; Lv, K.; Xu, X.P.; Cao, W.P. CircNDC80 promotes glioblastoma multiforme tumorigenesis via the miR-139-5p/ECE1 pathway. J. Transl. Med. 2023, 21, 22. [Google Scholar] [CrossRef] [PubMed]
- Deng, G.X.; Mou, T.Y.; He, J.Y.; Chen, D.; Lv, D.J.; Liu, H.; Yu, J.; Wang, S.; Li, G.X. Circular RNA circRHOBTB3 acts as a sponge for miR-654-3p inhibiting gastric cancer growth. J. Exp. Clin. Cancer Res. 2020, 39, 1. [Google Scholar] [CrossRef] [PubMed]
- Huang, A.Q.; Zheng, H.X.; Wu, Z.Y.; Chen, M.S.; Huang, Y.L. Circular RNA-protein interactions: Functions, mechanisms, and identification. Theranostics 2020, 10, 3503–3517. [Google Scholar] [CrossRef]
- Park, O.H.; Ha, H.; Lee, Y.J.; Boo, S.H.; Kwon, D.H.; Song, H.; Kim, Y.K. Endoribonucleolytic cleav age of m6A-containing RNAs by RNase P/MRP complex. Mol. Cell 2019, 74, 494–507.e8. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.X.; Li, X.; Nan, F.; Jiang, S.; Gao, X.; Guo, S.K.; Xue, W.; Cui, Y.; Dong, K.; Ding, H.; et al. Structure and degradation of circular RNAs regulate PKR activation in innate immunity. Cell 2019, 177, 865–880. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.Y.; Cai, Z.R.; Liu, J.; Wang, D.S.; Ju, H.Q.; Xu, R.H. Circular RNA: Metabolism, functions and interactions with proteins. Mol. Cancer 2020, 19, 172. [Google Scholar] [CrossRef] [PubMed]
- Li, H.H.; Yang, F.; Hu, A.P.; Wang, X.J.; Fang, E.H.; Chen, Y.J.; Li, D.; Song, H.J.; Wang, J.Q.; Guo, Y.H.; et al. Therapeutic targeting of circ-CUX1/EWSR1/MAZ axis inhibits glycolysis and neuroblastoma progression. EMBO Mol. Med. 2019, 11, e10835. [Google Scholar] [CrossRef]
- Hong, Y.L.; Qin, H.F.; Li, Y.; Zhang, Y.H.; Zhuang, X.R.; Liu, L.; Lu, K.; Li, L.; Deng, X.L.; Liu, F.; et al. FNDC3B circular RNA promotes the migration and invasion of gastric cancer cells via the regulation of E-cadherin and CD44 expression. J. Cell. Physiol. 2019, 234, 19895–19910. [Google Scholar] [CrossRef]
- Sun, Y.M.; Wang, W.T.; Zeng, Z.C.; Chen, T.Q.; Han, C.; Pan, Q.; Huang, W.; Fang, K.; Sun, L.Y.; Zhou, Y.F.; et al. CircMYBL2, a circRNA from MYBL2, regulates FLT3 translation by recruiting PTBP1 to promote FLT3-ITD AML progression. Blood 2019, 134, 1533–1546. [Google Scholar] [CrossRef] [PubMed]
- Armaos, A.; Colantoni, A.; Proietti, G.; Rupert, J.; Tartaglia, G.G. CatRAPIDOmics v2.0: Going deeper and wider in the prediction of protein–RNA interactions. Nucleic Acids Res. 2021, 49, W72–W79. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.S.; Lu, C.Q.; Zeng, M.; Li, Y.H.; Wang, J.X. CRMSS: Predicting circRNA-RBP binding sites based on multi-scale characterizing sequence and structure features. Brief. Bioinform. 2023, 24, bbac530. [Google Scholar] [CrossRef] [PubMed]
- Ju, Y.Q.; Yuan, L.L.; Yang, Y.; Zhao, H. CircSLNN: Identifying RBP-binding sites on circRNAs via sequence labeling neural networks. Front. Genet. 2019, 10, 1184. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.N.; Hou, Z.L.; Ma, Z.Q.; Li, X.T.; Wong, K.C. iCircRBP-DHN: Identification of circRNA-RBP interaction sites using deep hierarchical ntwork. Brief. Bioinform. 2020, 22, bbaa274. [Google Scholar] [CrossRef]
- Pan, X.Y.; Fang, Y.; Li, X.F.; Yang, Y.; Shen, H.B. RBPsuite: RNA-protein binding sites prediction suite based on deep learning. BMC Genom. 2020, 21, 884. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Chen, K.; Chen, W.B.; Wang, J.; Chang, L.P.; Deng, J.; Wei, L.; Han, L.; Huang, C.H.; He, C.J. CircRIP: An accurate tool for identifying circRNA-RBP interactions. Brief. Bioinform. 2022, 23, bbac186. [Google Scholar] [CrossRef] [PubMed]
- Xiao, M.S.; Wilusz, J.E. An improved method for circular RNA purification using RNase R that efficiently removes linear RNAs containing G-quadruplexes or structured 3′ ends. Nucleic Acids Res. 2019, 47, 8755–8769. [Google Scholar] [CrossRef] [PubMed]
- Patop, I.L.; Wüst, S.; Kadener, S. Past, present, and future of circRNAs. EMBO J. 2019, 38, e100836. [Google Scholar] [CrossRef]
- Zhong, Z.; Huang, M.; Lv, M.; He, Y.; Duan, C.; Zhang, L.; Chen, J. Circular RNA MYLK as a competing endogenous RNA promotes bladder cancer progression through modulating VEGFA/VEGFR2 signaling pathway. Cancer Lett. 2017, 403, 305–317. [Google Scholar] [CrossRef]
- Chen, J.; Cui, L.; Yuan, J.; Zhang, Y.; Sang, H. Circular RNA WDR77 target FGF-2 to regulate vascular smooth muscle cells proliferation and migration by sponging miR-124. Biochem. Biophys. Res. Commun. 2017, 494, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Sun, S.; Liu, F.; Shen, E.; Liu, L.; Ye, C.; Xiao, B.; Timko, M.P.; Zhu, Q.H.; Fan, L.; et al. A transcriptomic profile of topping responsive non-coding RNAs in tobacco roots (Nicotiana tabacum). BMC Genom. 2019, 20, 856. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Zhang, H.; Guo, R.; Wang, Q.; Liu, X.; Kuang, W.; Song, H.; Liao, J.; Huang, Y.; Wang, Z. Systematic identification and characterization of circular RNAs involved in flag leaf senescence of rice. Planta 2021, 253, 26. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.X.; Chen, L.L. Circular RNAs: Characterization, cellular roles, and applications. Cell 2022, 185, 2016–2034. [Google Scholar] [CrossRef]
- Rossi, F.; Beltran, M.; Damizia, M.; Grelloni, C.; Colantoni, A.; Setti, A.; Di Timoteo, G.; Dattilo, D.; Centrón-Broco, A.; Nicoletti, C.; et al. Circular RNA ZNF609/CKAP5 mRNA interaction regulates microtubule dynamics and tumorigenicity. Mol. Cell 2022, 82, 75–89.e9. [Google Scholar] [CrossRef] [PubMed]
- Hafez, A.K.; Zimmerman, A.J.; Papageorgiou, G.; Chandrasekaran, J.; Amoah, S.K.; Lin, R.; Lozano, E.; Pierotti, C.; Dell’Orco, M.; Hartley, B.J.; et al. A bidirectional competitive interaction between circHomer1 and Homer1b within the orbitofrontal cortex regulates reversal learning. Cell Rep. 2022, 38, 110282. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wilusz, J.E.; Chen, L.L. Biogenesis and regulatory roles of circular RNAs. Annu. Rev. Cell Dev. Biol. 2022, 38, 263–289. [Google Scholar] [CrossRef] [PubMed]
- Tsitsipatis, D.; Grammatikakis, I.; Driscoll, R.K.; Yang, X.; Abdelmohsen, K.; Harris, S.C.; Yang, J.H.; Herman, A.B.; Chang, M.W.; Munk, R.; et al. AUF1 ligand circPCNX reduces cell proliferation by competing with p21 mRNA to increase p21 production. Nucleic Acids Res. 2021, 49, 1631–1646. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Li, X.; Xue, W.; Zhang, L.; Yang, L.Z.; Cao, S.M.; Lei, Y.N.; Liu, C.X.; Guo, S.K.; Shan, L.; et al. Screening for functional circular RNAs using the CRISPR-Cas13 system. Nat. Methods 2021, 18, 51–59. [Google Scholar] [CrossRef]
- Chen, L.L. The biogenesis and emerging roles of circular RNAs. Nat. Rev. Mol. Cell Biol. 2016, 17, 205–211. [Google Scholar] [CrossRef]
- Piwecka, M.; Glažar, P.; Hernandez-Miranda, L.R.; Memczak, S.; Wolf, S.A.; Rybak-Wolf, A.; Filipchyk, A.; Klironomos, F.; Cerda Jara, C.A.; Fenske, P.; et al. Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science 2017, 357, eaam8526. [Google Scholar] [CrossRef]
- Zhou, J.; Yang, L.Y.; Jia, C.L.; Shi, W.G.; Deng, S.R.; Luo, Z.B. Identification and functional prediction of poplar root circRNAs involved in treatment with different forms of nitrogen. Front. Plant Sci. 2022, 13, 941380. [Google Scholar] [CrossRef] [PubMed]
- Zeng, R.F.; Zhou, J.J.; Hu, C.G.; Zhang, J.Z. Transcriptome-wide identification and functional prediction of novel and flowering-related circular RNAs from trifoliate orange (Poncirus trifoliata L. Raf.). Planta 2018, 247, 1191–1202. [Google Scholar] [CrossRef] [PubMed]
- Salih, H.; Wang, X.; Chen, B.; Jia, Y.; Gong, W.; Du, X. Identification, characterization and expression profiling of circular RNAs in the early cotton fiber developmental stages. Genomics 2021, 113, 356–365. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.H.; Meng, J.; Zhang, M.; Luan, Y.S. Identification of tomato circular RNAs responsive to Phytophthora infestans. Gene 2020, 746, 144652. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Dong, Y.; Wang, C.; Xiao, S.; Jiao, Z.; Gao, C. Identification and characterization of melon circular RNAs involved in powdery mildew responses through comparative transcriptome analysis. PeerJ 2021, 9, e11216. [Google Scholar] [CrossRef]
- Conn, V.M.; Hugouvieux, V.; Nayak, A.; Conos, S.A.; Capovilla, G.; Cildir, G.; Jourdain, A.; Tergaonkar, V.; Schmid, M.; Zubieta, C.; et al. A circRNA from SEPALLATA3 regulates splicing of its cognate mRNA through R-loop formation. Nat. Plants 2017, 3, 17053. [Google Scholar] [CrossRef]
- Liu, Y.; Su, H.; Zhang, J.; Liu, Y.; Feng, C.; Han, F. Back-spliced RNA from retrotransposon binds to centromere and regulates centromeric chromatin loops in maize. PLoS Biol. 2020, 18, e3000582. [Google Scholar] [CrossRef]
- Liu, X.; Gao, Y.; Liao, J.; Miao, M.; Chen, K.; Xi, F.; Wei, W.; Wang, H.; Wang, Y.; Xu, X.; et al. Genome-wide profiling of circular RNAs, alternative splicing, and R-loops in stem-differentiating xylem of Populus trichocarpa. J. Integr. Plant Biol. 2021, 63, 1294–1308. [Google Scholar] [CrossRef]
- Wang, J.; Yang, Y.; Jin, L.; Ling, X.; Liu, T.; Chen, T.; Ji, Y.; Yu, W.; Zhang, B. Re-analysis of long non-coding RNAs and prediction of circRNAs reveal their novel roles in susceptible tomato following TYLCV infection. BMC Plant Biol. 2018, 18, 104. [Google Scholar] [CrossRef]
- Tan, J.; Zhou, Z.; Niu, Y.; Sun, X.; Deng, Z. Identification and functional characterization of tomato circRNAs derived from genes involved in fruit pigment accumulation. Sci. Rep. 2017, 7, 8594. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Liu, H.; Luan, S.; Li, Z. Guidance of circular RNAs to proteins’ behavior as binding partners. Cell. Mol. Life Sci. 2019, 76, 4233–4243. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.; Cho, H.S.; Hwang, I. Emerging roles of RNA-binding proteins in plant development. Curr. Opin. Plant Biol. 2019, 51, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.; Zhang, Y.; Zhu, S.; Shen, L. Plant RNA-binding proteins: Phase-separation dynamics and functional mechanisms underlying plant development and stress responses. Mol. Plant 2024, 17, 531–551. [Google Scholar] [CrossRef] [PubMed]
- Frydrych Capelari, É.; da Fonseca, G.C.; Guzman, F.; Margis, R. Circular and micro RNAs from Arabidopsis thaliana flowers are simultaneously isolated from AGO-IP libraries. Plants 2019, 8, 302. [Google Scholar] [CrossRef] [PubMed]
- Zand Karimi, H.; Baldrich, P.; Rutter, B.D.; Borniego, L.; Zajt, K.K.; Meyers, B.C.; Innes, R.W. Arabidopsis apoplastic fluid contains sRNA- and circular RNA-protein complexes that are located outside extracellular vesicles. Plant Cell 2022, 34, 1863–1881. [Google Scholar] [CrossRef] [PubMed]
- Thompson, S.R. Tricks an IRES uses to enslave ribosomes. Trends Microbiol. 2012, 20, 558–566. [Google Scholar] [CrossRef] [PubMed]
- Granados-Riveron, J.T.; Aquino-Jarquin, G. The complexity of the translation ability of circRNAs. Biochim. Biophys. Acta 2016, 1859, 1245–1251. [Google Scholar] [CrossRef] [PubMed]
- Li, L.J.; Leng, R.X.; Fan, Y.G.; Pan, H.F.; Ye, D.Q. Translation of noncoding RNAs: Focus on lncRNAs, pri-miRNAs, and circRNAs. Exp. Cell Res. 2017, 361, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Liao, X.; Li, X.J.; Zheng, G.T.; Chang, F.R.; Fang, L.; Yu, H.; Huang, J.; Zhang, Y.F. Mitochondrion-encoded circular RNAs are widespread and translatable in plants. Plant Physiol. 2022, 189, 1482–1500. [Google Scholar] [CrossRef]
- Wang, X.; Chang, X.; Jing, Y.; Zhao, J.; Fang, Q.; Sun, M.; Zhang, Y.; Li, W.; Li, Y. Identification and functional prediction of soybean circRNAs involved in low-temperature responses. J. Plant Physiol. 2020, 250, 153188. [Google Scholar] [CrossRef]
- Sun, P.; Li, G. CircCode: A powerful tool for identifying circRNA coding ability. Front. Genet. 2019, 10, 981. [Google Scholar] [CrossRef] [PubMed]
- Sisodia, R.; Bhatla, S.C. Embryogenesis, vegetative growth, and organogenesis. In Plant Physiology, Development and Metabolism; Springer: Singapore, 2018; pp. 767–796. [Google Scholar] [CrossRef]
- Philips, A.; Nowis, K.; Stelmaszczuk, M.; Jackowiak, P.; Podkowiński, J.; Handschuh, L.; Figlerowicz, M. Expression landscape of circRNAs in Arabidopsis thaliana seedlings and adult tissues. Front. Plant Sci. 2020, 11, 576581. [Google Scholar] [CrossRef]
- Yadav, A.; Mathan, J.; Dubey, A.K.; Singh, A. The emerging role of non-coding RNAs (ncRNAs) in plant growth, development, and stress response signaling. Non-Coding RNA 2024, 10, 13. [Google Scholar] [CrossRef]
- Zhang, G.; Duan, A.; Zhang, J.; He, C. Genome-wide analysis of long non-coding RNAs at the mature stage of sea buckthorn (Hippophae rhamnoides Linn) fruit. Gene 2017, 596, 130–136. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, L.; Chen, G.; Shi, T. Identifying and characterizing the circular RNAs during the lifespan of Arabidopsis leaves. Front. Plant Sci. 2017, 8, 1278. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Ma, X.; Ning, L.; Li, Z.; Zhao, K.; Li, K.; He, J.; Yin, D. Genome-wide identification of circular RNAs in peanut (Arachis hypogaea L.). BMC Genom. 2019, 20, 653. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Liu, Y.; Wang, W.; Wu, L.; Ma, J.; Zhang, S.; Wang, J.; Feng, F.; Yuan, H.; Huang, X. Identification and functional prediction of circRNAs of developing seeds in high oleic acid sunflower (Helianthus annuus L.). Acta Physiol. Plant. 2023, 45, 13. [Google Scholar] [CrossRef]
- Chen, X.; Xu, X.; Zhang, S.; Munir, N.; Zhu, C.; Zhang, Z.; Chen, Y.; Xuhan, X.; Lin, Y.; Lai, Z. Genome-wide circular RNA profiling and competing endogenous RNA regulatory network analysis provide new insights into the molecular mechanisms underlying early somatic embryogenesis in Dimocarpus longan Lour. Tree Physiol. 2022, 42, 1876–1898. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Wang, Q.; Li, X.; Wang, G.; Wan, Y. Detecting of chloroplast circular RNAs in Arabidopsis thaliana. Plant Signal. Behav. 2019, 14, 1621088. [Google Scholar] [CrossRef]
- Liu, S.; Wu, L.; Qi, H.; Xu, M. LncRNA/circRNA–miRNA–mRNA networks regulate the development of root and shoot meristems of populus. Ind. Crop Prod. 2019, 133, 333–347. [Google Scholar] [CrossRef]
- Xu, Y.; Ren, Y.; Lin, T.; Cui, D. Identification and characterization of circRNAs involved in the regulation of wheat root length. Biol. Res. 2019, 52, 19. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Huang, W.; Qin, E.; Liu, S.; Liu, H.; Grennan, A.K.; Liu, H.; Qin, R. Comprehensive identification and expression profiling of circular RNAs during nodule development in Phaseolus vulgaris. Front. Plant Sci. 2020, 11, 587185. [Google Scholar] [CrossRef]
- Baruah, P.M.; Bordoloi, K.S.; Gill, S.S.; Agarwala, N. CircRNAs responsive to winter dormancy and spring flushing conditions of tea leaf buds. Plant Sci. 2023, 336, 111828. [Google Scholar] [CrossRef]
- Yin, Z.H.; Yang, C.C.; Zhao, Y.H.; Zhao, L.; Lü, X.R.; Yang, Z.C.; Wu, Y.J. Sequencing and functional analysis of tomato circRNA during flowering stage. Sci. Agric. Sin. 2023, 56, 4288–4303. [Google Scholar] [CrossRef]
- Babaei, S.; Singh, M.B.; Bhalla, P.L. Circular RNAs modulate the floral fate acquisition in soybean shoot apical meristem. BMC Plant Biol. 2023, 23, 322. [Google Scholar] [CrossRef]
- Jin, H.; Yang, Z.; Luo, J.; Li, C.; Chen, J.; Lim, K.J.; Wang, Z. Comprehensive identification and analysis of circRNAs during hickory (Carya cathayensis Sarg.) flower bud differentiation. Front. Plant Sci. 2023, 13, 1000489. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Zhang, Y.; Li, Z.; Wang, T.; Zhang, X.; Zheng, B. A lariat-derived circular RNA is required for plant development in Arabidopsis. Sci. China Life Sci. 2018, 61, 204–213. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Xiao, Y.; Zhang, X.; Tang, M.; Tang, J. Identification and characterization of circular RNAs involved in the flower development and senescence of Rhododendron delavayi Franch. Int. J. Mol. Sci. 2022, 23, 11214. [Google Scholar] [CrossRef]
- Babaei, S.; Singh, M.B.; Bhalla, P.L. Circular RNAs repertoire and expression profile during Brassica rapa pollen development. Int. J. Mol. Sci. 2021, 22, 10297. [Google Scholar] [CrossRef]
- Shi, F.; Pang, Z.; Liu, C.; Zhou, L.; Tan, C.; Ren, J.; Ye, X.; Feng, H.; Liu, Z. Whole-transcriptome analysis and construction of an anther development-related ceRNA network in Chinese cabbage (Brassica campestris L. ssp. pekinensis). Sci. Rep. 2022, 12, 2667. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xiong, Z.; Li, Q.; Sun, Y.; Jin, J.; Chen, H.; Zou, Y.; Huang, X.; Ding, Y. Circular RNA profiling of the rice photo-thermosensitive genic male sterile line Wuxiang S reveals circRNA involved in the fertility transition. BMC Plant Biol. 2019, 19, 340. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Ding, X.; Zhang, H.; He, T.; Li, Y.; Wang, T.; Li, X.; Jin, L.; Song, Q.; Yang, S.; et al. Comparative analysis of circular RNAs between soybean cytoplasmic male-sterile line NJCMS1A and its maintainer NJCMS1B by high-throughput sequencing. BMC Genom. 2018, 19, 663. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Zhang, Y.; Xu, L.; Zhou, D.; Jin, Z.; Zhou, H.; Lin, S.; Cao, J.; Huang, L. CircRNA expression pattern and ceRNA and miRNA–mRNA networks involved in anther development in the CMS line of Brassica campestris. Int. J. Mol. Sci. 2019, 20, 4808. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Li, K.; Ju, Z.; Cao, D.; Fu, D.; Zhu, H.; Zhu, B.; Luo, Y. Genome-wide analysis of tomato NF-Y factors and their role in fruit ripening. BMC Genom. 2016, 17, 36. [Google Scholar] [CrossRef] [PubMed]
- Gómez, M.D.; Vera-Sirera, F.; Pérez-Amador, M.A. Molecular programme of senescence in dry and fleshy fruits. J. Exp. Bot. 2014, 65, 4515–4526. [Google Scholar] [CrossRef]
- Kumar, R.; Khurana, A.; Sharma, A.K. Role of plant hormones and their interplay in development and ripening of fleshy fruits. J. Exp. Bot. 2014, 65, 4561–4575. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Liu, M.; Ma, D.; Wu, J.; Li, S.; Zhu, Y.; Han, B. Identification of circular RNAs and their targets during tomato fruit ripening. Postharvest Biol. Tec. 2018, 136, 90–98. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Q.; Gao, L.; Zhu, B.; Luo, Y.; Deng, Z.; Zuo, J. Integrative analysis of circRNAs acting as ceRNAs involved in ethylene pathway in tomato. Physiol. Plant. 2017, 161, 311–321. [Google Scholar] [CrossRef]
- Dey, S.S.; Sharma, P.K.; Munshi, A.D.; Jaiswal, S.; Behera, T.K.; Kumari, K.G.B.; Iquebal, M.A.; Bhattacharya, R.C.; Rai, A.; Kumar, D. Genome wide identification of lncRNAs and circRNAs having regulatory role in fruit shelf life in health crop cucumber (Cucumis sativus L.). Front. Plant Sci. 2022, 13, 884476. [Google Scholar] [CrossRef]
- Zhou, R.; Xu, L.; Zhao, L.; Wang, Y.; Zhao, T. Genome-wide identification of circRNAs involved in tomato fruit coloration. Biochem. Biophys. Res. Commun. 2018, 499, 466–469. [Google Scholar] [CrossRef]
- Nawaz, M.; Sun, J.; Shabbir, S.; Khattak, W.A.; Ren, G.; Nie, X.; Bo, Y.; Javed, Q.; Du, D.; Sonne, C. A review of plants strategies to resist biotic and abiotic environmental stressors. Sci. Total. Environ. 2023, 900, 165832. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Chu, S.; Jiao, Y. Present scenario of circular RNAs (circRNAs) in plants. Front. Plant Sci. 2019, 10, 379. [Google Scholar] [CrossRef] [PubMed]
- Litholdo, C.G.; da Fonseca, G.C. Circular RNAs and plant stress responses. Adv. Exp. Med. Biol. 2018, 1087, 345–353. [Google Scholar] [CrossRef]
- Samarfard, S.; Ghorbani, A.; Karbanowicz, T.P.; Lim, Z.X.; Saedi, M.; Fariborzi, N.; McTaggart, A.R.; Izadpanah, K. Regulatory non-coding RNA: The core defense mechanism against plant pathogens. J. Biotechnol. 2022, 359, 82–94. [Google Scholar] [CrossRef]
- Ghorbani, A.; Izadpanah, K.; Peters, J.R.; Dietzgen, R.G.; Mitter, N. Detection and profiling of circular RNAs in uninfected and maize Iranian mosaic virus-infected maize. Plant Sci. 2018, 274, 402–409. [Google Scholar] [CrossRef] [PubMed]
- Chidambara, B.; Elangovan, D.; Avverahally, S.; Reddy, K.; Kundapura, R. Identification of circular RNAs in resistant tomato genotype in response to ToLCBaV infection. J. Hortic. Sci. 2022, 17, 496–504. [Google Scholar] [CrossRef]
- Wang, L.; Li, J.; Guo, B.; Xu, L.; Li, L.; Song, X.; Wang, X.; Zeng, X.; Wu, L.; Niu, D.; et al. Exonic circular RNAs are involved in Arabidopsis immune response against bacterial and fungal pathogens and function synergistically with corresponding linear RNAs. Phytopathology 2022, 112, 608–619. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Wang, S.; Wu, Y.; Nie, W.; Yiming, A.; Huang, J.; Ahmad, I.; Zhu, B.; Chen, G. Identification and characterization of rice circular RNAs responding to Xanthomonas oryzae pv. oryzae invasion. Phytopathology 2022, 112, 492–500. [Google Scholar] [CrossRef] [PubMed]
- Xia, K.; Pan, X.; Zeng, X.; Zhang, M. Xoo-responsive transcriptome reveals the role of the circular RNA133 in disease resistance by regulating expression of OsARAB in rice. Phytopathol. Res. 2023, 5, 33. [Google Scholar] [CrossRef]
- Fan, J.; Quan, W.; Li, G.B.; Hu, X.H.; Wang, Q.; Wang, H.; Li, X.P.; Luo, X.; Feng, Q.; Hu, Z.J.; et al. CircRNAs are involved in the rice-Magnaporthe oryzae interaction. Plant Physiol. 2020, 182, 272–286. [Google Scholar] [CrossRef] [PubMed]
- Xiang, L.; Cai, C.; Cheng, J.; Wang, L.; Wu, C.; Shi, Y.; Luo, J.; He, L.; Deng, Y.; Zhang, X.; et al. Identification of circularRNAs and their targets in Gossypium under Verticillium wilt stress based on RNA-Seq. Peer J. 2018, 6, e4500. [Google Scholar] [CrossRef] [PubMed]
- Bian, X.; Yu, P.; Dong, L.; Zhao, Y.; Yang, H.; Han, Y.; Zhang, L. Regulatory role of non-coding RNA in ginseng rusty root symptom tissue. Sci. Rep. 2021, 11, 9211. [Google Scholar] [CrossRef] [PubMed]
- Dasmandal, T.; Rao, A.; Sahu, S. Characterization of circular RNAs and their role in wilt stress tolerance in soybean. Int. J. Chem. Stud. 2020, 8, 16–30. [Google Scholar] [CrossRef]
- Liu, H.; Nwafor, C.C.; Piao, Y.; Li, X.; Zhan, Z.; Piao, Z. Identification and characterization of circular RNAs in Brassica rapa in response to Plasmodiophora brassicae. Int. J. Mol. Sci. 2022, 23, 5369. [Google Scholar] [CrossRef] [PubMed]
- Li, D.X.; Bao, X.T.; Ren, Y.F.; Song, B.A.; Chen, Z.; Wang, Y. First report of Lasiodiplodia theobromae causing leaf spot on tea plant in Guizhou province of China. Plant Dis. 2018, 103, 374. [Google Scholar] [CrossRef]
- Ren, Y.; Li, D.; Zhao, X.; Wang, Y.; Bao, X.; Wang, X.; Wu, X.; Wang, D.; Song, B.; Chen, Z. Whole genome sequences of the tea leaf spot pathogen Didymella segeticola. Phytopathology 2019, 109, 1676–1678. [Google Scholar] [CrossRef]
- Wang, X.; Wu, X.; Jiang, S.; Yin, Q.; Li, D.; Wang, Y.; Wang, D.; Chen, Z. Whole genome sequence and gene annotation resource for Didymella bellidis associated with tea leaf spot. Plant Dis. 2021, 105, 1168–1170. [Google Scholar] [CrossRef] [PubMed]
- Bao, X.T.; Dharmasena, D.S.P.; Li, D.X.; Wang, X.; Jiang, S.L.; Ren, Y.F.; Wang, D.L.; Song, B.A.; Chen, Z. First report of Epicoccum sorghinum causing leaf spot on tea in China. Plant Dis. 2019, 103, 3282. [Google Scholar] [CrossRef]
- Yin, Q.X.; Jiang, S.L.; Li, D.X.; Huang, H.L.; Wang, Y.; Wang, D.L.; Chen, Z. First report of Epicoccum nigrum causing brown leaf spot in tea in Guizhou province, China. Plant Dis. 2021, 106, 321. [Google Scholar] [CrossRef]
- Zhang, J.; Yin, Q.X.; Jiang, S.L.; Li, D.X.; Tang, Q.; Zhang, Y.; Ma, Y.L.; Li, P.Y.; Wang, Y.; Wang, D.L.; et al. First report of Epicoccum mackenziei causing dark brown spot of tea leaf in Guizhou province, southwestern China. Plant Dis. 2023, 107, 2247. [Google Scholar] [CrossRef]
- Xia, Z.; Yin, Q.; Qiu, C.; Yang, Y.; Guo, D.; Huang, H.; Tang, Q.; Jiang, S.; Zhao, X.; Chen, Z. Transcriptome profiling of the leaf spot pathogen, Pestalotiopsis trachicarpicola, and its host, tea (Camellia sinensis), during infection. Plant Dis. 2022, 106, 2247–2252. [Google Scholar] [CrossRef] [PubMed]
- Yin, Q.X.; An, X.L.; Wu, X.; Dharmasena, D.S.P.; Li, D.X.; Jiang, S.L.; Wang, Y.; Wang, D.L.; Chen, Z. First report of Alternaria longipes causing leaf spot on tea in China. Plant Dis. 2021, 105, 4167. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Jiang, X.; Shi, J.; Wang, Y.; Huang, H.; Yang, Y.; Li, D.; Jiang, S.; Wang, D.; Chen, Z. Functional annotation of circRNAs in tea leaves after infection by the tea leaf spot pathogen, Lasiodiplodia theobromae. Phytopathology 2022, 112, 460–463. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yang, Y.; Jiang, X.; Shi, J.; Yang, Y.; Jiang, S.; Li, Z.; Wang, D.; Chen, Z. The sequence and integrated analysis of competing endogenous RNAs originating from tea leaves infected by the pathogen of tea leaf spot, Didymella segeticola. Plant Dis. 2022, 106, 1286–1290. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yin, Q.; Qiu, C.; Xia, Z.; Huang, H.; Huang, C.; Jiang, X.; Yang, Y.; Wang, D.; Chen, Z. Analysis of competing endogenous RNAs and microRNAs in tea (Camellia sinensis) leaves during infection by the leaf spot pathogen Pestalotiopsis trachicarpicola. Mol. Plant Microbe Interact. 2022, 35, 432–438. [Google Scholar] [CrossRef] [PubMed]
- Bordoloi, K.S.; Baruah, P.M.; Agarwala, N. Identification of circular RNAs in tea plant during Helopeltis theivora infestation. Plant Stress 2023, 8, 100150. [Google Scholar] [CrossRef]
- Anzano, A.; Bonanomi, G.; Mazzoleni, S.; Lanzotti, V. Plant metabolomics in biotic and abiotic stress: A critical overview. Phytochem. Rev. 2022, 21, 503–524. [Google Scholar] [CrossRef]
- Tang, B.; Hao, Z.; Zhu, Y.; Zhang, H.; Li, G. Genome-wide identification and functional analysis of circRNAs in Zea mays. PLoS ONE 2018, 13, e0202375. [Google Scholar] [CrossRef]
- Ding, Y.; Zou, L.H.; Wu, J.; Ramakrishnan, M.; Gao, Y.; Zhao, L.; Zhou, M. The pattern of DNA methylation alteration, and its association with the expression changes of non-coding RNAs and mRNAs in moso bamboo under abiotic stress. Plant Sci. 2022, 325, 111451. [Google Scholar] [CrossRef]
- Pan, T.; Sun, X.; Liu, Y.; Li, H.; Deng, G.; Lin, H.; Wang, S. Heat stress alters genome-wide profiles of circular RNAs in Arabidopsis. Plant Mol. Biol. 2018, 96, 217–229. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Guo, S.; Wang, Y.; Wang, L.; Shu, S.; Sun, J. Systematic identification and analysis of heat-stress-responsive lncRNAs, circRNAs and miRNAs with associated co-expression and ceRNA networks in cucumber (Cucumis sativus L.). Physiol. Plant. 2020, 168, 736–754. [Google Scholar] [CrossRef]
- Zhou, R.; Yu, X.Q.; Xu, L.P.; Wang, Y.L.; Zhao, L.P.; Zhao, T.M.; Yu, W.G. Genome-wide identification of circular RNAs in tomato seeds in response to high temperature. Biol. Plant. 2019, 63, 97–103. [Google Scholar] [CrossRef]
- Liu, J.; Shi, Y.; Yang, S. Insights into the regulation of C-repeat binding factors in plant cold signaling. J. Integr. Plant Biol. 2018, 60, 780–795. [Google Scholar] [CrossRef]
- Yang, X.; Liu, Y.; Zhang, H.; Wang, J.; Zinta, G.; Xie, S.; Zhu, W.; Nie, W.F. Genome-wide identification of circular RNAs in response to low-temperature stress in tomato leaves. Front. Genet. 2020, 11, 591806. [Google Scholar] [CrossRef]
- Huang, J.; Wang, Y.; Yu, J.; Li, F.; Yi, L.; Li, Y.; Xie, N.; Wu, Q.; Samarina, L.; Tong, W.; et al. Evolutionary landscape of tea circular RNAs and its contribution to chilling tolerance of tea plant. Int. J. Mol. Sci. 2023, 24, 1478. [Google Scholar] [CrossRef] [PubMed]
- Farooq, M.; Wahid, A.; Kobayashi, N.; Fujita, D.; Basra, S.M.A. Plant drought stress: Effects, mechanisms and management. Agron. Sustain. Dev. 2009, 29, 185–212. [Google Scholar] [CrossRef]
- Zhang, P.; Fan, Y.; Sun, X.; Chen, L.; Terzaghi, W.; Bucher, E.; Li, L.; Dai, M. A large-scale circular RNA profiling reveals universal molecular mechanisms responsive to drought stress in maize and Arabidopsis. Plant J. 2019, 98, 697–713. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, Y.; Kong, B.; Song, X.; Gao, Z.; Li, X. Identification and characterization of circRNAs under drought stress in moso bamboo (Phyllostachys edulis). Forests 2022, 13, 426. [Google Scholar] [CrossRef]
- Zou, C.; Guo, Z.; Zhao, S.; Chen, J.; Zhang, C. Identification and functional prediction of circRNAs involved in drought responses in sugar beet (β Vulgaris L.). Sugar Tech 2023, 25, 1152–1166. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, Q.; Liu, M.; Zhou, H.; Ma, C.; Wang, P. Regulation of plant responses to salt stress. Int. J. Mol. Sci. 2021, 22, 4609. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Yu, X.; Shi, Y.; Ma, L.; Fu, Y.; Guo, Y. Phosphorylation of RhoGDI1, a Rho GDP dissociation inhibitor, regulates root hair development in Arabidopsis under salt stress. Proc. Natl. Acad. Sci. USA 2023, 120, e2217957120. [Google Scholar] [CrossRef]
- Mao, X.; Zhang, H.; Tian, S.; Chang, X.; Jing, R. TaSnRK2.4, an SNF1-type Serine/threonine protein kinase of wheat (Triticum aestivum L.), confers enhanced multistress tolerance in Arabidopsis. J. Exp. Bot. 2010, 61, 683–696. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.L.; Yu, Q.Y.; Tang, L.L.; Ji, W.; Bai, X.; Cai, H.; Liu, X.F.; Ding, X.D.; Zhu, Y.M. GsSRK, a G-type lectin S-receptor-like serine/threonine protein kinase, is a positive regulator of plant tolerance to salt stress. J. Plant Physiol. 2013, 170, 505–515. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.Q.; Qu, L.; Xue, H.W. Casein kinase 1 AELs promote senescence by enhancing ethylene biosynthesis through phosphorylating WRKY22 transcription factor. New Phytol. 2024; Online ahead of print. [Google Scholar] [CrossRef]
- Wang, Z.; Li, N.; Yu, Q.; Wang, H. Genome-wide characterization of salt-responsive miRNAs, circRNAs and associated ceRNA networks in tomatoes. Int. J. Mol. Sci. 2021, 22, 12238. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Liu, Y.; Lu, L.; Zhang, J.; Chen, S.; Wang, B. Comparison of tolerant and susceptible cultivars revealed the roles of circular RNAs in rice responding to salt stress. Plant Growth. Regul. 2022, 96, 243–254. [Google Scholar] [CrossRef]
- Zhou, J.; Yuan, M.; Zhao, Y.; Quan, Q.; Yu, D.; Yang, H.; Tang, X.; Xin, X.; Cai, G.; Qian, Q.; et al. Efficient deletion of multiple circle RNA loci by CRISPR-Cas9 reveals Os06circ02797 as a putative sponge for OsMIR408 in rice. Plant Biotechnol. J. 2021, 19, 1240–1252. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Li, J.Y.; Liu, J.; Zhang, Z.; Song, Y.; Fan, D.; Liu, M.; Zhang, L.; Xu, Y.; Guo, D.; et al. Functional differences of grapevine circular RNA Vv-circPTCD1 in Arabidopsis and grapevine callus under abiotic stress. Plants 2023, 12, 2332. [Google Scholar] [CrossRef]
- Brown, P.H.; Zhao, F.J.; Dobermann, A. What is a plant nutrient? changing definitions to advance science and innovation in plant nutrition. Plant Soil 2021, 476, 11–23. [Google Scholar] [CrossRef]
- Li, Z.; Tian, P.; Huang, T.; Huang, J. Noncoding-RNA-mediated regulation in response to macronutrient stress in plants. Int. J. Mol. Sci. 2021, 22, 11205. [Google Scholar] [CrossRef]
- Ren, Y.; Yue, H.; Li, L.; Xu, Y.; Wang, Z.; Xin, Z.; Lin, T. Identification and characterization of circRNAs involved in the regulation of low nitrogen-promoted root growth in hexaploid wheat. Biol. Res. 2018, 51, 43. [Google Scholar] [CrossRef] [PubMed]
- Ma, P.; Gao, S.; Zhang, H.Y.; Li, B.Y.; Zhong, H.X.; Wang, Y.K.; Hu, H.M.; Zhang, H.K.; Luo, B.W.; Zhang, X.; et al. Identification and characterization of circRNAs in maize seedlings under deficient nitrogen. Plant Biol. 2021, 23, 850–860. [Google Scholar] [CrossRef] [PubMed]
- Lv, L.; Yu, K.; Lü, H.; Zhang, X.; Liu, X.; Sun, C.; Xu, H.; Zhang, J.; He, X.; Zhang, D. Transcriptome-wide identification of novel circular RNAs in soybean in response to low-phosphorus stress. PLoS ONE 2020, 15, e0227243. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, J.; Wei, Q.; Li, B.; Zhong, X.; Hu, T.; Hu, H.; Bao, C. Transcriptome-wide identification and characterization of circular RNAs in leaves of Chinese cabbage (Brassica rapa L. ssp. pekinensis) in response to calcium deficiency-induced tip-burn. Sci. Rep. 2019, 9, 14544. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.Z.; Zhang, X.Y.; Qiu, J.Y.; Zhou, X.; Yuan, M.; He, Y.Z.; Chun, C.P.; Cao, L.; Ling, L.L.; Peng, L.Z. Whole-transcriptome RNA sequencing reveals the global molecular responses and ceRNA regulatory network of mRNAs, lncRNAs, miRNAs and circRNAs in response to copper toxicity in Ziyang Xiangcheng (Citrus junos Sieb. Ex Tanaka). BMC Plant Biol. 2019, 19, 509. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, R.; Zhu, Y.; Gong, J.; Yin, S.; Sun, P.; Feng, H.; Wang, Q.; Zhao, S.; Wang, Z.; et al. Identification and characterization of circRNAs responsive to methyl jasmonate in Arabidopsis thaliana. Int. J. Mol. Sci. 2020, 21, 792. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.; He, F.; Jiang, H.; Liu, L.; Qiu, Z. Comparative transcriptome sequencing of taro corm development with a focus on the starch and sucrose metabolism pathway. Front. Genet. 2021, 12, 771081. [Google Scholar] [CrossRef]
- Jiang, M.; Chen, H.; Du, Q.; Wang, L.; Liu, X.; Liu, C. Genome-wide identification of circular RNAs potentially involved in the biosynthesis of secondary metabolites in Salvia miltiorrhiza. Front. Genet. 2021, 12, 645115. [Google Scholar] [CrossRef]
Composition | Main Content | ||||
---|---|---|---|---|---|
Part 2 | Classification of circRNAs | Part 2.1 | Exonic circRNAs | ||
Part 2.2 | Intronic circRNAs | ||||
Part 2.3 | Exon-intron circRNAs | ||||
Part 2.4 | Intergenic circRNAs | ||||
Part 3 | Biogenesis of circRNAs | Part 3.1 | Direct backsplicing model | Part 3.1.1 | Intron pairing drives cyclization |
Part 3.1.2 | Trans-acting factors drive cyclization | ||||
Part 3.2 | Exon jumping model | ||||
Part 4 | Interaction mechanisms of circRNAs with other biological macromolecules | Part 4.1 | CircRNAs and their parental genes | ||
Part 4.2 | CircRNAs and miRNAs | Part 4.2.1 | CircRNAs act as miRNA sponges | ||
Part 4.2.2 | Predictive web tools for circRNA–miRNA interactions | ||||
Part 4.2.3 | Detection methods for circRNA–miRNA interactions | ||||
Part 4.3 | CircRNAs and proteins | Part 4.3.1 | CircRNA–protein interactions | ||
Part 4.3.2 | CircRNA–protein interactions prediction web tool | ||||
Part 4.3.3 | Detection methods for circRNA–protein interactions | ||||
Part 4.4 | CircRNAs and mRNAs | ||||
Part 5 | The physiological importance of circRNA in plants | Part 5.1 | CircRNAs serving as miRNA sponges | ||
Part 5.2 | CircRNAs regulate gene expression | ||||
Part 5.3 | Interactions between circRNAs and proteins | ||||
Part 5.4 | CircRNAs have potential translation functions | ||||
Part 6 | Involvement of circRNAs in plant growth and development | Part 6.1 | CircRNAs involved in plant embryogenesis | ||
Part 6.2 | Regulating plant nutritional growth via circRNAs | ||||
Part 6.3 | Regulation of reproductive growth via circRNAs | Part 6.3.1 | Regulation of flower development | ||
Part 6.3.2 | Regulation of fruit development | ||||
Part 7 | Roles of circRNAs in plant stress responses | Part 7.1 | Responses of circRNAs to biostress | Part 7.1.1 | CircRNAs and plant viral infections |
Part 7.1.2 | CircRNAs and bacterial infections | ||||
Part 7.1.3 | CircRNAs and fungal infections | ||||
Part 7.1.4 | CircRNAs and insect attacks | ||||
Part 7.2 | CircRNA response to abiotic stresses | Part 7.2.1 | CircRNAs and temperature stress | ||
Part 7.2.2 | CircRNAs and water stress | ||||
Part 7.2.3 | CircRNAs and salt stress | ||||
Part 7.2.4 | CircRNAs and nutrient stress |
Order | Functions | Methods | References |
---|---|---|---|
1 | CircRNAs regulate genes expression | CRISPR Cas9-guided promoter immunoprecipitation (CasIP) assay | [69] |
U1 antisense morpholino (AMO) | [37] | ||
R-loop dot-blotting, DNA–RNA immunoprecipitation and mass spectrum | [70] | ||
2 | CircRNAs serving as miRNA sponges | Luciferase reporter assays | [71] |
Antisense oligonucleotide (ASO) pulldown | [72] | ||
Labeled microRNA pulldown assays | [73] | ||
CircRNA–miRNA interaction assays | [74] | ||
RNA fluorescence in situ hybridization | [75] | ||
Silencing and overexpression experiments | [76,77] | ||
3 | Interactions between circRNAs and proteins | RNase protection assays | [52] |
RNA pulldown assays | [78] | ||
RNA immunoprecipitation | [79] | ||
Electrophoretic mobility shift assays | [80] | ||
Fluorescence in situ hybridization and immunofluorescence | [81,82] | ||
4 | CircRNAs have potential translation functions | m6A immunoprecipitation and quantification | [83] |
Ribosome footprinting (RFP) fragment sequencing experiments | [84] | ||
Nanopore-based direct RNA sequencing (DRS) | [85] | ||
Overexpression experiment | [86] |
Database Name | Website a | Sample Sources | Description | Refernces |
---|---|---|---|---|
Circ2Traits | http://mirtoolsgallery.tech/mirtoolsgallery/node/2155 (accessed on 19 June 2024) | Tissue samples from human diseases | Prediction of interactions between circRNAs and disease-associated miRNAs, construction of interaction networks and enrichment analysis methods for miRNAs and proteins, long non-coding RNAs, and/or circRNAs, and analysis of interaction sites between circRNA and SNPS of disease-associated genes | [99] |
starBase v2.0 | http://starbase.sysu.edu.cn/ (accessed on 19 June 2024) | Tissue samples from human diseases | Construction of miRNA–ceRNA, miRNA–ncRNA, and protein–RNA interaction networks from large-scale CLIP-Seq data | [100] |
CircInteractome | https://circinteractome.nia.nih.gov/ (accessed on 19 June 2024) | Animal tissue samples | Information on RNA-binding proteins binding human circRNAs and miRNA binding sites, primer design tools, design of siRNAs for circRNA silencing, and identification of potential internal ribosome entry sites on circRNAs | [101] |
CircNet | http://circnet.mbc.nctu.edu.tw/ (accessed on 19 June 2024) | Animal tissue samples | Newly identified circRNAs, integration of the networks of target genes of miRNAs, expression profiles of circRNA variable isoforms, genome annotations, and sequence information | [102] |
AtCircDB | http://www.deepbiology.cn/circRNA/ (accessed on 19 June 2024) | Arabidopsis | Comprehensive tissue-specific database of circRNAs for Arabidopsis; retrieving, visualizing, and downloading circRNA data for Arabidopsis; and analysis of circRNA–miRNA interaction networks | [103] |
PlantCircNet | http://bis.zju.edu.cn/plantcircnet/index.php (accessed on 19 June 2024) | Arabidopsis, rice, soybean, barley, tomato, wheat, maize, and purple falsebrome (Brachypodium distachyon) | Visualization tools for interaction network graphs; tools for GO enrichment analysis of overexpressed target genes of miRNAs; and information on the annotations of circRNA genomes, sequences, and shearsomes | [104] |
PlantcircBase | http://ibi.zju.edu.cn/plantcircbase/ (accessed on 19 June 2024) | Rice, Arabidopsis, maize, tomato, and barley | Information on miRNA sponge function, circRNA–miRNA–mRNA interaction network graphs, tool for visualization of circRNA structure according to genome location, and tools for querying circRNA sequences | [105] |
ASmiR | http://forestry.fafu.edu.cn/bioinfor/db/ASmiR (accessed on 19 June 2024) | Bamboo, rice, Arabidopsis, and eight other plants | Mutual regulation between target sites of miRNAs and linear RNAs, and between miRNAs and alternatively spliced circular RNAs | [106] |
GreenCircRNA | http://greencirc.cn (accessed on 19 June 2024) | Arabidopsis, maize, rice, soybean, wheat, sunflower (Helianthus annuus), and sixty-three other plants | Database of plant circRNAs as miRNA decoys, a plant-based platform for exploration of plant circRNAs and their potential decoys | [107] |
CircMiMi | https://github.com/TreesLab/CircMiMi (accessed on 19 June 2024) | Eighteen species (including sixteen animals and two plants) | A modular spftware based Python, that identifies circRNA–miRNA–mRNA interactions according to circRNA junction coordinates | [108] |
Database Name | Website a | Sample Sources | Description | References |
---|---|---|---|---|
catRAPID omics v2.0 | http://service.tartaglialab.com/page/catrapid_omics2_group (accessed on 19 June 2024) | Eight model organisms (Homo sapiens, Mus musculus, Rattus norvegicus, Xenopus tropicalis, Danio rerio, Drosophila melanogaster, Caenorhabditis elegans, and Saccharomyces cerevisiae) | A web server dedicated to the computation of protein–RNA interaction propensities at the transcriptome- and RNA-binding proteome level in 8 model organisms. By integrating secondary structure, hydrogen bonding, and van der Waals forces, the web server accurately predicts protein–RNA binding effects. | [122] |
CRMSS | https://github.com/BioinformaticsCSU/CRMSS (accessed on 19 June 2024) | Human disease tissue samples | Binding sites of circRNA-RBP are predicted, on the basis of multi-scale feature sequences and structural features. | [123] |
CircSLNN | Offline software package (accessed on 19 June 2024) | RBP binding sites on circRNAs are identified by sequence labeling neural networks. | [124] | |
iCircRBP-DHN | https://github.com/houzl3416/iCircRBP-DHN (accessed on 19 June 2024) | A deep hierarchical network (DHN) is used to recognize circRNA-RBP binding sites. | [125] | |
RBPsuite | http://www.csbio.sjtu.edu.cn/bioinf/RBPsuite/ (accessed on 19 June 2024) | A deep learning-based online web server, RBPsuite, is used for predicting RBP binding sites on linear and circular RNAs. | [126] | |
CircRIP | https://github.com/bioinfolabwhu/circRIP (accessed on 19 June 2024) | RBP–circRNA interactions are systematically identified from RIP-Seq and eCLIP data. | [127] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, D.; Ma, Y.; Naz, M.; Ahmed, N.; Zhang, L.; Zhou, J.-J.; Yang, D.; Chen, Z. Advances in CircRNAs in the Past Decade: Review of CircRNAs Biogenesis, Regulatory Mechanisms, and Functions in Plants. Genes 2024, 15, 958. https://doi.org/10.3390/genes15070958
Zhang D, Ma Y, Naz M, Ahmed N, Zhang L, Zhou J-J, Yang D, Chen Z. Advances in CircRNAs in the Past Decade: Review of CircRNAs Biogenesis, Regulatory Mechanisms, and Functions in Plants. Genes. 2024; 15(7):958. https://doi.org/10.3390/genes15070958
Chicago/Turabian StyleZhang, Dongqin, Yue Ma, Misbah Naz, Nazeer Ahmed, Libo Zhang, Jing-Jiang Zhou, Ding Yang, and Zhuo Chen. 2024. "Advances in CircRNAs in the Past Decade: Review of CircRNAs Biogenesis, Regulatory Mechanisms, and Functions in Plants" Genes 15, no. 7: 958. https://doi.org/10.3390/genes15070958
APA StyleZhang, D., Ma, Y., Naz, M., Ahmed, N., Zhang, L., Zhou, J. -J., Yang, D., & Chen, Z. (2024). Advances in CircRNAs in the Past Decade: Review of CircRNAs Biogenesis, Regulatory Mechanisms, and Functions in Plants. Genes, 15(7), 958. https://doi.org/10.3390/genes15070958