A Perspective Review on Understanding Drought Stress Tolerance in Wild Banana Genetic Resources of Northeast India
Abstract
:1. Introduction
2. General Description and Taxonomy of Musa
3. Productivity
4. Importance of Crop Wild Relatives (CWR)
5. Wild Relatives of Musa in India
6. Strategies for Evaluating Drought Stress Response of Wild Musa spp. Found in Northeast India
6.1. Field Studies
6.2. Pot Studies
6.2.1. Induction of Drought Stress
6.2.2. Phenotypic Evaluation of Drought-Stress Response
6.3. In Vitro Plants for Evaluation
7. Physiochemical Parameters for Evaluation of Drought-Stress Response
- Quantification of photosynthetic pigments [110]
- Yield and yield parameters [101]
- Drought susceptibility index [111]
- Malondialdehyde (MDA) content [97]
- Hydrogen peroxide (H2O2) activity [98]
- Proline content [112]
- Soluble sugar content [98]
- Endogenous Abscisic acid (ABA) content [98]
- Photosynthetic pigments [110]
- Electrolyte leakage [113]
- Photosynthetic efficiency [114]
- Total glutathione content [115]
- Leaf disc senescence assay [116]
- Superoxide dismutase (SOD) activity [117]
- Glutathione reduction activity [118]
- Catalase activity [119]
8. High-Throughput Phenotyping
9. Studies Employing Breeding and Omics Approaches
10. Transcriptomics Analysis
11. Proteomics Studies
12. Genome Editing
13. Conclusions and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a Cultivated Planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunter, M.C.; Smith, R.G.; Schipanski, M.E.; Atwood, L.W.; Mortensen, D.A. Agriculture in 2050: Recalibrating Targets for Sustainable Intensification. Bioscience 2017, 67, 386–391. [Google Scholar] [CrossRef] [Green Version]
- Dudal, R. Inventory of the Major Soils of the World with Special Reference to Mineral Stress Hazards. In Proceedings of the Plant Adaptation to Mineral Stress in Problem Soils, Proceedings of a Workshop Held at the National Agricultural Library, Beltsville, MD, USA, 22–23 November 1976; pp. 3–13. [Google Scholar]
- Liu, G.; Li, B.; Li, X.; Wei, Y.; He, C.; Shi, H. MaWRKY80 Positively Regulates Plant Drought Stress Resistance through Modulation of Abscisic Acid and Redox Metabolism. Plant Physiol. Biochem. 2020, 156, 155–166. [Google Scholar] [CrossRef]
- Arora, N.K. Impact of Climate Change on Agriculture Production and Its Sustainable Solutions. Environ. Sustain. 2019, 2, 95–96. [Google Scholar] [CrossRef] [Green Version]
- Ravi, I.; Uma, S. Phenotyping Bananas and Plantains for Adaptation to Drought. Drought Phenotyp. Crops Theory Pract. 2011, 4, 9. [Google Scholar]
- Bekunda, M.A.; Woomer, P.L. Organic Resource Management in Banana-Based Cropping Systems of the Lake Victoria Basin, Uganda. Agric. Ecosyst. Environ. 1996, 59, 171–180. [Google Scholar] [CrossRef]
- Wairegi, L.W.I.; van Asten, P.J.A.; Tenywa, M.M.; Bekunda, M.A. Abiotic Constraints Override Biotic Constraints in East African Highland Banana Systems. Field Crop. Res. 2010, 117, 146–153. [Google Scholar] [CrossRef]
- van Asten, P.J.A.; Fermont, A.M.; Taulya, G. Drought Is a Major Yield Loss Factor for Rainfed East African Highland Banana. Agric. Water Manag. 2011, 98, 541–552. [Google Scholar] [CrossRef]
- Ravi, I.; Uma, S.; Vaganan, M.M.; Mustaffa, M.M. Phenotyping Bananas for Drought Resistance. Front. Physiol. 2013, 4, 9. [Google Scholar] [CrossRef] [Green Version]
- Carr, M.K.V. The Water Relations and Irrigation Requirements of Banana (Musa Spp.). Exp. Agric. 2009, 45, 333–371. [Google Scholar] [CrossRef]
- Robinson, J.C.; Sauco, V.G. Bananas and Plantains, 2nd ed.; CABI: Wallingford, UK, 2010. [Google Scholar]
- Machovina, B.; Feeley, K.J. Climate Change Driven Shifts in the Extent and Location of Areas Suitable for Export Banana Production. Ecol. Econ. 2013, 95, 83–95. [Google Scholar] [CrossRef]
- Ekanayake, I.J.; Ortiz, R.; Vuylsteke, D.R. Influence of Leaf Age, Soil Moisture, VPD and Time of Day on Leaf Conductance of Various Musa Genotypes in a Humid Forest-Moist Savanna Transition Site. Ann. Bot. 1994, 74, 173–178. [Google Scholar] [CrossRef]
- Mahouachi, J.; López-Climent, M.F.; Gómez-Cadenas, A. Hormonal and Hydroxycinnamic Acids Profiles in Banana Leaves in Response to Various Periods of Water Stress. Sci. World J. 2014, 2014, 540962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uma, S.; Sathiamoorthy, S.; Singh, H.P.; Dayarani, M. Crop Improvement in Musa-Evaluation of Germplasm for Male and Female Fertility. Indian J. Plant Genet. Resour. 2002, 15, 137–139. [Google Scholar]
- Nansamba, M.; Sibiya, J.; Tumuhimbise, R.; Karamura, D.; Kubiriba, J.; Karamura, E. Breeding Banana (Musa Spp.) for Drought Tolerance: A Review. Plant Breed. 2020, 139, 685–696. [Google Scholar] [CrossRef] [Green Version]
- Brown, A.; Carpentier, S.C.; Swennen, R. Breeding Climate-Resilient Bananas; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food Security: The Challenge of Feeding 9 Billion People. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vermeulen, S.J.; Aggarwal, P.K.; Ainslie, A.; Angelone, C.; Campbell, B.M.; Challinor, A.J.; Hansen, J.W.; Ingram, J.S.I.; Jarvis, A.; Kristjanson, P.; et al. Options for Support to Agriculture and Food Security under Climate Change. Environ. Sci. Policy 2012, 15, 136–144. [Google Scholar] [CrossRef]
- Swennen, R.; Carpentier, S.C.; Henry, I.M.; Vertommen, A.; Houwe, I.; Kovacs, G.; Sagi, L.; Remy, S.; Panis, B. From Fundamental Research Discoveries to Applications for Banana Improvement. Acta Hortic. 2011, 897, 47–53. [Google Scholar] [CrossRef]
- Zhang, H.; Mittal, N.; Leamy, L.J.; Barazani, O.; Song, B.H. Back into the Wild—Apply Untapped Genetic Diversity of Wild Relatives for Crop Improvement. Evol. Appl. 2017, 10, 5–24. [Google Scholar] [CrossRef]
- Thangjam, R. Genomic Approaches for Unravelling the Potentials of Crop Wild Relatives. Adv. Plants Agric. Res. 2016, 3, 7–8. [Google Scholar] [CrossRef] [Green Version]
- Kahraman, A.; Pandey, A.; Khan, M.K.; Lindsay, D.; Moenga, S.; Vance, L.; Bergmann, E.; Carrasquilla-Garcia, N.; Shin, M.; Chang, P.L.; et al. Distinct Subgroups of Cicer Echinospermum Are Associated with Hybrid Sterility and Breakdown in Interspecific Crosses with Cultivated Chickpea. Wiley Online Libr. 2017, 57, 3101–3111. [Google Scholar] [CrossRef] [Green Version]
- Simmonds, N.W.; Shepherd, K. The Taxonomy and Origins of the Cultivated Bananas. Bot. J. Linn. Soc. 1955, 55, 302–312. [Google Scholar] [CrossRef]
- Bohra, A.; Kilian, B.; Sivasankar, S.; Caccamo, M.; Mba, C.; McCouch, S.R.; Varshney, R.K. Reap the Crop Wild Relatives for Breeding Future Crops. Trends Biotechnol. 2021, 40, 412–431. [Google Scholar] [CrossRef] [PubMed]
- Seiler, G.J.; Qi, L.L.; Marek, L.F. Utilization of Sunflower Crop Wild Relatives for Cultivated Sunflower Improvement. Crop. Sci. 2017, 57, 1083–1101. [Google Scholar] [CrossRef] [Green Version]
- Ochieng, G.; Ngugi, K.; Wamalwa, L.N.; Manyasa, E.; Muchira, N.; Nyamongo, D.; Odeny, D.A. Novel Sources of Drought Tolerance from Landraces and Wild Sorghum Relatives. Crop. Sci. 2021, 61, 104–118. [Google Scholar] [CrossRef]
- Naz, A.A.; Arifuzzaman, M.; Muzammil, S.; Pillen, K.; Léon, J. Wild Barley Introgression Lines Revealed Novel QTL Alleles for Root and Related Shoot Traits in the Cultivated Barley (Hordeum Vulgare L.). BMC Genet. 2014, 15, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Aberkane, H.; Amri, A.; Belkadi, B.; Filali-Maltouf, A.; Kehel, Z.; Tahir, I.S.A.; Meheesi, S.; Tsivelikas, A. Evaluation of Durum Wheat Lines Derived from Interspecific Crosses under Drought and Heat Stress. Crop. Sci. 2021, 61, 119–136. [Google Scholar] [CrossRef]
- Humphries, A.W.; Ovalle, C.; Hughes, S.; del Pozo, A.; Inostroza, L.; Barahona, V.; Yu, L.; Yerzhanova, S.; Rowe, T.; Hill, J.; et al. Characterization and Pre-Breeding of Diverse Alfalfa Wild Relatives Originating from Drought-Stressed Environments. Crop. Sci. 2021, 61, 69–88. [Google Scholar] [CrossRef]
- Castañeda-Álvarez, N.P.; Khoury, C.K.; Achicanoy, H.A.; Bernau, V.; Dempewolf, H.; Eastwood, R.J.; Guarino, L.L.; Harker, R.H.; Jarvis, A.; Maxted, N.; et al. Global Conservation Priorities for Crop Wild Relatives. Nat. Plants 2016, 2, 16022. [Google Scholar] [CrossRef]
- Mertens, A.; Bawin, Y.; Vanden Abeele, S.; Kallow, S.; Vu, D.T.; Le, L.T.; Vu, T.D.; Swennen, R.; Vandelook, F.; Panis, B.; et al. Genetic Diversity and Structure of Musa Balbisiana Populations in Vietnam and Its Implications for the Conservation of Banana Crop Wild Relatives. PLoS ONE 2021, 16, e0253255. [Google Scholar] [CrossRef]
- Mertens, A.; Swennen, R.; Rønsted, N.; Vandelook, F.; Panis, B.; Sachter-Smith, G.; Vu, D.T.; Janssens, S.B. Conservation Status Assessment of Banana Crop Wild Relatives Using Species Distribution Modelling. Divers. Distrib. 2021, 27, 729–746. [Google Scholar] [CrossRef]
- Eyland, D.; Breton, C.; Sardos, J.; Kallow, S.; Panis, B.; Swennen, R.; Paofa, J.; Tardieu, F.; Welcker, C.; Janssens, S.B.; et al. Filling the Gaps in Gene Banks: Collecting, Characterizing, and Phenotyping Wild Banana Relatives of Papua New Guinea. Crop. Sci. 2021, 61, 137–149. [Google Scholar] [CrossRef]
- Van Wesemael, J.; Hueber, Y.; Kissel, E.; Campos, N.; Swennen, R.; Carpentier, S. Homeolog Expression Analysis in an Allotriploid Non-Model Crop via Integration of Transcriptomics and Proteomics. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van den Houwe, I.; Chase, R.; Sardos, J.; Ruas, M.; Kempenaers, E.; Guignon, V.; Massart, S.; Carpentier, S.; Panis, B.; Rouard, M.; et al. Safeguarding and Using Global Banana Diversity: A Holistic Approach. CABI Agric. Biosci. 2020, 1, 1–22. [Google Scholar] [CrossRef]
- Eyland, D.; Luchaire, N.; Cabrera-Bosquet, L.; Parent, B.; Janssens, S.B.; Swennen, R.; Welcker, C.; Tardieu, F.; Carpentier, S.C. High-Throughput Phenotyping Reveals Differential Transpiration Behaviour within the Banana Wild Relatives Highlighting Diversity in Drought Tolerance. Plant. Cell Environ. 2022, 45, 1647–1663. [Google Scholar] [CrossRef]
- Dempewolf, H.; Baute, G.; Anderson, J.; Kilian, B.; Smith, C.; Guarino, L. Past and Future Use of Wild Relatives in Crop Breeding. Crop. Sci. 2017, 57, 1070–1082. [Google Scholar] [CrossRef] [Green Version]
- Hodgkin, T.; Hajjar, R. Using Crop Wild Relatives for Crop Improvement: Trends and Perspectives. Crop. Wild Relat. Conserv. Use 2007, 535–548. [Google Scholar] [CrossRef]
- Henckel, P.A. Physiology of Plants under Drought. Annu. Rev. Plant Physiol. 1964, 15, 363–386. [Google Scholar] [CrossRef]
- Taylor, C.F.; Paton, N.W.; Lilley, K.S.; Binz, P.-A.; Julian, R.K.; Jones, A.R.; Zhu, W.; Apweiler, R.; Aebersold, R.; Deutsch, E.W.; et al. The Minimum Information about a Proteomics Experiment (MIAPE). Nat. Biotechnol. 2007, 25, 887–893. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, J.N.; Oduor, R.O.; Tripathi, L. A High-Throughput Regeneration and Transformation Platform for Production of Genetically Modified Banana. Front. Plant Sci. 2015, 6, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Prohens, J.; Gramazio, P.; Plazas, M.; Dempewolf, H.; Kilian, B.; Diez, M.J.; Fita, A.; Herraiz, F.J.; Rodriguez-Burruezo, A.; Soler, S.; et al. Introgressiomics: A New Approach for Using Crop Wild Relatives in Breeding for Adaptation to Climate Change. Euphytica 2017, 213, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, L.; Ntui, V.O.; Tripathi, J.N. Control of Bacterial Diseases of Banana Using CRISPR/Cas-Based Gene Editing. Int. J. Mol. Sci. 2022, 23, 3619. [Google Scholar] [CrossRef] [PubMed]
- Sabu, M.; Joe, A.; Sreejith, P.E. Brief Overview of Diversity of Wild Indian Musaceae. In Acta Horticulturae; International Society for Horticultural Science: Leuven, Belgium, 2016; Volume 1114, pp. 75–80. [Google Scholar] [CrossRef]
- Kress, W.J.; Specht, C.D. The Evolutionary and Biogeographic Origin and Diversification of the Tropical Monocot Order Zingiberales. Aliso A J. Syst. Flor. Bot. 2006, 22, 621–632. [Google Scholar] [CrossRef] [Green Version]
- Qamar, S.; Shaikh, A. Therapeutic Potentials and Compositional Changes of Valuable Compounds from Banana-A Review. Trends Food Sci. Technol. 2018, 79, 1–9. [Google Scholar] [CrossRef]
- Stover, R.H.; Simmonds, N.W. Bananas; Longman Scientific and Technical: Essex, UK, 1987; p. 468. [Google Scholar]
- Kennedy, J. Bananas and People in the Homeland of Genus Musa: Not Just Pretty Fruit. Ethnobot. Res. Appl. 2009, 7, 179–197. [Google Scholar] [CrossRef] [Green Version]
- Martin, G.; Cardi, C.; Sarah, G.; Ricci, S.; Jenny, C.; Fondi, E.; Perrier, X.; Glaszmann, J.-C.; D’Hont, A.; Yahiaoui, N. Genome Ancestry Mosaics Reveal Multiple and Cryptic Contributors to Cultivated Banana. Plant J. 2020, 102, 1008–1025. [Google Scholar] [CrossRef]
- Heslop-Harrison, J.S.; Schwarzacher, T. Domestication, Genomics and the Future for Banana. Ann. Bot. 2007, 100, 1073–1084. [Google Scholar] [CrossRef] [Green Version]
- Kaur, N.; Alok, A.; Kumar, P.; Kaur, N.; Awasthi, P.; Chaturvedi, S.; Pandey, P.; Pandey, A.; Pandey, A.K.; Tiwari, S. CRISPR/Cas9 Directed Editing of Lycopene Epsilon-Cyclase Modulates Metabolic Flux for β-Carotene Biosynthesis in Banana Fruit. Metab. Eng. 2020, 59, 76–86. [Google Scholar] [CrossRef]
- Perrier, X.; De Langhe, E.; Donohue, M.; Lentfer, C.; Vrydaghs, L.; Bakry, F.; Carreel, F.; Hippolyte, I.; Horry, J.P.; Jenny, C.; et al. Multidisciplinary perspectives on banana (Musa spp.) domestication. Proc. Natl. Acad. Sci. USA 2011, 108, 11311–11318. [Google Scholar] [CrossRef] [Green Version]
- Tzean, Y.; Lee, M.-C.; Jan, H.-H.; Chiu, Y.-S.; Tu, T.-C.; Hou, B.-H.; Chen, H.-M.; Chou, C.-N.; Yeh, H.-H. Cucumber Mosaic Virus-Induced Gene Silencing in Banana. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Van Wesemael, J.; Kissel, E.; Eyland, D.; Lawson, T.; Swennen, R.; Carpentier, S. Using Growth and Transpiration Phenotyping under Controlled Conditions to Select Water Efficient Banana Genotypes. Front. Plant Sci. 2019, 10, 352. [Google Scholar] [CrossRef] [PubMed]
- Miao, H.; Sun, P.; Liu, Q.; Miao, Y.; Liu, J.; Zhang, K.; Hu, W.; Zhang, J.; Wang, J.; Wang, Z.; et al. Genome-Wide Analyses of SWEET Family Proteins Reveal Involvement in Fruit Development and Abiotic/Biotic Stress Responses in Banana. Sci. Rep. 2017, 7, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, A.S.; Amorim, E.P.; Ferreira, C.F.; Pirovani, C.P. Water Stress in Musa Spp.: A Systematic Review. PLoS ONE 2018, 13, e0208052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perrier, X.; Bakry, F.; Carreel, F.; Jenny, C.; Horry, J.-P.; Lebot, V.; Hippolyte, I. Combining Biological Approaches to Shed Light on the Evolution of Edible Bananas. Ethnobot. Res. Appl. 2009, 7, 199. [Google Scholar] [CrossRef] [Green Version]
- Kissel, E.; van Asten, P.; Swennen, R.; Lorenzen, J.; Carpentier, S.C. Transpiration Efficiency versus Growth: Exploring the Banana Biodiversity for Drought Tolerance. Sci. Hortic. 2015, 185, 175–182. [Google Scholar] [CrossRef]
- Christelova, P.; De Langhe, E.; Hribova, E.; Cizkova, J.; Sardos, J.; Husakova, M.; Van den Houwe, I.; Sutanto, A.; Kepler, A.K.; Swennen, R.; et al. Molecular and Cytological Characterization of the Global Musa Germplasm Collection Provides Insights into the Treasure of Banana Diversity. Biodivers. Conserv. 2017, 26, 801–824. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, Z.S.; Haddad, F.; de Oliveira Amorim, V.B.; Ferreira, C.F.; de Oliveira, S.A.S.; Amorim, E.P. Agronomic Characterization and Identification of Banana Genotypes Resistant to Fusarium Wilt Race 1. Eur. J. Plant Pathol. 2019, 155, 1093–1103. [Google Scholar] [CrossRef]
- Carreel, F.; Fauré, S.; de León, D.; Lagoda, P.J.L.; Perrier, X.; Bakry, F.; du Montcel, H.; Lanaud, C.; Horry, J.P. Evaluation of the Genetic Diversity in Diploid Bananas (Musa Spp). Genet. Sel. Evol. 1994, 26, 125–136. [Google Scholar] [CrossRef]
- Davey, M.W.; Graham, N.S.; Vanholme, B.; Swennen, R.; May, S.T.; Keulemans, J. Heterologous Oligonucleotide Microarrays for Transcriptomics in a Non-Model Species; a Proof-of-Concept Study of Drought Stress in Musa. BMC Genom. 2009, 10, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Kumakech, A.; Kiggundu, A.; Okori, P. Reaction of Musa Balbisiana to Banana Bacterial Wilt Infection. Afr. Crop. Sci. J. 2013, 21, 337–346. [Google Scholar]
- Tripathi, L.; Tripathi, J.N. Relative Susceptibility of Banana Cultivars to Xanthomonas Campestris Pv. Musacearum. Afr. J. Biotechnol. 2009, 8, 20. [Google Scholar]
- Häkkinen, M.; De Langhe, E. Musa Acuminata in Northern Borneo. Montp. INIBAP Publ. 2001. [Google Scholar]
- Carreel, F.; De Leon, D.G.; Lagoda, P.; Lanaud, C.; Jenny, C.; Horry, J.-P.; Du Montcel, H.T. Ascertaining Maternal and Paternal Lineage within Musa by Chloroplast and Mitochondrial DNA RFLP Analyses. Genome 2002, 45, 679–692. [Google Scholar] [CrossRef] [PubMed]
- Vanhove, A.-C.; Vermaelen, W.; Panis, B.; Swennen, R.; Carpentier, S. Screening the Banana Biodiversity for Drought Tolerance: Can an In Vitro Growth Model and Proteomics Be Used as a Tool to Discover Tolerant Varieties and Understand Homeostasis. Front. Plant Sci. 2012, 3, 176. [Google Scholar] [CrossRef] [PubMed]
- Häkkinen, M. Thirteenth Botanical Expedition. Exploring for Wild Bananas of Vietnam. Fruit Gard. 2010, 42. [Google Scholar]
- Cheesman, E.E. Classification of the Bananas: Critical Notes on Species: Musa Ornata. Kew Bull. 1949, 4, 24. [Google Scholar] [CrossRef]
- Swangpol, S.; Somana, J. Musa Serpentina (Musaceae): A New Banana Species from Western Border of Thailand. Thai For. Bull. 2011, 39, 31–36. [Google Scholar]
- Vu, T.D.; Vu, D.T.; Janssens, S.B.; De Langhe, E.; Le, L.T.; Kallow, S.; Mertens, A.; Vu, T.T.H.; Nguyen, T.T. The description, distribution and habitat of wild banana species in northern Viet Nam. Genet. Resour. Crop Evol. 2022. [Google Scholar] [CrossRef]
- Sardos, J.; Breton, C.; Perrier, X.; Van Den Houwe, I.; Paofa, J.; Rouard, M.; Roux, N. Wild to Domesticates: Genomes of Edible Diploid Bananas Hold Traces of Several Undefined Genepools. bioRxiv 2021, 29, 428762. [Google Scholar]
- Pellai, N.; Aashan, T.N. Ayurveda Prakashika. ST Reddiar and Son; Vidyarambham Press: Quilon, India, 1955. [Google Scholar]
- Coe, F.G.; Anderson, G.J. Ethnobotany of the Sumu (Ulwa) of Southeastern Nicaragua and Comparisons with Miskitu Plant Lore. Econ. Bot. 1999, 53, 363–386. [Google Scholar] [CrossRef]
- Daniells, J. Musalogue: A Catalogue of Musa Germplasm: Diversity in the Genus Musa; Bioversity International: Rome, Italy, 2001. [Google Scholar]
- Li, W.M.; Dita, M.; Wu, W.; Hu, G.B.; Xie, J.H.; Ge, X.J. Resistance Sources to Fusarium Oxysporum f. Sp. Cubense Tropical Race 4 in Banana Wild Relatives. Plant Pathol. 2015, 64, 1061–1067. [Google Scholar] [CrossRef]
- Swennen, R.; Vuylsteke, D. Breeding Black Sigatoka Resistant Plantains with a Wild Banana. Trop. Agric. 1993, 70, 74–77. [Google Scholar]
- Blomme, G.; Dita, M.; Jacobsen, K.S.; Pérez Vicente, L.; Molina, A.; Ocimati, W.; Poussier, S.; Prior, P. Bacterial Diseases of Bananas and Enset: Current State of Knowledge and Integrated Approaches toward Sustainable Management. Front. Plant Sci. 2017, 8, 1290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uma, S.; Siva, S.A.; Saraswathi, M.S.; Manickavasagam, M.; Durai, P.; Selvarajan, R.; Sathiamoorthy, S. Variation and Intraspecific Relationships in Indian Wild Musa Balbisiana (BB) Population as Evidenced by Random Amplified Polymorphic DNA. Genet. Resour. Crops Evol. 2006, 53, 349–355. [Google Scholar] [CrossRef]
- Negin, B.; Moshelion, M. The Advantages of Functional Phenotyping in Pre-Field Screening for Drought-Tolerant Crops. Funct. Plant Biol. 2016, 44, 107–118. [Google Scholar] [CrossRef]
- Uma, S. Farmers’ Knowledge of Wild Musa in India; FAO: Rome, Italy, 2006; p. 46. [Google Scholar]
- Agrawal, A.; Tyagi, R.K. Report on Exploration in North-Eastern States of India. Int. J. Innov. Hortic. 2014, 3, 115–133. [Google Scholar]
- Ocan, D.; Mukasa, H.H.; Rubaihayo, P.R.; Tinzaara, W.; Blomme, G. Effects of Banana Weevil Damage on Plant Growth and Yield of East African Musa Genotypes. J. Appl. Biosci. 2008, 9, 407–415. [Google Scholar]
- Thomas, D.S.; Turner, D.W. Banana (Musa Sp.) Leaf Gas Exchange and Chlorophyll Fluorescence in Response to Soil Drought, Shading and Lamina Folding. Sci. Hortic. 2001, 90, 93–108. [Google Scholar] [CrossRef]
- Simmonds, N.W. The Evolution of the Bananas. Evol. Banan. 1962, 170. [Google Scholar]
- Gogoi, R. Musa Nagensium Var. Hongii Häkkinen—A New Addition to the Flora of India. Taiwania 2013, 58, 49–52. [Google Scholar]
- Gogoi, R.; Rabha, N.N. Notes on Musa Aurantiaca Hook. f. and Its Ex-Situ Conservation in BSI, ERC, Shillong. Envis. Newslett. 2013, 18, 6–7. [Google Scholar]
- Dey, S.; Jamir, N.S.; Gogoi, R.; Chaturvedi, S.K.; Jakha, H.Y.; Kikon, Z.P. Musa Nagalandiana Sp. Nov.(Musaceae) from Nagaland, Northeast India. Nord. J. Bot. 2014, 32, 584–588. [Google Scholar] [CrossRef]
- Gogoi, R.; Häkkinen, M. Musa Kamengensis (Musaceae), a New Species from Arunachal Pradesh, India. Acta Phytotaxon. Geobot. 2013, 64, 149–153. [Google Scholar]
- Gogoi, R. Musa Aurantiaca (Musaceae) and Its Intraspecific Taxa in India. Nord. J. Bot. 2014, 32, 701–709. [Google Scholar] [CrossRef]
- Gogoi, R.; Borah, S. Musa “Mannii” Var. “Namdangensis” (Musaceae) from Arunachal Pradesh, India. Taiwania 2014, 59, 93–97. [Google Scholar]
- Sabu, M.; Joe, A.; Sreejith, P.E. Musa Velutina Subsp. Markkuana (Musaceae): A New Subspecies from Northeastern India. Phytotaxa 2013, 92, 49–54. [Google Scholar] [CrossRef]
- Joe, A.; Sabu, M.; Sreejith, P.E. On the Rediscovery of Musa Ochracea K. Sheph. (Musaceae) from North-East India. Taiwania 2013, 58, 321–325. [Google Scholar]
- Chaudhari, R.S.; Jangale, B.L.; Azeez, A.; Krishna, B.; Sane, P.V.; Sane, A.P. Differential Regulation of the Banana Stress NAC Family by Individual and Combined Stresses of Drought and Heat in Susceptible and Resistant Genotypes. Plant Physiol. Biochem. 2019, 145, 184–194. [Google Scholar] [CrossRef]
- Xu, Y.; Hu, W.; Liu, J.; Zhang, J.; Jia, C.; Miao, H.; Xu, B.; Jin, Z. A Banana Aquaporin Gene, MaPIP1; 1, Is Involved in Tolerance to Drought and Salt Stresses. BMC Plant Biol. 2014, 14, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Hu, W.; Liu, J.; Song, S.; Hou, X.; Jia, C.; Li, J.; Miao, H.; Wang, Z.; Tie, W.; et al. An Aquaporin Gene MaPIP2-7 Is Involved in Tolerance to Drought, Cold and Salt Stresses in Transgenic Banana (Musa Acuminata L.). Plant Physiol. Biochem. 2020, 147, 66–76. [Google Scholar] [CrossRef]
- Shekhawat, U.K.S.; Srinivas, L.; Ganapathi, T.R. MusaDHN-1, a Novel Multiple Stress-Inducible SK3-Type Dehydrin Gene, Contributes Affirmatively to Drought-and Salt-Stress Tolerance in Banana. Planta 2011, 234, 915–932. [Google Scholar] [CrossRef] [PubMed]
- Sreedharan, S.; Shekhawat, U.K.S.; Ganapathi, T.R. Transgenic Banana Plants Overexpressing a Native Plasma Membrane Aquaporin M Usa PIP 1; 2 Display High Tolerance Levels to Different Abiotic Stresses. Plant Biotechnol. J. 2013, 11, 942–952. [Google Scholar] [CrossRef]
- Shekhar, S.; Rustagi, A.; Kumar, D.; Yusuf, M.; Sarin, N.B.; Lawrence, K. Groundnut AhcAPX Conferred Abiotic Stress Tolerance in Transgenic Banana through Modulation of the Ascorbate–Glutathione Pathway. Physiol. Mol. Biol. Plants 2019, 25, 1349–1366. [Google Scholar] [CrossRef] [PubMed]
- Jangale, B.L.; Chaudhari, R.S.; Azeez, A.; Sane, P.V.; Sane, A.P.; Krishna, B. Independent and Combined Abiotic Stresses Affect the Physiology and Expression Patterns of DREB Genes Differently in Stress-Susceptible and Resistant Genotypes of Banana. Physiol. Plant. 2019, 165, 303–318. [Google Scholar] [CrossRef] [PubMed]
- Obiefuna, J.C. Estimating Leaf Area of Plantain. Sci. Hortic. 1979, 11, 31–36. [Google Scholar] [CrossRef]
- Hu, W.; Ding, Z.; Tie, W.; Yan, Y.; Liu, Y.; Wu, C.; Liu, J.; Wang, J.; Peng, M.; Xu, B.; et al. Comparative Physiological and Transcriptomic Analyses Provide Integrated Insight into Osmotic, Cold, and Salt Stress Tolerance Mechanisms in Banana. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef]
- Milburn, J.A.; Kallarackal, J.; Baker, D.A. Water Relations of the Banana. I. Predicting the Water Relations of the Field-Grown Banana Using the Exuding Latex. Funct. Plant Biol. 1990, 17, 57–68. [Google Scholar] [CrossRef]
- Turner, D.W.; Fortescue, J.A.; Thomas, D.S. Environmental Physiology of the Bananas (Musa Spp.). Braz. J. Plant Physiol. 2007, 19, 463–484. [Google Scholar] [CrossRef]
- Turner, D.W.; Thomas, D.S. Measurements of Plant and Soil Water Status and Their Association with Leaf Gas Exchange in Banana (Musa Spp.): A Laticiferous Plant. Sci. Hortic. 1998, 77, 177–193. [Google Scholar] [CrossRef]
- Rustagi, A.; Jain, S.; Kumar, D.; Shekhar, S.; Jain, M.; Bhat, V.; Sarin, N.B. High Efficiency Transformation of Banana [Musa Acuminata L. Cv. Matti (AA)] for Enhanced Tolerance to Salt and Drought Stress through Overexpression of a Peanut Salinity-Induced Pathogenesis-Related Class 10 Protein. Mol. Biotechnol. 2015, 57, 27–35. [Google Scholar] [CrossRef]
- Trujillo, M. News from the PUB: Plant U-Box Type E3 Ubiquitin Ligases. J. Exp. Bot. 2018, 69, 371–384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bewley, J.D. Physiological Aspects of Desiccation Tolerance. Annu. Rev. Plant Physiol. 1979, 30, 195–238. [Google Scholar] [CrossRef]
- Fischer, R.A.; Maurer, R. Drought Resistance in Spring Wheat Cultivars. I. Grain Yield Responses. Aust. J. Agric. Res. 1978, 29, 897–912. [Google Scholar] [CrossRef]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid Determination of Free Proline for Water-Stress Studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Sairam, R.K.; Srivastava, G.C. Changes in Antioxidant Activity in Sub-Cellular Fractions of Tolerant and Susceptible Wheat Genotypes in Response to Long Term Salt Stress. Plant Sci. 2002, 162, 897–904. [Google Scholar] [CrossRef]
- Tak, H.; Negi, S.; Ganapathi, T.R. Banana NAC Transcription Factor MusaNAC042 Is Positively Associated with Drought and Salinity Tolerance. Protoplasma 2017, 254, 803–816. [Google Scholar] [CrossRef]
- Queval, G.; Noctor, G. A Plate Reader Method for the Measurement of NAD, NADP, Glutathione, and Ascorbate in Tissue Extracts: Application to Redox Profiling during Arabidopsis Rosette Development. Anal. Biochem. 2007, 363, 58–69. [Google Scholar] [CrossRef]
- Arnon, D.I. Copper Enzymes in Isolated Chloroplasts. Polyphenoloxidase in β Vulgaris. Plant Physiol. 1949, 24, 1. [Google Scholar] [CrossRef] [Green Version]
- Beyer, W.F., Jr.; Fridovich, I. Assaying for Superoxide Dismutase Activity: Some Large Consequences of Minor Changes in Conditions. Anal. Biochem. 1987, 161, 559–566. [Google Scholar] [CrossRef]
- Smith, I.K.; Vierheller, T.L.; Thorne, C.A. Properties and Functions of Glutathione Reductase in Plants. Physiol. Plant 1989, 77, 449–456. [Google Scholar] [CrossRef]
- Aebi, H. [13] Catalase In Vitro. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1984; Volume 105, pp. 121–126. [Google Scholar]
- Zait, Y.; Shapira, O.; Schwartz, A. The Effect of Blue Light on Stomatal Oscillations and Leaf Turgor Pressure in Banana Leaves. Plant. Cell Environ. 2017, 40, 1143–1152. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, U.; Rüger, S.; Shapira, O.; Westhoff, M.; Wegner, L.H.; Reuss, R.; Gessner, P.; Zimmermann, G.; Israeli, Y.; Zhou, A.; et al. Effects of Environmental Parameters and Irrigation on the Turgor Pressure of Banana Plants Measured Using the Non-Invasive, Online Monitoring Leaf Patch Clamp Pressure Probe. Plant Biol. 2010, 12, 424–436. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Jones, S.; Ganapathysubramanian, B.; Sarkar, S.; Mueller, D.; Sandhu, K.; Nagasubramanian, K. Challenges and Opportunities in Machine-Augmented Plant Stress Phenotyping. Trends Plant Sci. 2021, 26, 53–69. [Google Scholar] [CrossRef] [PubMed]
- Kissel, E.; Vanhove, A.C.; Garcia, S.; Panis, B.; Rouard, M.; Cenci, A.; Roux, N.; Zorrilla, J.; Swennen, R.; Carpentier, S.C. Abiotic Stress Research in Crops Using -Omics Approaches: Drought Stress and Banana in the Spotlight. Acta Hortic. 2016, 1114, 81–90. [Google Scholar] [CrossRef]
- Brozynska, M.; Furtado, A.; Henry, R.J. Genomics of Crop Wild Relatives: Expanding the Gene Pool for Crop Improvement. Plant Biotechnol. J. 2016, 14, 1070–1085. [Google Scholar] [CrossRef]
- Droc, G.; Larivière, D.; Guignon, V.; Yahiaoui, N.; This, D.; Garsmeur, O.; Dereeper, A.; Hamelin, C.; Argout, X.; Dufayard, J.F.; et al. The Banana Genome Hub. Database 2013, 2013, bat035. [Google Scholar] [CrossRef]
- D’hont, A.; Denoeud, F.; Aury, J.-M.; Baurens, F.-C.; Carreel, F.; Garsmeur, O.; Noel, B.; Bocs, S.; Droc, G.; Rouard, M.; et al. The Banana (Musa Acuminata) Genome and the Evolution of Monocotyledonous Plants. Nature 2012, 488, 213–217. [Google Scholar] [CrossRef] [Green Version]
- Cenci, A.; Hueber, Y.; Zorrilla-Fontanesi, Y.; Van Wesemael, J.; Kissel, E.; Gislard, M.; Sardos, J.; Swennen, R.; Roux, N.; Carpentier, S.C.; et al. Effect of Paleopolyploidy and Allopolyploidy on Gene Expression in Banana. BMC Genom. 2019, 20, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Cenci, A.; Rouard, M.; Zhang, D.; Wang, Y.; Tang, W.; Zheng, S.J. Transcriptomic Analysis of Resistant and Susceptible Banana Corms in Response to Infection by Fusarium Oxysporum f. Sp. Cubense Tropical Race 4. Sci. Rep. 2019, 9, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Muthusamy, M.; Uma, S.; Backiyarani, S.; Saraswathi, M.S.; Chandrasekar, A. Transcriptomic Changes of Drought-Tolerant and Sensitive Banana Cultivars Exposed to Drought Stress. Front. Plant Sci. 2016, 7, 1609. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.; Liu, D.; Liu, Y.; Wei, S. Physiological Analysis and Transcriptome Sequencing Reveal the Effects of Salt Stress on Banana (Musa Acuminata Cv. BD) Leaf. Front. Plant Sci. 2022, 13, 822838. [Google Scholar] [CrossRef]
- Li, W.-M.; Dita, M.; Rouard, M.; Wu, W.; Roux, N.; Xie, J.-H.; Ge, X.-J. Deep RNA-Seq Analysis Reveals Key Responding Aspects of Wild Banana Relative Resistance to Fusarium Oxysporum f. Sp. Cubense Tropical Race 4. Funct. Integr. Genom. 2020, 20, 551–562. [Google Scholar] [CrossRef] [PubMed]
- Zorrilla-Fontanesi, Y.; Rouard, M.; Cenci, A.; Kissel, E.; Do, H.; Dubois, E.; Nidelet, S.; Roux, N.; Swennen, R.; Carpentier, S.C. Differential Root Transcriptomics in a Polyploid Non-Model Crop: The Importance of Respiration during Osmotic Stress. Sci. Rep. 2016, 6, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Magdeldin, S.; Enany, S.; Yoshida, Y.; Xu, B.; Zhang, Y.; Zureena, Z.; Lokamani, I.; Yaoita, E.; Yamamoto, T. Basics and Recent Advances of Two Dimensional-Polyacrylamide Gel Electrophoresis. Clin. Proteom. 2014, 11, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gemperline, E.; Keller, C.; Li, L. Mass Spectrometry in Plant-Omics. Anal. Chem. Am. Chem. Soc. 2016, 88, 3422–3434. [Google Scholar] [CrossRef] [Green Version]
- Fernie, A.R.; Yan, J. De Novo Domestication: An Alternative Route toward New Crops for the Future. Mol. Plant. 2019, 12, 615–631. [Google Scholar] [CrossRef]
- Awasthi, P.; Khan, S.; Lakhani, H.; Chaturvedi, S.; Shivani; Kaur, N.; Singh, J.; Kesarwani, A.K.; Tiwari, S. Transgene-Free Genome Editing Supports CCD4 Role as a Negative Regulator of β-Carotene in Banana. J. Exp. Bot. 2022, 73, 3401–3416. [Google Scholar] [CrossRef]
- Metje-Sprink, J.; Menz, J.; Modrzejewski, D.; Sprink, T. DNA-Free Genome Editing: Past, Present and Future. Front. Plant Sci. 2019, 9, 1957. [Google Scholar] [CrossRef]
- Puchta, H. Applying CRISPR/Cas for Genome Engineering in Plants: The Best Is yet to Come. Curr. Opin. Plant Biol. 2017, 36, 1–8. [Google Scholar] [CrossRef]
- Tripathi, L.; Ntui, V.O.; Tripathi, J.N.; Kumar, P.L. Application of CRISPR/Cas for Diagnosis and Management of Viral Diseases of Banana. Front. Microbiol. 2021, 11, 3622. [Google Scholar] [CrossRef]
- Chen, P.J.; Hussmann, J.A.; Yan, J.; Knipping, F.; Ravisankar, P.; Chen, P.F.; Chen, C.; Nelson, J.W.; Newby, G.A.; Sahin, M.; et al. Enhanced Prime Editing Systems by Manipulating Cellular Determinants of Editing Outcomes. Cell 2021, 184, 5635–5652.e29. [Google Scholar] [CrossRef]
- Molla, K.A.; Yang, Y. CRISPR/Cas-Mediated Base Editing: Technical Considerations and Practical Applications. Trends Biotechnol. 2019, 37, 1121–1142. [Google Scholar] [CrossRef] [PubMed]
- Mishra, R.; Joshi, R.K.; Zhao, K. Base Editing in Crops: Current Advances, Limitations and Future Implications. Plant Biotechnol. J. 2020, 18, 20–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- May, G.D.; Afza, R.; Mason, H.S.; Wiecko, A.; Novak, F.J.; Arntzen, C.J. Generation of Transgenic Banana (Musa Acuminata) Plants via Agrobacterium-Mediated Transformation. Bio/Technology 1995, 13, 486–492. [Google Scholar] [CrossRef]
- Ganapathi, T.R.; Higgs, N.S.; Balint-Kurti, P.J.; Arntzen, C.J.; May, G.; Van Eck, J.M. Agrobacterium-Mediated Transformation of Embryogenic Cell Suspensions of the Banana Cultivar Rasthali (AAB). Plant Cell Rep. 2001, 20, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Kaur, N.; Alok, A.; Shivani; Kaur, N.; Pandey, P.; Awasthi, P.; Tiwari, S. CRISPR/Cas9-Mediated Efficient Editing in Phytoene Desaturase (PDS) Demonstrates Precise Manipulation in Banana Cv. Rasthali Genome. Funct. Integr. Genom. 2017, 18, 89–99. [Google Scholar] [CrossRef]
- Sagi, L.; Remy, S.; Panis, B.; Swennen, R.; Volckaert, G. Transient Gene Expression in Electroporated Banana (Musa Spp., Cv. “Bluggoe”, ABB Group) Protoplasts Isolated from Regenerable Embryogenetic Cell Suspensions. Plant Cell Rep. 1994, 13, 262–266. [Google Scholar] [CrossRef]
- Sági, L.; Panis, B.; Remy, S.; Schoofs, H.; Smet, K.D.; Swennen, R.; Cammue, B.P.A. Genetic Transformation of Banana and Plantain (Musa Spp.) via Particle Bombardment. Bio/Technology 1995, 13, 481–485. [Google Scholar] [CrossRef]
- Novak, F.J.; Afza, R.; Van Duren, M.; Perea-Dallos, M.; Conger, B.V.; Xiaolang, T. Somatic Embryogenesis and Riant Regeneration in Suspension Cultures of Dessert (AA and AAA) and Cooking (ABB) Bananas (Musa SPP.). Bio/Technology 1989, 7, 154–159. [Google Scholar] [CrossRef]
- Hu, C.H.; Wei, Y.R.; Huang, Y.H.; Yi, G.J. An Efficient Protocol for the Production of Chit42 Transgenic Furenzhi Banana (Musa Spp. AA Group) Resistant to Fusarium Oxysporum. Vitr. Cell. Dev. Biol.—Plant 2013, 49, 584–592. [Google Scholar] [CrossRef]
- Dale, J.; James, A.; Paul, J.Y.; Khanna, H.; Smith, M.; Peraza-Echeverria, S.; Garcia-Bastidas, F.; Kema, G.; Waterhouse, P.; Mengersen, K.; et al. Transgenic Cavendish Bananas with Resistance to Fusarium Wilt Tropical Race 4. Nat. Commun. 2017, 8, 1496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Assani, A.; Haicour, R.; Wenzel, G.; Côte, F.; Bakry, F.; Foroughi-Wehr, B.; Ducreux, G.; Aguillar, M.-E.; Grapin, A. Plant Regeneration from Protoplasts of Dessert Banana Cv. Grande Naine (Musa Spp., Cavendish Sub-Group AAA) via Somatic Embryogenesis. Plant Cell Rep. 2001, 20, 482–488. [Google Scholar] [CrossRef]
- Panis, B.; Van Wauwe, A.; Swennen, R. Plant Regeneration through Direct Somatic Embryogenesis from Protoplasts of Banana (Musa Spp.). Plant Cell Rep. 1993, 12, 403–407. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, K.; Oka, S. Plant Regeneration from Protoplasts of a Brazilian Dessert Banana (Musa Spp., AAB Group). Acta Hortic. 1998, 490, 455–462. [Google Scholar] [CrossRef]
- Naim, F.; Dugdale, B.; Kleidon, J.; Brinin, A.; Shand, K.; Waterhouse, P.; Dale, J. Gene Editing the Phytoene Desaturase Alleles of Cavendish Banana Using CRISPR/Cas9. Transgen. Res. 2018, 27, 451–460. [Google Scholar] [CrossRef] [Green Version]
- Ntui, V.O.; Tripathi, J.N.; Tripathi, L. Robust CRISPR/Cas9 Mediated Genome Editing Tool for Banana and Plantain (Musa Spp.). Curr. Plant Biol. 2020, 21, 100128. [Google Scholar] [CrossRef]
- Tripathi, J.N.; Ntui, V.O.; Ron, M.; Muiruri, S.K.; Britt, A.; Tripathi, L. CRISPR/Cas9 Editing of Endogenous Banana Streak Virus in the B Genome of Musa Spp. Overcomes a Major Challenge in Banana Breeding. Commun. Biol. 2019, 2, 46. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, L.; Ntui, V.O.; Tripathi, J.N. CRISPR/Cas9-Based Genome Editing of Banana for Disease Resistance. Curr. Opin. Plant Biol. 2020, 56, 118–126. [Google Scholar] [CrossRef]
- Hu, C.; Sheng, O.; Deng, G.; He, W.; Dong, T.; Yang, Q.; Dou, T.; Li, C.; Gao, H.; Liu, S.; et al. CRISPR/Cas9-mediated Genome Editing of MaACO1 (Aminocyclopropane-1-carboxylate Oxidase 1) Promotes the Shelf Life of Banana Fruit. Plant Biotechnol. J. 2021, 19, 654. [Google Scholar] [CrossRef]
- Brookes, G.; Barfoot, P. The Global Income and Production Effects of Genetically Modified (GM) Crops 1996–2011. Taylor Fr. 2013, 4, 74–83. [Google Scholar] [CrossRef] [Green Version]
- Mathur, V.; Javid, L.; Kulshrestha, S.; Mandal, A.; Reddy, A.A. World Cultivation of Genetically Modified Crops: Opportunities and Risks; Springer: Berlin/Heidelberg, Germany, 2017; pp. 45–87. [Google Scholar] [CrossRef]
- ISAAA. ISAAA Brief 55-2019: Executive Summary, 2019. Available online: https://www.isaaa.org/resources/publications/briefs/55/executivesummary/ (accessed on 23 September 2022).
- Turnbull, C.; Lillemo, M.; Hvoslef-Eide, T.A.K. Global Regulation of Genetically Modified Crops Amid the Gene Edited Crop Boom—A Review. Front. Plant Sci. 2021, 12, 258. [Google Scholar] [CrossRef] [PubMed]
- Entine, J.; Felipe, M.S.S.; Groenewald, J.H.; Kershen, D.L.; Lema, M.; McHughen, A.; Nepomuceno, A.L.; Ohsawa, R.; Ordonio, R.L.; Parrott, W.A.; et al. Regulatory Approaches for Genome Edited Agricultural Plants in Select Countries and Jurisdictions around the World. Transgen. Res. 2021, 30, 551–584. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.K.; Pandey, A.; Hamurcu, M.; Avsaroglu, Z.Z.; Ozbek, M.; Omay, A.H.; Elbasan, F.; Omay, M.R.; Gokmen, F.; Topal, A.; et al. Variability in Physiological Traits Reveals Boron Toxicity Tolerance in Aegilops Species. Front. Plant Sci. 2021, 12, 736614. [Google Scholar] [CrossRef]
- Singh, S.; Agrawal, A.; Kumar, R.; Thangjam, R.; Joseph John, K. Seed storage behavior of Musa balbisiana Colla, a wild progenitor of bananas and plantains—Implications for ex situ germplasm conservation. Sci. Hortic. 2021, 280, 109926. [Google Scholar] [CrossRef]
- Panwar, R.; Chaudhry, B.; Kumar, D.; Prakash, G.; Khan, M.K.; Pandey, A.; Hamurcu, M.; Rustagi, A. Harnessing stress-tolerant wild bananas for crop improvement. Crop Pasture Sci. 2022. [Google Scholar] [CrossRef]
Sl. No. | Indian State | Varieties Cultivation |
---|---|---|
1 | Andhra Pradesh | Dwarf Cavendish, Robusta, Rasthali, Amritpant, Thellachakrakeli, KarpooraPoovan, Chakrakeli, Monthan, YenaguBontha |
2 | Assam | Jahaji (Dwarf Cavendish), ChiniChampa, Malbhog, Borjahaji (Robusta), Honda, Manjahaji, Chinia (Manohar), Kanchkol, Bhimkol, Jatikol, Digjowa, Kulpait, Bharat Moni |
3 | Bihar | Dwarf Cavendish, Alpon, Chinia, ChiniChampa, Malbhig, Muthia, Kothia, Gauria |
4 | Gujarat | Dwarf Cavendish, Lacatan, Harichal (Lokhandi), Gandevi Selection, Basrai, Robusta, G-9, Harichal, Shrimati |
5 | Jharkhand | Basrai, Singapuri |
6 | Karnataka | Dwarf Cavendish, Robusta, Rasthali, Poovan, Monthan, Elakkibale |
7 | Kerala | Nendran (Plantain), Palayankodan (Poovan), Rasthali, Monthan, Red Banana, Robusta |
8 | Madhya Pradesh | Basrai |
9 | Maharashtra | Dwarf Cavendish, Basrai, Robusta, Lal Velchi, Safed Velchi, RajeliNendran, Grand Naine, Shreemanti, Red Banana |
10 | Odissa | Dwarf Cavendish, Robusta, Champa, Patkapura (Rasthali) |
11 | Tamil Nadu | Virupakshi, Robusta, Rad Banana, Poovan, Rasthali, Nendran, Monthan, Karpuravalli, Sakkai, Peyan, Matti |
12 | West Bengal | Champa, Mortman, Dwarf Cavendish, Giant Governor, Kanthali, Singapuri |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thingnam, S.S.; Lourembam, D.S.; Tongbram, P.S.; Lokya, V.; Tiwari, S.; Khan, M.K.; Pandey, A.; Hamurcu, M.; Thangjam, R. A Perspective Review on Understanding Drought Stress Tolerance in Wild Banana Genetic Resources of Northeast India. Genes 2023, 14, 370. https://doi.org/10.3390/genes14020370
Thingnam SS, Lourembam DS, Tongbram PS, Lokya V, Tiwari S, Khan MK, Pandey A, Hamurcu M, Thangjam R. A Perspective Review on Understanding Drought Stress Tolerance in Wild Banana Genetic Resources of Northeast India. Genes. 2023; 14(2):370. https://doi.org/10.3390/genes14020370
Chicago/Turabian StyleThingnam, Surendrakumar Singh, Dinamani Singh Lourembam, Punshi Singh Tongbram, Vadthya Lokya, Siddharth Tiwari, Mohd. Kamran Khan, Anamika Pandey, Mehmet Hamurcu, and Robert Thangjam. 2023. "A Perspective Review on Understanding Drought Stress Tolerance in Wild Banana Genetic Resources of Northeast India" Genes 14, no. 2: 370. https://doi.org/10.3390/genes14020370
APA StyleThingnam, S. S., Lourembam, D. S., Tongbram, P. S., Lokya, V., Tiwari, S., Khan, M. K., Pandey, A., Hamurcu, M., & Thangjam, R. (2023). A Perspective Review on Understanding Drought Stress Tolerance in Wild Banana Genetic Resources of Northeast India. Genes, 14(2), 370. https://doi.org/10.3390/genes14020370