Effect of Different Anticoagulant Agents on Immune-Related Genes in Leukocytes Isolated from the Whole-Blood of Holstein Cows
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- NIELSEN, H. Influence of five different anticoagulants on human blood monocyte isolation and functional activities. Acta Pathol. Microbiol. Immunol. Scand. C 1985, 93, 49–52. [Google Scholar] [CrossRef]
- Mohri, M.; Shakeri, H.; Lotfollah Zadeh, S. Effects of common anticoagulants (heparin, citrate and EDTA) on routine plasma biochemistry of cattle. Comp. Clin. Path. 2007, 16, 207–209. [Google Scholar] [CrossRef]
- Banfi, G.; Salvagno, G.L.; Lippi, G. The role of ethylenediamine tetraacetic acid (EDTA) as in vitro anticoagulant for diagnostic purposes. Clin. Chem. Lab. Med. 2022, 45, 565–576. [Google Scholar] [CrossRef] [PubMed]
- Goossens, W.; Van Duppen, V.; Verwilghen, R.L. K2- or K3-EDTA: The anticoagulant of choice in routine haematology? Clin. Lab. Haematol. 1991, 13, 291–295. [Google Scholar] [CrossRef] [PubMed]
- Luethy, D.; Hopster, K. Electrolyte measurement in goats: Comparison of 2 blood gas analyzers and evaluation of the preanalytical blood sample preparation on measurement results. Tierarztl. Prax. Ausg. G Grosstiere. Nutztiere. 2020, 48, 148–155. [Google Scholar] [CrossRef]
- Higgins, C. The use of heparin in preparing samples for blood-gas analysis. MLO. Med. Lab. Obs. 2007, 39, 16–18. [Google Scholar]
- Stokol, T.; Erb, H.N. A comparison of platelet parameters in EDTA- and citrate-anticoagulated blood in dogs. Vet. Clin. Pathol. 2007, 36, 148–154. [Google Scholar] [CrossRef]
- Raczat, T.; Kraemer, L.; Gall, C.; Weiss, D.R.; Eckstein, R.; Ringwald, J. The influence of four different anticoagulants on dynamic light scattering of platelets. Vox Sang. 2014, 107, 196–199. [Google Scholar] [CrossRef]
- Shalekoff, S.; Page-Shipp, L.; Tiemessen, C.T. Effects of anticoagulants and temperature on expression of activation markers CD11b and HLA-DR on human leukocytes. Clin. Diagn. Lab. Immunol. 1998, 5, 695–702. [Google Scholar] [CrossRef]
- Moniuszko, M.; Kowal, K.; Rusak, M.; Pietruczuk, M.; Dabrowska, M.; Bodzenta-Lukaszyk, A. Monocyte CD163 and CD36 expression in human whole blood and isolated mononuclear cell samples: Influence of different anticoagulants. Clin. Vaccine Immunol. 2006, 13, 704–707. [Google Scholar] [CrossRef]
- Aziz, N.; Butch, A.W.; Ryner, T.C.; Martinez-Maza, O.; Detels, R. The influence of EDTA Vacutainer blood collection tube on the level of blood interleukin-1 receptor antagonist. J. Immunol. Methods 2019, 464, 114–118. [Google Scholar] [CrossRef] [PubMed]
- Ibeagha-Awemu, E.M.; Ibeagha, A.E.; Zhao, X. The influence of different anticoagulants and sample preparation methods on measurement of mCD14 on bovine monocytes and polymorphonuclear neutrophil leukocytes. BMC Res. Notes 2012, 5, 93. [Google Scholar] [CrossRef] [PubMed]
- Sefrioui, D.; Beaussire, L.; Clatot, F.; Delacour, J.; Perdrix, A.; Frebourg, T.; Michel, P.; Di Fiore, F.; Sarafan-Vasseur, N. Heparinase enables reliable quantification of circulating tumor DNA from heparinized plasma samples by droplet digital PCR. Clin. Chim. Acta 2017, 472, 75–79. [Google Scholar] [CrossRef] [PubMed]
- The National Committee for Research Ethics. Ethical Guidelines for the Use of Animals in Research. The National Committee for Research Ethics: 2019. Available online: https://www.forskningsetikk.no/en/guidelines/science-and-technology/ethical-guidelines-for-the-use-of-animals-in-research/ (accessed on 12 October 2022).
- Candotti, D.; Temple, J.; Owusu-Ofori, S.; Allain, J.P. Multiplex real-time quantitative RT-PCR assay for hepatitis B virus, hepatitis C virus, and human immunodeficiency virus type 1. J. Virol. Methods 2004, 118, 39–47. [Google Scholar] [CrossRef]
- Green, M.R.; Sambrook, J. Analysis and Normalization of Real-Time Polymerase Chain Reaction (PCR) Experimental Data. Cold Spring Harb. Protoc. 2018, 2018, 769–777. [Google Scholar] [CrossRef]
- Galluzzi, L.; Ceccarelli, M.; Diotallevi, A.; Menotta, M.; Magnani, M. Real-time PCR applications for diagnosis of leishmaniasis. Parasit. Vectors 2018, 11, 273. [Google Scholar] [CrossRef]
- Cattaneo, L.; Mezzetti, M.; Lopreiato, V.; Piccioli-Cappelli, F.; Trevisi, E.; Minuti, A. Gene network expression of whole blood leukocytes in dairy cows with different milk yield at dry-off. PLoS ONE 2021, 16, e0260745. [Google Scholar] [CrossRef]
- Lopreiato, V.; Minuti, A.; Morittu, V.M.; Britti, D.; Piccioli-Cappelli, F.; Loor, J.J.; Trevisi, E. Short communication: Inflammation, migration, and cell-cell interaction-related gene network expression in leukocytes is enhanced in Simmental compared with Holstein dairy cows after calving. J. Dairy Sci. 2020, 103, 1908–1913. [Google Scholar] [CrossRef]
- Valasek, M.A.; Repa, J.J. The power of real-time PCR. Am. J. Physiol.-Adv. Physiol. Educ. 2005, 29, 151–159. [Google Scholar] [CrossRef]
- Ruijter, J.M.; Ramakers, C.; Hoogaars, W.M.; Karlen, Y.; Bakker, O.; van den Hoff, M.J.; Moorman, A.F. Amplification efficiency: Linking baseline and bias in the analysis of quantitative PCR data. Nucleic. Acids. Res. 2009, 37, e45. [Google Scholar] [CrossRef]
- Untergasser, A.; Ruijter, J.M.; Benes, V.; van den Hoff, M.J.B. Web-based LinRegPCR: Application for the visualization and analysis of (RT)-qPCR amplification and melting data. BMC Bioinform. 2021, 22, 398. [Google Scholar] [CrossRef]
- Yokota, M.; Tatsumi, N.; Nathalang, O.; Yamada, T.; Tsuda, I. Effects of heparin on polymerase chain reaction for blood white cells. J. Clin. Lab. Anal. 1999, 13, 133–140. [Google Scholar] [CrossRef]
- Jung, R.; Lübcke, C.; Wagener, C.; Neumaier, M. Reversal of RT-PCR Inhibition Observed in Heparinized Clinical Specimens. Biotechniques 1997, 23, 24–28. [Google Scholar] [CrossRef] [PubMed]
- Härtel, C.; Bein, G.; Müller-Steinhardt, M.; Klüter, H. Ex vivo induction of cytokine mRNA expression in human blood samples. J. Immunol. Methods 2001, 249, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Vaughan-Shaw, P.G.; Walker, M.; Ooi, L.; Gilbert, N.; Farrington, S.M.; Dunlop, M.G. A simple method to overcome the inhibitory effect of heparin on DNA amplification. Cell. Oncol. 2015, 38, 493–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Target | Li-Heparin | K-EDTA | Na-Citrate | SEM 1 | p-Value 2 |
---|---|---|---|---|---|
Recognition and immune mediation | |||||
TLR2 | 775.2 | 841.9 | 720.9 | 79.8 | 0.58 |
Cell migration and adhesion | |||||
TLN1 | 6279.1 | 6780.5 | 5879.5 | 1357.7 | 0.71 |
ITGB2 | 3611.2 | 3522.6 | 3010.0 | 476.0 | 0.64 |
LGALS8 | 333.4 | 325.6 | 274.8 | 26.9 | 0.30 |
Inflammation process | |||||
IL1B | 2463.9 | 2798.9 | 3269.9 | 814.7 | 0.63 |
IL1R | 266.5 | 337.5 | 341.1 | 111.3 | 0.68 |
S100A8 | 12,795.0 | 12,644.0 | 12,975.0 | 1824.8 | 0.98 |
TNF | 306.8 | 289.9 | 239.3 | 36.5 | 0.43 |
Antimicrobial strategies | |||||
LCN2 | 62.9 | 63.7 | 54.1 | 11.2 | 0.80 |
LTF | 6.19 | 10.75 | 9.19 | 16.18 | 0.94 |
Internal control genes | |||||
GAPDH | 6045.7 | 5699.7 | 4892.1 | 991.5 | 0.66 |
YWHAZ | 2182.8 | 2103.6 | 1821.8 | 456.4 | 0.61 |
ACTB | 82,234.0 | 89,663.0 | 68,228.0 | 20,132.0 | 0.56 |
SDHA | 727.8 a | 735.8 a | 575.5 b | 42.9 | 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Floridia, V.; Sfulcini, M.; D’Alessandro, E.; Cattaneo, L.; Mezzetti, M.; Liotta, L.; Trevisi, E.; Lopreiato, V.; Minuti, A. Effect of Different Anticoagulant Agents on Immune-Related Genes in Leukocytes Isolated from the Whole-Blood of Holstein Cows. Genes 2023, 14, 406. https://doi.org/10.3390/genes14020406
Floridia V, Sfulcini M, D’Alessandro E, Cattaneo L, Mezzetti M, Liotta L, Trevisi E, Lopreiato V, Minuti A. Effect of Different Anticoagulant Agents on Immune-Related Genes in Leukocytes Isolated from the Whole-Blood of Holstein Cows. Genes. 2023; 14(2):406. https://doi.org/10.3390/genes14020406
Chicago/Turabian StyleFloridia, Viviana, Marta Sfulcini, Enrico D’Alessandro, Luca Cattaneo, Matteo Mezzetti, Luigi Liotta, Erminio Trevisi, Vincenzo Lopreiato, and Andrea Minuti. 2023. "Effect of Different Anticoagulant Agents on Immune-Related Genes in Leukocytes Isolated from the Whole-Blood of Holstein Cows" Genes 14, no. 2: 406. https://doi.org/10.3390/genes14020406
APA StyleFloridia, V., Sfulcini, M., D’Alessandro, E., Cattaneo, L., Mezzetti, M., Liotta, L., Trevisi, E., Lopreiato, V., & Minuti, A. (2023). Effect of Different Anticoagulant Agents on Immune-Related Genes in Leukocytes Isolated from the Whole-Blood of Holstein Cows. Genes, 14(2), 406. https://doi.org/10.3390/genes14020406