Primary Ciliary Dyskinesia in a Portuguese Bronchiectasis Outpatient Clinic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Considerations
2.2. Patient Data
2.3. Sample Collection
2.4. Transmission Electron Microscopy
2.5. Quantitative TEM Morphologic Analysis
2.6. Quantitative TEM Ciliary Beat Axis Analysis
2.7. Ciliary Beat Frequency and Beat Patterns by High-Speed Video-Microscopy
2.8. Nucleic Acids Extraction
2.9. Next-Generation Sequencing
2.10. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lucas, J.S.; Barbato, A.; Collins, S.A.; Goutaki, M.; Behan, L.; Caudri, D.; Dell, S.; Eber, E.; Escudier, E.; Hirst, R.A.; et al. European Respiratory Society guidelines for the diagnosis of primary ciliary dyskinesia. Eur. Respir. J. 2017, 49, 1601090. [Google Scholar] [CrossRef] [Green Version]
- Gravesande, K.S.V.; Omran, H. Primary ciliary dyskinesia: Clinical presentation, diagnosis and genetics. Ann. Med. 2005, 37, 439–449. [Google Scholar] [CrossRef]
- Guan, Y.; Yang, H.; Yao, X.; Xu, H.; Liu, H.; Tang, X.; Hao, C.; Zhang, X.; Zhao, S.; Ge, W.; et al. Clinical and Genetic Spectrum of Children With Primary Ciliary Dyskinesia in China. Chest 2021, 159, 1768–1781. [Google Scholar] [CrossRef]
- Mitchison, H.M.; Smedley, D. Primary ciliary dyskinesia: A big data genomics approach. Lancet Respir. Med. 2022, 10, 423–425. [Google Scholar] [CrossRef]
- Brennan, S.; Ferkol, T.; Davis, S.D. Emerging Genotype-Phenotype Relationships in Primary Ciliary Dyskinesia. Int. J. Mol. Sci. 2021, 22, 8272. [Google Scholar] [CrossRef]
- Behan, L.; Dimitrov, B.D.; Kuehni, C.E.; Hogg, C.; Carroll, M.; Evans, H.J.; Goutaki, M.; Harris, A.; Packham, S.; Walker, W.T.; et al. PICADAR: A diagnostic predictive tool for primary ciliary dyskinesia. Eur. Respir. J. 2016, 47, 1103–1112. [Google Scholar] [CrossRef] [Green Version]
- Pereira, R.; Oliveira, M.E.; Santos, R.; Oliveira, E.; Barbosa, T.; Santos, T.; Gonçalves, P.; Ferraz, L.; Pinto, S.; Barros, A.; et al. Characterization of CCDC103 expression profiles: Further insights in primary ciliary dyskinesia and in human reproduction. J. Assist. Reprod. Genet. 2019, 36, 1683–1700. [Google Scholar] [CrossRef]
- Afzelius, B.A.; Srurgess, J.M. The immotile-cilia syndrome: A microtubule-associated defect. Crit. Rev. Biochem. Mol. Biol. 1985, 19, 63–87. [Google Scholar] [CrossRef]
- Shoemark, A.; Boon, M.; Brochhausen, C.; Bukowy-Bieryllo, Z.; De Santi, M.M.; Goggin, P.; Griffin, P.; Hegele, R.G.; Hirst, R.A.; Leigh, M.W.; et al. International consensus guideline for reporting transmission electron microscopy results in the diagnosis of Primary Ciliary Dyskinesia (BEAT PCD TEM Criteria). Eur. Respir. J. 2020, 57, 1900725. [Google Scholar] [CrossRef]
- De Iongh, R.; Rutland, J. Orientation of respiratory tract cilia in patients with primary ciliary dyskinesia, bronchiectasis, and in normal subjects. J. Clin. Pathol. 1989, 42, 613–619. [Google Scholar] [CrossRef] [Green Version]
- Chilvers, M.A.; O’Callaghan, C. Analysis of ciliary beat pattern and beat frequency using digital high speed imaging: Comparison with the photomultiplier and photodiode methods. Thorax 2000, 55, 314–317. [Google Scholar] [CrossRef] [Green Version]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Sampaio, P.; da Silva, M.F.; Vale, I.; Roxo-Rosa, M.; Pinto, A.; Constant, C.; Pereira, L.; Quintão, C.M.; Lopes, S.S. Ciliar Move: New software for evaluating ciliary beat frequency helps find novel mutations by a Portuguese multidisciplinary team on primary ciliary dyskinesia. ERJ Open Res. 2021, 7, 00792–2020. [Google Scholar] [CrossRef]
- Kempeneers, C.; Seaton, C.; Chilvers, M.A. Variation of Ciliary Beat Pattern in Three Different Beating Planes in Healthy Subjects. Chest 2017, 151, 993–1001. [Google Scholar] [CrossRef]
- Chilvers, M.A.; Rutman, A.; O’Callaghan, C. Ciliary beat pattern is associated with specific ultrastructural defects in primary ciliary dyskinesia. J. Allergy Clin. Immunol. 2003, 112, 518–524. [Google Scholar] [CrossRef]
- Miller, S.A.; Dykes, D.D.; Polesky, H.F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988, 16, 1215. [Google Scholar] [CrossRef] [Green Version]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef] [Green Version]
- Constant, C.; Sousa, R.; Pinto, A.; Moura Nunes, J.F.; Sampaio, P.; Lopes, S.S.; Bandeira, T.; Pereira, L. A new era in the diagnosis of Primary Ciliary Dyskinesia. Acta. Ped. Port. 2018, 49, 235–242. [Google Scholar] [CrossRef]
- Shoemark, A.; Rubbo, B.; Haarman, E.; Hirst, R.A.; Hogg, C.; Jackson, C.L.; Nielsen, K.G.; Papon, J.F.; Robinson, P.; Walker, W.T.; et al. The Controversies and Difficulties of Diagnosing Primary Ciliary Dyskinesia. Am. J. Respir. Crit. Care Med. 2020, 201, 120–122. [Google Scholar] [CrossRef]
- Kim, M.; Lee, M.H.; Hong, S.J.; Yu, J.; Cho, J.; Suh, D.I.; Kim, H.Y.; Kim, H.Y.; Jung, S.; Lee, E.; et al. Clinical manifestations and genotype of primary ciliary dyskinesia diagnosed in Korea: A nationwide, multicenter, retrospective study. Res. Square. 2022. [Google Scholar] [CrossRef]
- Lucas, J.S.; Davis, S.D.; Omran, H.; Shoemark, A. Primary ciliary dyskinesia in the genomics age. Lancet Respir. Med. 2020, 8, 202–216. [Google Scholar] [CrossRef]
- Mirra, V.; Werner, C.; Santamaria, F. Primary Ciliary Dyskinesia: An Update on Clinical Aspects, Genetics, Diagnosis, and Future Treatment Strategies. Front. Pediatr. 2017, 5, 135. [Google Scholar] [CrossRef]
- Horani, A.; Ferkol, T.W.; Dutcher, S.K.; Brody, S.L. Genetics and biology of primary ciliary dyskinesia. Paediatr. Respir. Rev. 2016, 18, 18–24. [Google Scholar] [CrossRef] [Green Version]
Sex, female | 12 (70.6) |
Age, years | 34.1 ± 11.3 |
BMI, kg/m2 | 23.7 ± 2.6 |
Smoking habits, never smoker | 16 (94.1) |
Clinical evaluation History of neonatal distress syndrome in term infants Situs abnormalities (dextrocardia and isomerism) Congenital cardiac defects Chronic productive cough Persistent rhinitis Chronic middle ear disease with or without hearing loss Infertility Positive family history Respiratory infections (previous year) Hospital admissions for respiratory infections (previous year) | 8 (47.1) 3 (17.6) 0 (0.0) 16 (94.1) 14 (82.4) 10 (58.8) 6 (35.3) 4 (23.5) 1.9 ± 1.2 0.0 [0.0–0.0] |
Scores PICADAR score FACED score BSI score | 6.2 ± 2.3 1.0 [0.0–1.0] 4.2 ± 3.1) |
Functional evaluation FVC (% of predicted) FEV1 (% of predicted) FEV1/FVC (% of predicted) | 81.5 ± 13.1 73.5 ± 17.1 74.6 ± 9.5 |
Radiological evaluation Bronchiectasis Number of affected pulmonary lobes Inferior pulmonary lobes (left and/or right and/or medium) | 17 (100.0) 3.0 [2.0–3.0] 12 (70.6) |
Microbiologic evaluation Chronic colonization Pseudomonas aeruginosa Haemophilus influenza | 3 (17.6) 2 (66.7) 1 (33.3) |
FENO Nasal nitric oxide measurement (n = 4) | 8.0 [5.0–10.0] 283.8 ± 266.5 |
HSVM Patients analyzed Ciliary beat frequency (Normal—12.75 Hz; interval 7.0–19.0) % of dyskinetic beat pattern | 17 (100.0) 6.3 ± 6.9 86.1 ± 24.4 |
TEM Patients analyzed Outer dynein arm defects Outer dynein arm + inner dynein arm defects Inner dynein arm defects + microtubular disorganization Others | 12 (70.6) 3 (25.0) 0 (0.0) 4 (33.3) 5 (41.7) |
Genetic testing | 16 (94.1) |
Diagnosis Confirmed Highly likely | 12 (70.6) 5 (29.4) |
Clinic at Diagnosis | PICADAR Score | HSVM (Normal: 12.75 Hz; Interval 7.0–19.0) | TEM (Hallmark Defects) | Gene | Variant | Status | Variant Classification | OMIM Phenotype/References | |
---|---|---|---|---|---|---|---|---|---|
#1 | ♀, 51 years, Situs inversus, Infertility, FEV1 70%, nNO 75,33 ppb, FENO 7 ppb | 6 | 24.88 Hz, Hyperkinetic + RA | Absence ODA (Class 1) | CFAP298 | c.524C > A(p.Ser175 *) c.302G > T(p.Gly101Val) | Heterozygosity Heterozygosity | Likely pathogenic Uncertain significance | 615500 |
#2 | ♀, 20 years, FEV1 80%, FENO 8 ppb | 5 | 0.0 Hz, Immotile | * | RSPH1 | c.275-2A > C | Homozygosity | Pathogenic | 615481 |
#3 | ♀, 25 years, NRD, FEV1 81%, FENO 8 ppb | 6 | * | ||||||
#4 | ♀, 44 years, NRD, FEV1 40%, FENO 9 ppb | 6 | * | ||||||
#5 | ♀, 38 years, FEV1 68%, FENO 24 ppb | 8 | 8.72 Hz, RA + Ciliary stiffness | Normal ciliary ultrastructure | DRC1 | c.352C > T(p.Gln118 *) | Homozygosity | Likely pathogenic | 615291 |
#6 | ♀, 43 years, Infertility, NRD, FEV1 70%, nNO 546 ppb, FENO 14 ppb | 7 | 13.85 Hz, Coordinated and PI (31.3%) + Coordinated and RA (50.0%) | Absence IDA + MT disorganization (Class 1) | |||||
#7 | ♂, 31 years, CC, FEV1 62%, nNO 34 ppb, FENO 8 ppb | 12 | 0.0 Hz, Immotile | Absence ODA and IDA + MT and CPC disorganization (Class 1) | DNAAF11 | c.8G > A(p.Trp3 *) | Homozygosity | Pathogenic | 614935 |
#8 | ♂, 8 years, Situs inversus, NRD, FEV1 71%, | 7 | * | * | DNAH5 | c.4237C > T(p.Gln1413 *) c.5290T > C(p.Ser1764Pro) | Heterozygosity Heterozygosity | Pathogenic Uncertain significance | 608644 |
#9 | ♀, 26 years, Situs inversus, CC, FEV1 90% | 8 | * | * | c.6962G > A(p.Trp2321 *) c.18552C > T(p.Arg618*) | Heterozygosity Heterozygosity | Pathogenic Pathogenic | ||
#10 | ♂, 30 years, NRD, FEV1 80%, nNO 480 ppb, FENO 5 ppb | 6 | 4.81 Hz, RA + Ciliary stiffness | Absence ODA (Class 1) | c.4237C > T(p.Gln1413 *) c.5157C > T(p.Phe1719 =) | Heterozygosity Heterozygosity | Pathogenic Uncertain significance | ||
#11 | ♂, 35 years, Infertility, NRD, FEV1 98%, FENO <5 ppb | 3 | 9.2 Hz, Coordinated and PI (11.8%) + Coordinated and RA (35.3%) | Absence IDA + MT disorganization (Class 2) | ODAD2 | c.2408T > C(p.Val803Ala) | Heterozygosity | Uncertain significance | 615451 |
#12 | ♂, 42 years, NRD, FEV1 99%, FENO 23 ppb | 2 | 7.5 Hz, Coordinated and PI (50.0%) + Coordinated and RA (31.3%) | Absence IDA (Normal) | HYDIN | c.5807C > T(p.Ser1936Leu) c.7837G > A(p.Ala2613Thr) | Heterozygosity Heterozygosity | Likely benign Uncertain significance | 608647 |
#13 | ♀, 44 years, Infertility, FEV1 72%, FENO <5 ppb | 7 | 3.07 Hz, Coordinated and PI (35.7%) + Coordinated and RA (21.4%) + Immotile (35.7%) | No hallmark defects detected (Normal) | DNAAF3 | c.1453G > A(p.Val485Met) | Heterozygosity | Uncertain significance | 606763 |
#14 | ♀, 20 years, FEV1 97%, FENO 5 ppb | 8 | 4.62 Hz, Coordinated and PI (8.8%) + Coordinated and RA (44.1%) + Immotile (23.5%) | MT disorganization (Normal) | DNAH1 | c.9211_9212del(p.Gln3071fs) | Heterozygosity | Pathogenic | 617577 |
#15 | ♀, 42 years, Infertility, NRD, CC, FEV1 66%, FENO 7 ppb | 5 | 4.13 Hz, Coordinated and PI (14.3%) + Coordinated and RA (42.9%) + Immotile (28.6%) | MT and CPC disorganization (Class 2) | RSPH4A | c.961delT(p.Tyr321fs) | Homozygosity | Pathogenic | 612649 |
#16 | ♀, 42 years, Infertility, CC, FEV1 43%, FENO 11 ppb | 6 | 7.67 Hz, Coordinated and PI (4.5%) + Coordinated and RA (45.5%) + Immotile (18.2%) | Absence IDA + MT disorganization (Class 1) | No mutation detected | - | - | - | - |
#17 | ♀, 39 years, FEV1 74%, FENO 10 ppb | 3 | 0.0 Hz, Immotile (100%) | Absence IDA + MT disorganization (Class 1) | No mutation detected | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tinoco, E.M.; Gigante, A.R.; Ferreira, E.; Sanches, I.; Pereira, R.; Sá, R.; Monteiro, R.; Sousa, M.; Pascoal, I. Primary Ciliary Dyskinesia in a Portuguese Bronchiectasis Outpatient Clinic. Genes 2023, 14, 541. https://doi.org/10.3390/genes14030541
Tinoco EM, Gigante AR, Ferreira E, Sanches I, Pereira R, Sá R, Monteiro R, Sousa M, Pascoal I. Primary Ciliary Dyskinesia in a Portuguese Bronchiectasis Outpatient Clinic. Genes. 2023; 14(3):541. https://doi.org/10.3390/genes14030541
Chicago/Turabian StyleTinoco, Eduarda Milheiro, Ana Rita Gigante, Edite Ferreira, Inês Sanches, Rute Pereira, Rosália Sá, Regina Monteiro, Mário Sousa, and Ivone Pascoal. 2023. "Primary Ciliary Dyskinesia in a Portuguese Bronchiectasis Outpatient Clinic" Genes 14, no. 3: 541. https://doi.org/10.3390/genes14030541
APA StyleTinoco, E. M., Gigante, A. R., Ferreira, E., Sanches, I., Pereira, R., Sá, R., Monteiro, R., Sousa, M., & Pascoal, I. (2023). Primary Ciliary Dyskinesia in a Portuguese Bronchiectasis Outpatient Clinic. Genes, 14(3), 541. https://doi.org/10.3390/genes14030541