The Role of Pharmacogenetics in Personalizing the Antidepressant and Anxiolytic Therapy
Abstract
:1. Introduction
2. Pharmacogenetics of Antidepressants
2.1. Pharmacokinetic Variability
2.1.1. Cytochrome P450 Family
CYP2D6
CYP2C19
CYP2C9
CYP1A2
2.1.2. P-glycoprotein
2.2. Pharmacodynamic Variability
2.2.1. Monoamine Metabolic Enzymes
Tryptophan Hydroxylase
Monoamine Oxidases
Catechol-O-Methyltransferase
2.2.2. Monoamine Transporters
Serotonin Transporter
Norepinephrine Transporter
Dopamine Transporter
2.2.3. Monoamine Receptors
5-HT1A Receptor
5-HT2A Receptor
Dopamine Receptors
3. Pharmacogenetics of Anxiolytics
3.1. Pharmacokinetic Variability
3.1.1. UGT2B15 Enzyme
3.1.2. Cytochrome P450 Enzymes and P-glycoprotein
3.2. Pharmacodynamic Variability
4. Pharmacoepigenetics of Antidepressants and Anxiolytics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Willner, P.; Bergman, J.; Vanderschuren, L. The Behavioural Pharmacology of Stress-Related Disorders. Behav. Pharmacol. 2019, 30, 101–103. [Google Scholar] [CrossRef] [PubMed]
- Leichsenring, F.; Steinert, C.; Rabung, S.; Ioannidis, J.P.A. The Efficacy of Psychotherapies and Pharmacotherapies for Mental Disorders in Adults: An Umbrella Review and Meta-Analytic Evaluation of Recent Meta-Analyses. World Psychiatry 2022, 21, 133–145. [Google Scholar] [CrossRef] [PubMed]
- Kam, H.; Jeong, H. Pharmacogenomic Biomarkers and Their Applications in Psychiatry. Genes 2020, 11, 1445. [Google Scholar] [CrossRef] [PubMed]
- Jukic, M.; Milosavljević, F.; Molden, E.; Ingelman-Sundberg, M. Pharmacogenomics in Treatment of Depression and Psychosis: An Update. Trends Pharmacol. Sci. 2022, 43, 1055–1069. [Google Scholar] [CrossRef]
- Lunenburg, C.A.T.C.; Ishtiak-Ahmed, K.; Werge, T.; Gasse, C. Life-Time Actionable Pharmacogenetic Drug Use: A Population-Based Cohort Study in 86 040 Young People with and without Mental Disorders in Denmark. Pharmacopsychiatry 2022, 55, 95–107. [Google Scholar] [CrossRef]
- Kee, P.S.; Maggo, S.D.S.; Kennedy, M.A.; Chin, P.K.L. The Pharmacogenetics of CYP2D6 and CYP2C19 in a Case Series of Antidepressant Responses. Front. Pharmacol. 2023, 14, 1080117. [Google Scholar] [CrossRef]
- Xin, J.; Yuan, M.; Peng, Y.; Wang, J. Analysis of the Deleterious Single-Nucleotide Polymorphisms Associated with Antidepressant Efficacy in Major Depressive Disorder. Front. Psychiatry 2020, 11, 151. [Google Scholar] [CrossRef]
- Geers, L.M.; Ochi, T.; Vyalova, N.M.; Losenkov, I.S.; Paderina, D.Z.; Pozhidaev, I.V.; Simutkin, G.G.; Bokhan, N.A.; Wilffert, B.; Touw, D.J.; et al. Influence of Eight ABCB1 Polymorphisms on Antidepressant Response in a Prospective Cohort of Treatment-Free Russian Patients with Moderate or Severe Depression: An Explorative Psychopharmacological Study with Naturalistic Design. Hum. Psychopharmacol. 2022, 37, e2826. [Google Scholar] [CrossRef]
- Del Casale, A.; Pomes, L.M.; Bonanni, L.; Fiaschè, F.; Zocchi, C.; Padovano, A.; De Luca, O.; Angeletti, G.; Brugnoli, R.; Girardi, P.; et al. Pharmacogenomics-Guided Pharmacotherapy in Patients with Major Depressive Disorder or Bipolar Disorder Affected by Treatment-Resistant Depressive Episodes: A Long-Term Follow-up Study. J. Pers. Med. 2022, 12, 316. [Google Scholar] [CrossRef]
- Shalimova, A.; Babasieva, V.; Chubarev, V.N.; Tarasov, V.V.; Schiöth, H.B.; Mwinyi, J. Therapy Response Prediction in Major Depressive Disorder: Current and Novel Genomic Markers Influencing Pharmacokinetics and Pharmacodynamics. Pharmacogenomics 2021, 22, 485–503. [Google Scholar] [CrossRef]
- Zięba, A.; Matosiuk, D.; Kaczor, A.A. The Role of Genetics in the Development and Pharmacotherapy of Depression and Its Impact on Drug Discovery. Int. J. Mol. Sci. 2023, 24, 2946. [Google Scholar] [CrossRef]
- Patel, K.A.; Bhatt, M.H.; Hirani, R.V.; Patel, V.A.; Patel, V.N.; Shah, G.B.; Chorawala, M.R. Assessment of Potential Drug-Drug Interactions among Outpatients in a Tertiary Care Hospital: Focusing on the Role of P-Glycoprotein and CYP3A4 (Retrospective Observational Study). Heliyon 2022, 8, e11278. [Google Scholar] [CrossRef]
- Daniel, W.A.; Bromek, E.; Danek, P.J.; Haduch, A. The Mechanisms of Interactions of Psychotropic Drugs with Liver and Brain Cytochrome P450 and Their Significance for Drug Effect and Drug-Drug Interactions. Biochem. Pharmacol. 2022, 199, 115006. [Google Scholar] [CrossRef]
- Mostafa, S.; Polasek, T.M.; Bousman, C.A.; Müeller, D.J.; Sheffield, L.J.; Rembach, J.; Kirkpatrick, C.M. Pharmacogenomics in Psychiatry—The Challenge of Cytochrome P450 Enzyme Phenoconversion and Solutions to Assist Precision Dosing. Pharmacogenomics 2022, 23, 857–867. [Google Scholar] [CrossRef]
- van Westrhenen, R.; Aitchison, K.J.; Ingelman-Sundberg, M.; Jukić, M.M. Pharmacogenomics of Antidepressant and Antipsychotic Treatment: How Far Have We Got and Where Are We Going? Front. Psychiatry 2020, 11, 94. [Google Scholar] [CrossRef]
- Alchakee, A.; Ahmed, M.; Eldohaji, L.; Alhaj, H.; Saber-Ayad, M. Pharmacogenomics in Psychiatry Practice: The Value and the Challenges. Int. J. Mol. Sci. 2022, 23, 13485. [Google Scholar] [CrossRef]
- Shetty, P. Pharmacogenomics and Its Future Implications in Treatment-Resistant Depression. Ind. J. Priv. Psychiatry 2019, 13, 71–76. [Google Scholar] [CrossRef]
- Wyska, E. Pharmacokinetic Considerations for Current State-of-the-Art Antidepressants. Expert Opin. Drug Metab. Toxicol. 2019, 15, 831–847. [Google Scholar] [CrossRef]
- Samardzic, J.; Svob Strac, D.; van den Anker, J.N. The Benefit and Future of Pharmacogenetics. In Total Intravenous Anesthesia and Target Controlled Infusions; Absalom, A.R., Mason, K.P., Eds.; Springer: New York, NY, USA, 2017; pp. 697–711. [Google Scholar]
- Suzuki, Y.; Sawamura, K.; Someya, T. Polymorphisms in the 5-Hydroxytryptamine 2A Receptor and CytochromeP4502D6 Genes Synergistically Predict Fluvoxamine-Induced Side Effects in Japanese Depressed Patients. Neuropsychopharmacology 2006, 31, 825–831. [Google Scholar] [CrossRef]
- Brunoni, A.R.; Carracedo, A.; Amigo, O.M.; Pellicer, A.L.; Talib, L.; Carvalho, A.F.; Lotufo, P.A.; Benseñor, I.M.; Gattaz, W.; Cappi, C. Association of BDNF, HTR2A, TPH1, SLC6A4, and COMT Polymorphisms with TDCS and Escitalopram Efficacy: Ancillary Analysis of a Double-Blind, Placebo-Controlled Trial. Rev. Bras. Psiquiatr. 2020, 42, 128–135. [Google Scholar] [CrossRef]
- Motsinger-Reif, A.A.; Jorgenson, E.; Relling, M.V.; Kroetz, D.L.; Weinshilboum, R.; Cox, N.J.; Roden, D.M. Genome-Wide Association Studies in Pharmacogenomics: Successes and Lessons. Pharmacogenet. Genomics 2013, 23, 383–394. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Ritchie, M.D. From GWAS to Gene: Transcriptome-Wide Association Studies and Other Methods to Functionally Understand GWAS Discoveries. Front. Genet. 2021, 12, 713230. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.A.; Sadler, M.C.; Altman, R.B. Promises and Challenges in Pharmacoepigenetics. Camb. Prism. Precis. Med. 2023, 1, E18. [Google Scholar] [CrossRef]
- Cascorbi, I.; Schwab, M. Epigenetics in Drug Response. Clin. Pharmacol. Ther. 2016, 99, 468–470. [Google Scholar] [CrossRef] [PubMed]
- Lauschke, V.M.; Zhou, Y.; Ingelman-Sundberg, M. Novel Genetic and Epigenetic Factors of Importance for Inter-Individual Differences in Drug Disposition, Response and Toxicity. Pharmacol. Ther. 2019, 197, 122–152. [Google Scholar] [CrossRef]
- Kubota, T.; Miyake, K.; Hirasawa, T. Epigenetic understanding of gene-environment interactions in psychiatric disorders: A new concept of clinical genetics. Clin. Epigenetics 2012, 4, 1. [Google Scholar] [CrossRef]
- Tuscher, J.J.; Day, J.J. Multigenerational epigenetic inheritance: One step forward, two generations back. Neurobiol. Dis. 2019, 132, 104591. [Google Scholar] [CrossRef]
- Halbreich, U. Stress-Related Physical and Mental Disorders: A New Paradigm. BJPsych Adv. 2021, 27, 145–152. [Google Scholar] [CrossRef]
- Abdallah, C.G.; Averill, L.A.; Akiki, T.J.; Raza, M.; Averill, C.L.; Gomaa, H.; Adikey, A.; Krystal, J.H. The Neurobiology and Pharmacotherapy of Posttraumatic Stress Disorder. Annu. Rev. Pharmacol. Toxicol. 2019, 59, 171–189. [Google Scholar] [CrossRef]
- Miniawi, S.E.; Orgeta, V.; Stafford, J. Non-Affective Psychotic Disorders and Risk of Dementia: A Systematic Review and Meta-Analysis. Psychol. Med. 2022, 52, 1–13. [Google Scholar] [CrossRef]
- Vafadari, B. Stress and the Role of the Gut-Brain Axis in the Pathogenesis of Schizophrenia: A Literature Review. Int. J. Mol. Sci. 2021, 22, 9747. [Google Scholar] [CrossRef]
- Park, C.; Rosenblat, J.D.; Brietzke, E.; Pan, Z.; Lee, Y.; Cao, B.; Zuckerman, H.; Kalantarova, A.; McIntyre, R.S. Stress, epigenetics and depression: A systematic review. Neurosci. Biobehav. Rev. 2019, 102, 139–152. [Google Scholar] [CrossRef]
- Hack, L.M.; Fries, G.R.; Eyre, H.A.; Bousman, C.A.; Singh, A.B.; Quevedo, J.; John, V.P.; Baune, B.T.; Dunlop, B.W. Moving pharmacoepigenetics tools for depression toward clinical use. J. Affect. Disord. 2019, 249, 336–346. [Google Scholar] [CrossRef]
- Helton, S.G.; Lohoff, F.W. Serotonin Pathway Polymorphisms and the Treatment of Major Depressive Disorder and Anxiety Disorders. Pharmacogenomics 2015, 16, 541–553. [Google Scholar] [CrossRef]
- Cacabelos, R.; Torrellas, C. Pharmacogenomics of Antidepressants. HSOA J. Psychiatry Depress. Anxiety 2015, 1, 001. [Google Scholar] [CrossRef]
- Ivanov, H.Y.; Grigorova, D.; Lauschke, V.M.; Velinov, B.; Stoychev, K.; Kyosovska, G.; Shopov, P. CYP2C19 and CYP2D6 Genotypes and Metabolizer Status Distribution in a Bulgarian Psychiatric Cohort. J. Pers. Med. 2022, 12, 1187. [Google Scholar] [CrossRef]
- van Westrhenen, R.; van Schaik, R.H.N.; van Gelder, T.; Birkenhager, T.K.; Bakker, P.R.; Houwink, E.J.F.; Bet, P.M.; Hoogendijk, W.J.G.; van Weelden-Hulshof, M.J.M. Policy and Practice Review: A First Guideline on the Use of Pharmacogenetics in Clinical Psychiatric Practice. Front. Pharmacol. 2021, 12, 640032. [Google Scholar] [CrossRef]
- Berrou, I.; Ramsunder, A.; Palmer, R. Making the case for pharmacogenomics in the management of mental health conditions. Pharm. J. 2023, 310, 7969. [Google Scholar] [CrossRef]
- Taylor, C.; Crosby, I.; Yip, V.; Maguire, P.; Pirmohamed, M.; Turner, R.M. A Review of the Important Role of CYP2D6 in Pharmacogenomics. Genes 2020, 11, 1295. [Google Scholar] [CrossRef]
- Pratt, V.M.; Del Tredici, A.L.; Hachad, H.; Ji, Y.; Kalman, L.V.; Scott, S.A.; Weck, K.E. Recommendations for Clinical CYP2C19 Genotyping Allele Selection: A Report of the Association for Molecular Pathology. J. Mol. Diagn. 2018, 20, 269–276. [Google Scholar] [CrossRef]
- Nassan, M.; Nicholson, W.T.; Elliott, M.A.; Rohrer Vitek, C.R.; Black, J.L.; Frye, M.A. Pharmacokinetic Pharmacogenetic Prescribing Guidelines for Antidepressants: A Template for Psychiatric Precision Medicine. Mayo Clin. Proc. 2016, 91, 897–907. [Google Scholar] [CrossRef] [PubMed]
- Fornaro, M.; Anastasia, A.; Valchera, A.; Carano, A.; Orsolini, L.; Vellante, F.; Rapini, G.; Olivieri, L.; Di Natale, S.; Perna, G.; et al. The FDA “Black Box” Warning on Antidepressant Suicide Risk in Young Adults: More Harm than Benefits? Front. Psychiatry 2019, 10, 294. [Google Scholar] [CrossRef] [PubMed]
- Suwała, J.; Machowska, M.; Wiela-Hojeńska, A. Venlafaxine Pharmacogenetics: A Comprehensive Review. Pharmacogenomics 2019, 20, 829–845. [Google Scholar] [CrossRef] [PubMed]
- Chua, E.W.; Foulds, J.; Miller, A.L.; Kennedy, M.A. Novel CYP2D6 and CYP2C19 Variants Identified in a Patient with Adverse Reactions towards Venlafaxine Monotherapy and Dual Therapy with Nortriptyline and Fluoxetine. Pharmacogenet. Genom. 2013, 23, 494–497. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.T.; Biernacka, J.M.; Jenkins, G.; Rush, A.J.; Shinozaki, G.; Veldic, M.; Kung, S.; Bobo, W.V.; Hall-Flavin, D.K.; Weinshilboum, R.M.; et al. Pharmacokinetic-Pharmacodynamic Interaction Associated with Venlafaxine-XR Remission in Patients with Major Depressive Disorder with History of Citalopram / Escitalopram Treatment Failure. J. Affect. Disord. 2019, 246, 62–68. [Google Scholar] [CrossRef]
- Bahar, M.A.; Setiawan, D.; Hak, E.; Wilffert, B. Pharmacogenetics of Drug-Drug Interaction and Drug-Drug-Gene Interaction: A Systematic Review on CYP2C9, CYP2C19 and CYP2D6. Pharmacogenomics 2017, 18, 701–739. [Google Scholar] [CrossRef]
- Whirl-Carrillo, M.; Huddart, R.; Gong, L.; Sangkuhl, K.; Thorn, C.F.; Whaley, R.; Klein, T.E. An Evidence-Based Framework for Evaluating Pharmacogenomics Knowledge for Personalized Medicine. Clin. Pharmacol. Ther. 2021, 110, 563–572. [Google Scholar] [CrossRef]
- Brouwer, J.M.J.L.; Nijenhuis, M.; Soree, B.; Guchelaar, H.-J.; Swen, J.J.; van Schaik, R.H.N.; Weide, J.v.d.; Rongen, G.A.P.J.M.; Buunk, A.-M.; de Boer-Veger, N.J.; et al. Dutch Pharmacogenetics Working Group (DPWG) Guideline for the Gene-Drug Interaction between CYP2C19 and CYP2D6 and SSRIs. Eur. J. Hum. Genet. 2022, 30, 1114–1120. [Google Scholar] [CrossRef]
- Jukić, M.M.; Haslemo, T.; Molden, E.; Ingelman-Sundberg, M. Impact of CYP2C19 Genotype on Escitalopram Exposure and Therapeutic Failure: A Retrospective Study Based on 2,087 Patients. Am. J. Psychiatry 2018, 175, 463–470. [Google Scholar] [CrossRef]
- Rahikainen, A.-L.; Vauhkonen, P.; Pett, H.; Palo, J.U.; Haukka, J.; Ojanperä, I.; Niemi, M.; Sajantila, A. Completed Suicides of Citalopram Users-the Role of CYP Genotypes and Adverse Drug Interactions. Int. J. Leg. Med. 2019, 133, 353–363. [Google Scholar] [CrossRef]
- Hicks, J.K.; Bishop, J.R.; Gammal, R.S.; Sangkuhl, K.; Bousman, C.A.; Leeder, J.S.; Llerena, A.; Mueller, D.J.; Ramsey, L.B.; Scott, S.A.; et al. A Call for Clear and Consistent Communications Regarding the Role of Pharmacogenetics in Antidepressant Pharmacotherapy. Clin. Pharmacol. Ther. 2020, 107, 50–52. [Google Scholar] [CrossRef]
- Ricardo-Silgado, M.L.; Singh, S.; Cifuentes, L.; Decker, P.A.; Gonzalez-Izundegui, D.; Moyer, A.M.; Hurtado, M.D.; Camilleri, M.; Bielinski, S.J.; Acosta, A. Association between CYP Metabolizer Phenotypes and Selective Serotonin Reuptake Inhibitors Induced Weight Gain: A Retrospective Cohort Study. BMC Med. 2022, 20, 261. [Google Scholar] [CrossRef]
- Sim, S.C.; Nordin, L.; Andersson, T.M.-L.; Virding, S.; Olsson, M.; Pedersen, N.L.; Ingelman-Sundberg, M. Association between CYP2C19 Polymorphism and Depressive Symptoms. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2010, 153B, 1160–1166. [Google Scholar] [CrossRef]
- Milosavljevic, F.; Bukvic, N.; Pavlovic, Z.; Miljevic, C.; Pešic, V.; Molden, E.; Ingelman-Sundberg, M.; Leucht, S.; Jukic, M.M. Association of CYP2C19 and CYP2D6 Poor and Intermediate Metabolizer Status with Antidepressant and Antipsychotic Exposure: A Systematic Review and Meta-Analysis: A Systematic Review and Meta-Analysis. JAMA Psychiatry 2021, 78, 270–280. [Google Scholar] [CrossRef]
- Jukić, M.M.; Opel, N.; Ström, J.; Carrillo-Roa, T.; Miksys, S.; Novalen, M.; Renblom, A.; Sim, S.C.; Peñas-Lledó, E.M.; Courtet, P.; et al. Elevated CYP2C19 Expression Is Associated with Depressive Symptoms and Hippocampal Homeostasis Impairment. Mol. Psychiatry 2017, 22, 1155–1163. [Google Scholar] [CrossRef] [PubMed]
- Hicks, J.K.; Bishop, J.R.; Sangkuhl, K.; Müller, D.J.; Ji, Y.; Leckband, S.G.; Leeder, J.S.; Graham, R.L.; Chiulli, D.L.; LLerena, A.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2D6 and CYP2C19 Genotypes and Dosing of Selective Serotonin Reuptake Inhibitors. Clin. Pharmacol. Ther. 2015, 98, 127–134. [Google Scholar] [CrossRef]
- Hicks, J.K.; Sangkuhl, K.; Swen, J.J.; Ellingrod, V.L.; Müller, D.J.; Shimoda, K.; Bishop, J.R.; Kharasch, E.D.; Skaar, T.C.; Gaedigk, A.; et al. Clinical Pharmacogenetics Implementation Consortium Guideline (CPIC) for CYP2D6 and CYP2C19 Genotypes and Dosing of Tricyclic Antidepressants: 2016 Update. Clin. Pharmacol. Ther. 2017, 102, 37–44. [Google Scholar] [CrossRef]
- Pratt, V.M.; Cavallari, L.H.; Del Tredici, A.L.; Gaedigk, A.; Hachad, H.; Ji, Y.; Kalman, L.V.; Ly, R.C.; Moyer, A.M.; Scott, S.A.; et al. Recommendations for Clinical CYP2D6 Genotyping Allele Selection: A Joint Consensus Recommendation of the Association for Molecular Pathology, College of American Pathologists, Dutch Pharmacogenetics Working Group of the Royal Dutch Pharmacists Association, and the European Society for Pharmacogenomics and Personalized Therapy. J. Mol. Diagn. 2021, 23, 1047–1064. [Google Scholar] [CrossRef]
- LLerena, A.; Berecz, R.; Dorado, P.; González, A.P.; Peñas-LLedó, E.M.; De La Rubia, A. CYP2C9 Gene and Susceptibility to Major Depressive Disorder. Pharmacogenomics J. 2003, 3, 300–302. [Google Scholar] [CrossRef]
- Yenilmez, E.D.; Tamam, L.; Karaytug, O.; Tuli, A. Characterization CYP1A2, CYP2C9, CYP2C19 and CYP2D6 Polymorphisms Using HRMA in Psychiatry Patients with Schizophrenia and Bipolar Disease for Personalized Medicine. Comb. Chem. High Throughput Screen. 2018, 21, 374–380. [Google Scholar] [CrossRef] [PubMed]
- Saiz-Rodríguez, M.; Ochoa, D.; Belmonte, C.; Román, M.; Vieira de Lara, D.; Zubiaur, P.; Koller, D.; Mejía, G.; Abad-Santos, F. Polymorphisms in CYP1A2, CYP2C9 and ABCB1 Affect Agomelatine Pharmacokinetics. J. Psychopharmacol. 2019, 33, 522–531. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Du, Q.; Jiang, X.; Wang, L. Effect of CYP1A2 Polymorphism on the Pharmacokinetics of Agomelatine in Chinese Healthy Male Volunteers. J. Clin. Pharm. Ther. 2014, 39, 204–209. [Google Scholar] [CrossRef]
- Kuo, H.-W.; Liu, S.C.; Tsou, H.-H.; Liu, S.-W.; Lin, K.-M.; Lu, S.-C.; Hsiao, M.-C.; Hsiao, C.-F.; Liu, C.-Y.; Chen, C.-H.; et al. CYP1A2 Genetic Polymorphisms Are Associated with Early Antidepressant Escitalopram Metabolism and Adverse Reactions. Pharmacogenomics 2013, 14, 1191–1201. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.-M.; Tsou, H.-H.; Tsai, I.-J.; Hsiao, M.-C.; Hsiao, C.-F.; Liu, C.-Y.; Shen, W.W.; Tang, H.-S.; Fang, C.-K.; Wu, C.-S.; et al. CYP1A2 Genetic Polymorphisms Are Associated with Treatment Response to the Antidepressant Paroxetine. Pharmacogenomics 2010, 11, 1535–1543. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, N.; Ren, D.; Bi, Y.; Xu, F.; Niu, W.; Sun, Q.; Guo, Z.; Yuan, R.; Yuan, F.; et al. CYP1A2 Genetic Polymorphism Is Associated with Treatment Remission to Antidepressant Venlafaxine in Han Chinese Population. Clin. Neuropharmacol. 2019, 42, 32–36. [Google Scholar] [CrossRef] [PubMed]
- Lazarowski, A.; Czornyj, L. Potential Role of Multidrug Resistant Proteins in Refractory Epilepsy and Antiepileptic Drugs Interactions. Drug Metabol. Drug Interact. 2011, 26, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Magarbeh, L.; Hassel, C.; Choi, M.; Islam, F.; Marshe, V.S.; Zai, C.C.; Zuberi, R.; Gammal, R.S.; Men, X.; Scherf-Clavel, M.; et al. ABCB1 Gene Variants and Antidepressant Treatment Outcomes: A Systematic Review and Meta-Analysis Including Results from the CAN-BIND-1 Study. Clin. Pharmacol. Ther. 2023, 6, 2854. [Google Scholar] [CrossRef] [PubMed]
- Sarginson, J.E.; Lazzeroni, L.C.; Ryan, H.S.; Ershoff, B.D.; Schatzberg, A.F.; Murphy, G.M., Jr. ABCB1 (MDR1) Polymorphisms and Antidepressant Response in Geriatric Depression. Pharmacogenet. Genom. 2010, 20, 467–475. [Google Scholar] [CrossRef]
- Yamasaki, Y.; Moriwaki, T.; Ogata, S.; Ito, S.; Ohtsuki, S.; Minegishi, G.; Abe, S.; Ohta, Y.; Kazuki, K.; Kobayashi, K.; et al. Influence of MDR1 Gene Polymorphism (2677G>T) on Expression and Function of P-Glycoprotein at the Blood-Brain Barrier: Utilizing Novel P-Glycoprotein Humanized Mice with Mutation. Pharmacogenet. Genom. 2022, 32, 288–292. [Google Scholar] [CrossRef]
- Shan, X.-X.; Qiu, Y.; Xie, W.-W.; Wu, R.-R.; Yu, Y.; Wu, H.-S.; Li, L.-H. ABCB1 Gene Is Associated with Clinical Response to SNRIs in a Local Chinese Han Population. Front. Pharmacol. 2019, 10, 761. [Google Scholar] [CrossRef]
- Nakamura, K.; Hasegawa, H. Developmental Role of Tryptophan Hydroxylase in the Nervous System. Mol. Neurobiol. 2007, 35, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Crisafulli, C.; Fabbri, C.; Porcelli, S.; Drago, A.; Spina, E.; De Ronchi, D.; Serretti, A. Pharmacogenetics of Antidepressants. Front. Pharmacol. 2011, 2, 6. [Google Scholar] [CrossRef] [PubMed]
- Kato, M.; Serretti, A. Review and Meta-Analysis of Antidepressant Pharmacogenetic Findings in Major Depressive Disorder. Mol. Psychiatry 2010, 15, 473–500. [Google Scholar] [CrossRef]
- Moskaleva, P.V.; Shnayder, N.A.; Dmitrenko, D.V.; Shilkina, O.S.; Neznanov, N.G.; Nasyrova, R.F. Association of TPH1 and TPH2 Gene Polymorphisms with the Risk of Developing Psychoneurological Disorders. Neurosci. Behav. Physiol. 2022, 52, 462–469. [Google Scholar] [CrossRef]
- Matthes, S.; Mosienko, V.; Bashammakh, S.; Alenina, N.; Bader, M. Tryptophan Hydroxylase as Novel Target for the Treatment of Depressive Disorders. Pharmacology 2010, 85, 95–109. [Google Scholar] [CrossRef]
- Du, J.; Zhang, Z.; Li, W.; He, L.; Xu, J.; Shi, Y. Association Study of the TPH2 Gene with Major Depressive Disorder in the Han Chinese Population. Eur. J. Psychiatry 2016, 30, 131–140. [Google Scholar]
- Secher, A.; Bukh, J.; Bock, C.; Koefoed, P.; Rasmussen, H.B.; Werge, T.; Kessing, L.V.; Mellerup, E. Antidepressive-Drug-Induced Bodyweight Gain Is Associated with Polymorphisms in Genes Coding for COMT and TPH1. Int. Clin. Psychopharmacol. 2009, 24, 199–203. [Google Scholar] [CrossRef]
- Yeung, A.W.K.; Georgieva, M.G.; Atanasov, A.G.; Tzvetkov, N.T. Monoamine Oxidases (MAOs) as Privileged Molecular Targets in Neuroscience: Research Literature Analysis. Front. Mol. Neurosci. 2019, 12, 143. [Google Scholar] [CrossRef]
- Jones, D.N.; Raghanti, M.A. The Role of Monoamine Oxidase Enzymes in the Pathophysiology of Neurological Disorders. J. Chem. Neuroanat. 2021, 114, 101957. [Google Scholar] [CrossRef]
- Bi, Y.; Ren, D.; Guo, Z.; Ma, G.; Xu, F.; Chen, Z.; An, L.; Zhang, N.; Ji, L.; Yuan, F.; et al. Influence and Interaction of Genetic, Cognitive, Neuroendocrine and Personalistic Markers to Antidepressant Response in Chinese Patients with Major Depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 2021, 104, 110036. [Google Scholar] [CrossRef]
- Yoshida, K.; Naito, S.; Takahashi, H.; Sato, K.; Ito, K.; Kamata, M.; Higuchi, H.; Shimizu, T.; Itoh, K.; Inoue, K.; et al. Monoamine Oxidase: A Gene Polymorphism, Tryptophan Hydroxylase Gene Polymorphism and Antidepressant Response to Fluvoxamine in Japanese Patients with Major Depressive Disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 2002, 26, 1279–1283. [Google Scholar] [CrossRef] [PubMed]
- Clark, S.L.; Adkins, D.E.; Aberg, K.; Hettema, J.M.; McClay, J.L.; Souza, R.P.; van den Oord, E.J.C.G. Pharmacogenomic Study of Side-Effects for Antidepressant Treatment Options in STAR*D. Psychol. Med. 2012, 42, 1151–1162. [Google Scholar] [CrossRef]
- Chappell, K.; Colle, R.; Bouligand, J.; Trabado, S.; Fève, B.; Becquemont, L.; Corruble, E.; Verstuyft, C. The MAOA Rs979605 Genetic Polymorphism Is Differentially Associated with Clinical Improvement Following Antidepressant Treatment between Male and Female Depressed Patients. Int. J. Mol. Sci. 2022, 24, 497. [Google Scholar] [CrossRef]
- Srivastava, K.; Ochuba, O.; Sandhu, J.K.; Alkayyali, T.; Ruo, S.W.; Waqar, A.; Jain, A.; Joseph, C.; Poudel, S. Effect of Catechol-O-Methyltransferase Genotype Polymorphism on Neurological and Psychiatric Disorders: Progressing towards Personalized Medicine. Cureus 2021, 13, e18311. [Google Scholar] [CrossRef]
- Hall, K.T.; Loscalzo, J.; Kaptchuk, T.J. Systems Pharmacogenomics—Gene, Disease, Drug and Placebo Interactions: A Case Study in COMT. Pharmacogenomics 2019, 20, 529–551. [Google Scholar] [CrossRef]
- Benedetti, F.; Dallaspezia, S.; Colombo, C.; Lorenzi, C.; Pirovano, A.; Smeraldi, E. Effect of Catechol-O-Methyltransferase Val(108/158)Met Polymorphism on Antidepressant Efficacy of Fluvoxamine. Eur. Psychiatry 2010, 25, 476–478. [Google Scholar] [CrossRef]
- He, Q.; Shen, Z.; Ren, L.; Wang, X.; Qian, M.; Zhu, J.; Shen, X. The Association of Catechol-O-Methyltransferase (COMT) Rs4680 Polymorphisms and Generalized Anxiety Disorder in the Chinese Han Population. Int. J. Clin. Exp. Pathol. 2020, 13, 1712–1719. [Google Scholar]
- Gonda, X.; Petschner, P.; Eszlari, N.; Baksa, D.; Edes, A.; Antal, P.; Juhasz, G.; Bagdy, G. Genetic Variants in Major Depressive Disorder: From Pathophysiology to Therapy. Pharmacol. Ther. 2019, 194, 22–43. [Google Scholar] [CrossRef]
- Yang, D.; Gouaux, E. Illumination of Serotonin Transporter Mechanism and Role of the Allosteric Site. Sci. Adv. 2021, 7, eabl3857. [Google Scholar] [CrossRef]
- Krout, D.; Rodriquez, M.; Brose, S.A.; Golovko, M.Y.; Henry, L.K.; Thompson, B.J. Inhibition of the Serotonin Transporter Is Altered by Metabolites of Selective Serotonin and Norepinephrine Reuptake Inhibitors and Represents a Caution to Acute or Chronic Treatment Paradigms. ACS Chem. Neurosci. 2017, 8, 1011–1018. [Google Scholar] [CrossRef]
- Uher, R.; Perroud, N.; Ng, M.Y.M.; Hauser, J.; Henigsberg, N.; Maier, W.; Mors, O.; Placentino, A.; Rietschel, M.; Souery, D.; et al. Genome-Wide Pharmacogenetics of Antidepressant Response in the GENDEP Project. Am. J. Psychiatry 2010, 167, 555–564. [Google Scholar] [CrossRef] [PubMed]
- Stein, K.; Maruf, A.A.; Müller, D.J.; Bishop, J.R.; Bousman, C.A. Serotonin Transporter Genetic Variation and Antidepressant Response and Tolerability: A Systematic Review and Meta-Analysis. J. Pers. Med. 2021, 11, 1334. [Google Scholar] [CrossRef] [PubMed]
- Mrazek, D.A.; Rush, A.J.; Biernacka, J.M.; O’Kane, D.J.; Cunningham, J.M.; Wieben, E.D.; Schaid, D.J.; Drews, M.S.; Courson, V.L.; Snyder, K.A.; et al. SLC6A4 Variation and Citalopram Response. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2009, 150B, 341–351. [Google Scholar] [CrossRef] [PubMed]
- Huezo-Diaz, P.; Uher, R.; Smith, R.; Rietschel, M.; Henigsberg, N.; Marušič, A.; Mors, O.; Maier, W.; Hauser, J.; Souery, D.; et al. Moderation of Antidepressant Response by the Serotonin Transporter Gene. Br. J. Psychiatry 2009, 195, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Porcelli, S.; Fabbri, C.; Serretti, A. Meta-Analysis of Serotonin Transporter Gene Promoter Polymorphism (5-HTTLPR) Association with Antidepressant Efficacy. Eur. Neuropsychopharmacol. 2012, 22, 239–258. [Google Scholar] [CrossRef]
- Zou, Z.; Huang, Y.; Wang, J.; Min, W.; Zhou, B. The Association between Serotonin-Related Gene Polymorphisms and Susceptibility and Early Sertraline Response in Patients with Panic Disorder. BMC Psychiatry 2020, 20, 388. [Google Scholar] [CrossRef]
- Stäuble, C.K.; Meier, R.; Lampert, M.L.; Mikoteit, T.; Hatzinger, M.; Allemann, S.S.; Hersberger, K.E.; Meyer Zu Schwabedissen, H.E. Case Report: Non-Response to Fluoxetine in a Homozygous 5-HTTLPR S-Allele Carrier of the Serotonin Transporter Gene. Front. Psychiatry 2022, 13, 942268. [Google Scholar] [CrossRef]
- Maron, E.; Tammiste, A.; Kallassalu, K.; Eller, T.; Vasar, V.; Nutt, D.J.; Metspalu, A. Serotonin Transporter Promoter Region Polymorphisms Do Not Influence Treatment Response to Escitalopram in Patients with Major Depression. Eur. Neuropsychopharmacol. 2009, 19, 451–456. [Google Scholar] [CrossRef]
- Kato, M.; Fukuda, T.; Wakeno, M.; Fukuda, K.; Okugawa, G.; Ikenaga, Y.; Yamashita, M.; Takekita, Y.; Nobuhara, K.; Azuma, J.; et al. Effects of the Serotonin Type 2A, 3A and 3B Receptor and the Serotonin Transporter Genes on Paroxetine and Fluvoxamine Efficacy and Adverse Drug Reactions in Depressed Japanese Patients. Neuropsychobiology 2006, 53, 186–195. [Google Scholar] [CrossRef]
- Zhu, J.; Klein-Fedyshin, M.; Stevenson, J.M. Serotonin Transporter Gene Polymorphisms and Selective Serotonin Reuptake Inhibitor Tolerability: Review of Pharmacogenetic Evidence. Pharmacotherapy 2017, 37, 1089–1104. [Google Scholar] [CrossRef]
- Sarmiento-Hernández, E.I.; Ulloa-Flores, R.E.; Camarena-Medellín, B.; Sanabrais-Jiménez, M.A.; Aguilar-García, A.; Hernández-Muñoz, S. Association between 5-HTTLPR Polymorphism, Suicide Attempt and Comorbidity in Mexican Adolescents with Major Depressive Disorder. Actas Esp. Psiquiatr. 2019, 47, 1–6. [Google Scholar]
- Gonda, X.; Fountoulakis, K.N.; Harro, J.; Pompili, M.; Akiskal, H.S.; Bagdy, G.; Rihmer, Z. The Possible Contributory Role of the S Allele of 5-HTTLPR in the Emergence of Suicidality. J. Psychopharmacol. 2011, 25, 857–866. [Google Scholar] [CrossRef]
- Antypa, N.; Serretti, A.; Rujescu, D. Serotonergic Genes and Suicide: A Systematic Review. Eur. Neuropsychopharmacol. 2013, 23, 1125–1142. [Google Scholar] [CrossRef] [PubMed]
- Nemoda, Z.; Angyal, N.; Tarnok, Z.; Birkas, E.; Bognar, E.; Sasvari-Szekely, M.; Gervai, J.; Lakatos, K. Differential Genetic Effect of the Norepinephrine Transporter Promoter Polymorphisms on Attention Problems in Clinical and Non-Clinical Samples. Front. Neurosci. 2018, 12, 1051. [Google Scholar] [CrossRef] [PubMed]
- Ochi, T.; Vyalova, N.M.; Losenkov, I.S.; Paderina, D.Z.; Pozhidaev, I.V.; Loonen, A.J.M.; Simutkin, G.G.; Bokhan, N.A.; Wilffert, B.; Ivanova, S.A. Polymorphisms in the Adrenergic Neurotransmission Pathway Impact Antidepressant Response in Depressed Patients. Neurosci. Appl. 2023, 2, 101016. [Google Scholar] [CrossRef]
- Porcelli, S.; Drago, A.; Fabbri, C.; Gibiino, S.; Calati, R.; Serretti, A. Pharmacogenetics of Antidepressant Response. J. Psychiatry Neurosci. 2011, 36, 87–113. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhen, J.; Karpowich, N.K.; Goetz, R.M.; Law, C.J.; Reith, M.E.A.; Wang, D.-N. LeuT-Desipramine Structure Reveals How Antidepressants Block Neurotransmitter Reuptake. Science 2007, 317, 1390–1393. [Google Scholar] [CrossRef]
- Lavretsky, H.; Siddarth, P.; Kumar, A.; Reynolds, C.F., 3rd. The Effects of the Dopamine and Serotonin Transporter Polymorphisms on Clinical Features and Treatment Response in Geriatric Depression: A Pilot Study. Int. J. Geriatr. Psychiatry 2008, 23, 55–59. [Google Scholar] [CrossRef]
- Kirchheiner, J.; Nickchen, K.; Sasse, J.; Bauer, M.; Roots, I.; Brockmöller, J. A 40-Basepair VNTR Polymorphism in the Dopamine Transporter (DAT1) Gene and the Rapid Response to Antidepressant Treatment. Pharmacogenomics J. 2007, 7, 48–55. [Google Scholar] [CrossRef]
- Yohn, C.N.; Gergues, M.M.; Samuels, B.A. The Role of 5-HT Receptors in Depression. Mol. Brain 2017, 10, 28. [Google Scholar] [CrossRef]
- Alqahtani, A.M.; Kumarappan, C.; Kumar, V.; Srinivasan, R.; Krishnaraju, V. Understanding the Genetic Aspects of Resistance to Antidepressants Treatment. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 7784–7795. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.-Q.; Li, X.-R.; He, L.; He, G.; Yu, T.; Sun, X.-L. 5-HTR1A and 5-HTR2A Genetic Polymorphisms and SSRI Antidepressant Response in Depressive Chinese Patients. Neuropsychiatr. Dis. Treat. 2016, 12, 1623–1629. [Google Scholar] [CrossRef] [PubMed]
- Ochi, T.; Vyalova, N.M.; Losenkov, I.S.; Paderina, D.Z.; Pozhidaev, I.V.; Loonen, A.J.M.; Simutkin, G.G.; Bokhan, N.A.; Ivanova, S.A.; Wilffert, B. Limited Associations between 5-HT Receptor Gene Polymorphisms and Treatment Response in Antidepressant Treatment-Free Patients with Depression. Front. Pharmacol. 2019, 10, 1462. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Huang, Y.; Li, J.; Ma, H.; Jin, Q.; Wang, Y.; Wu, L.; Zhu, G. Association between the 5-HT1A Receptor Gene Polymorphism (Rs6295) and Antidepressants: A Meta-Analysis: A Meta-Analysis. Int. Clin. Psychopharmacol. 2012, 27, 314–320. [Google Scholar] [CrossRef]
- Scutt, G.; Overall, A.; Scott, R.; Patel, B.; Hachoumi, L.; Yeoman, M.; Wright, J. Does the 5-HT1A Rs6295 Polymorphism Influence the Safety and Efficacy of Citalopram Therapy in the Oldest Old? Ther. Adv. Drug Saf. 2018, 9, 355–366. [Google Scholar] [CrossRef]
- Villafuerte, S.M.; Vallabhaneni, K.; Sliwerska, E.; McMahon, F.J.; Young, E.A.; Burmeister, M. SSRI Response in Depression May Be Influenced by SNPs in HTR1B and HTR1A. Psychiatr. Genet. 2009, 19, 281–291. [Google Scholar] [CrossRef]
- Kato, M.; Fukuda, T.; Wakeno, M.; Okugawa, G.; Takekita, Y.; Watanabe, S.; Yamashita, M.; Hosoi, Y.; Azuma, J.; Kinoshita, T.; et al. Effect of 5-HT1A Gene Polymorphisms on Antidepressant Response in Major Depressive Disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2009, 150B, 115–123. [Google Scholar] [CrossRef]
- Kao, C.-F.; Kuo, P.-H.; Yu, Y.W.-Y.; Yang, A.C.; Lin, E.; Liu, Y.-L.; Tsai, S.-J. Gene-Based Association Analysis Suggests Association of HTR2A with Antidepressant Treatment Response in Depressed Patients. Front. Pharmacol. 2020, 11, 559601. [Google Scholar] [CrossRef]
- Sun, Y.; Tao, S.; Tian, S.; Shao, J.; Mo, Z.; Wang, X.; Wang, H.; Zhao, P.; Chen, Z.; Yao, Z.; et al. Serotonin 2A Receptor Polymorphism Rs3803189 Mediated by Dynamics of Default Mode Network: A Potential Biomarker for Antidepressant Early Response. J. Affect. Disord. 2021, 283, 130–138. [Google Scholar] [CrossRef]
- Gassó, P.; Blázquez, A.; Rodríguez, N.; Boloc, D.; Torres, T.; Mas, S.; Lafuente, A.; Lázaro, L. Further Support for the Involvement of Genetic Variants Related to the Serotonergic Pathway in the Antidepressant Response in Children and Adolescents after a 12-Month Follow-up: Impact of the HTR2A Rs7997012 Polymorphism. J. Child Adolesc. Psychopharmacol. 2018, 28, 711–718. [Google Scholar] [CrossRef]
- Kang, R.-H.; Choi, M.-J.; Paik, J.-W.; Hahn, S.-W.; Lee, M.-S. Effect of Serotonin Receptor 2A Gene Polymorphism on Mirtazapine Response in Major Depression. Int. J. Psychiatry Med. 2007, 37, 315–329. [Google Scholar] [CrossRef]
- Oz, M.D.; Baskak, B.; Uckun, Z.; Artun, N.Y.; Ozdemir, H.; Ozel, T.K.; Ozguven, H.D.; Suzen, H.S. Association between Serotonin 2A Receptor (HTR2A), Serotonin Transporter (SLC6A4) and Brain-Derived Neurotrophic Factor (BDNF) Gene Polymorphisms and Citalopram/Sertraline Induced Sexual Dysfunction in MDD Patients. Pharmacogenomics J. 2020, 20, 443–450. [Google Scholar] [CrossRef]
- Wan, Y.-S.; Zhai, X.-J.; Tan, H.-A.; Ai, Y.-S.; Zhao, L.-B. Associations between the 1438A/G, 102T/C, and Rs7997012 G/A Polymorphisms of HTR2A and the Safety and Efficacy of Antidepressants in Depression: A Meta-Analysis. Pharmacogenomics J. 2021, 21, 200–215. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, X.; Yu, Y.; Han, Y.; Wei, J.; Collier, D.; Li, T.; Ma, X. The Role of Single Nucleotide Polymorphism of D2 Dopamine Receptor Gene on Major Depressive Disorder and Response to Antidepressant Treatment. Psychiatry Res. 2012, 200, 1047–1050. [Google Scholar] [CrossRef]
- Perlis, R.H.; Adams, D.H.; Fijal, B.; Sutton, V.K.; Farmen, M.; Breier, A.; Houston, J.P. Genetic Association Study of Treatment Response with Olanzapine/Fluoxetine Combination or Lamotrigine in Bipolar I Depression. J. Clin. Psychiatry 2010, 71, 599–605. [Google Scholar] [CrossRef]
- Serretti, A.; Artioli, P.; Zanardi, R.; Lorenzi, C.; Rossini, D.; Cusin, C.; Arnoldi, A.; Catalano, M. Genetic Features of Antidepressant Induced Mania and Hypo-Mania in Bipolar Disorder. Psychopharmacology 2004, 174, 504–511. [Google Scholar] [CrossRef]
- Benedetti, F.; Serretti, A.; Colombo, C.; Lilli, R.; Lorenzi, C.; Smeraldi, E. Dopamine receptor D2 and D3 gene variants are not associated with the antidepressant effect of total sleep deprivation in bipolar depression. Psychiatry Res. 2003, 118, 241–247. [Google Scholar] [CrossRef]
- Tiwari, A.K.; Souza, R.P.; Müller, D.J. Pharmacogenetics of Anxiolytic Drugs. J. Neural Transm. 2009, 116, 667–677. [Google Scholar] [CrossRef]
- Meech, R.; Hu, D.G.; McKinnon, R.A.; Mubarokah, S.N.; Haines, A.Z.; Nair, P.C.; Rowland, A.; Mackenzie, P.I. The UDP-Glycosyltransferase (UGT) Superfamily: New Members, New Functions, and Novel Paradigms. Physiol. Rev. 2019, 99, 1153–1222. [Google Scholar] [CrossRef]
- Court, M.H.; Hao, Q.; Krishnaswamy, S.; Bekaii-Saab, T.; Al-Rohaimi, A.; von Moltke, L.L.; Greenblatt, D.J. UDP-Glucuronosyltransferase (UGT) 2B15 Pharmacogenetics: UGT2B15 D85Y Genotype and Gender Are Major Determinants of Oxazepam Glucuronidation by Human Liver. J. Pharmacol. Exp. Ther. 2004, 310, 656–665. [Google Scholar] [CrossRef]
- Mijderwijk, H.; Klimek, M.; van Beek, S.; van Schaik, R.H.N.; Duivenvoorden, H.J.; Stolker, R.J. Implication of UGT2B15 Genotype Polymorphism on Postoperative Anxiety Levels in Patients Receiving Lorazepam Premedication. Anesth. Analg. 2016, 123, 1109–1115. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.-Y.; Cho, J.-Y.; Yu, K.-S.; Kim, J.-R.; Jung, H.-R.; Lim, K.-S.; Jang, I.-J.; Shin, S.-G. Effect of the UGT2B15 Genotype on the Pharmacokinetics, Pharmacodynamics, and Drug Interactions of Intravenous Lorazepam in Healthy Volunteers. Clin. Pharmacol. Ther. 2005, 77, 486–494. [Google Scholar] [CrossRef] [PubMed]
- Jackson, A.; Stephens, D.; Duka, T. Gender Differences in Response to Lorazepam in a Human Drug Discrimination Study. J. Psychopharmacol. 2005, 19, 614–619. [Google Scholar] [CrossRef] [PubMed]
- Court, M.H. Interindividual Variability in Hepatic Drug Glucuronidation: Studies into the Role of Age, Sex, Enzyme Inducers, and Genetic Polymorphism Using the Human Liver Bank as a Model System. Drug Metab. Rev. 2010, 42, 209–224. [Google Scholar] [CrossRef]
- He, X.; Hesse, L.M.; Hazarika, S.; Masse, G.; Harmatz, J.S.; Greenblatt, D.J.; Court, M.H. Evidence for Oxazepam as Anin Vivoprobe of UGT2B15: Oxazepam Clearance Is Reduced By UGT2B15 D85Y Polymorphism but Unaffected By UGT2B17 deletion. Br. J. Clin. Pharmacol. 2009, 6, 721–730. [Google Scholar] [CrossRef]
- Liu, W.; Ramírez, J.; Gamazon, E.R.; Mirkov, S.; Chen, P.; Wu, K.; Sun, C.; Cox, N.J.; Cook, E., Jr.; Das, S.; et al. Genetic Factors Affecting Gene Transcription and Catalytic Activity of UDP-Glucuronosyltransferases in Human Liver. Hum. Mol. Genet. 2014, 2, 5558–5569. [Google Scholar] [CrossRef]
- Dinis-Oliveira, R.J. Metabolic Profile of Oxazepam and Related Benzodiazepines: Clinical and Forensic Aspects. Drug Metab. Rev. 2017, 49, 451–463. [Google Scholar] [CrossRef]
- Uzun, S.; Kozumplik, O.; Jakovljević, M.; Sedić, B. Side Effects of Treatment with Benzodiazepines. Psychiatr. Danub. 2010, 22, 90–93. [Google Scholar]
- Dean, L. Diazepam Therapy and CYP2C19 Genotype. In Medical Genetics Summaries; Pratt, V.M., Scott, S.A., Pirmohamed, M., Esquivel, B., Kattman, B.L., Malheiro, A.J., Eds.; National Center for Biotechnology Information: Bethesda, MD, USA, 2012. Available online: https://www.ncbi.nlm.nih.gov/books/NBK546789/ (accessed on 15 April 2023).
- Zubiaur, P.; Figueiredo-Tor, L.; Villapalos-García, G.; Soria-Chacartegui, P.; Navares-Gómez, M.; Novalbos, J.; Matas, M.; Calleja, S.; Mejía-Abril, G.; Román, M.; et al. Association between CYP2C19 and CYP2B6 phenotypes and the pharmacokinetics and safety of diazepam. Biomed. Pharmacother. 2022, 155, 113747. [Google Scholar] [CrossRef]
- Skryabin, V.Y.; Zastrozhin, M.S.; Torrado, M.V.; Grishina, E.A.; Ryzhikova, K.A.; Shipitsyn, V.V.; Galaktionova, T.E.; Sorokin, A.S.; Bryun, E.A.; Sychev, D.A. How Do CYP2C19*2 and CYP2C19*17 Genetic Polymorphisms Affect the Efficacy and Safety of Diazepam in Patients with Alcohol Withdrawal Syndrome? Drug Metab. Pers. Ther. 2020, 35. [Google Scholar] [CrossRef]
- Skryabin, V.Y.; Zastrozhin, M.; Torrado, M.; Grishina, E.; Ryzhikova, K.; Shipitsyn, V.; Galaktionova, T.; Bryun, E.; Sychev, D. Effects of CYP2C19*17 Genetic Polymorphisms on Plasma and Saliva Concentrations of Diazepam in Patients with Alcohol Withdrawal Syndrome. Psychiatr. Genet. 2022, 32, 67–73. [Google Scholar] [CrossRef]
- Ho, T.T.; Noble, M.; Tran, B.A.; Sunjic, K.; Gupta, S.V.; Turgeon, J.; Crutchley, R.D. Clinical Impact of the CYP2C19 Gene on Diazepam for the Management of Alcohol Withdrawal Syndrome. J. Pers. Med. 2023, 13, 285. [Google Scholar] [CrossRef]
- Garmén, A.K.; Pettersson, N.; Unge, C.; Lindh, J.D. Extreme Duration of Diazepam-Associated Sedation in a Patient with Alcohol Delirium and CYP2C19 Polymorphisms. J. Clin. Psychopharmacol. 2015, 35, 475–477. [Google Scholar] [CrossRef]
- Skryabin, V.Y.; Zastrozhin, M.; Torrado, M.; Grishina, E.; Ryzhikova, K.; Shipitsyn, V.; Galaktionova, T.; Sorokin, A.; Bryun, E.; Sychev, D. Effects of CYP2C19*17 Genetic Polymorphisms on the Steady-State Concentration of Diazepam in Patients with Alcohol Withdrawal Syndrome. Hosp. Pharm. 2021, 56, 592–596. [Google Scholar] [CrossRef]
- Saruwatari, J.; Ogusu, N.; Shimomasuda, M.; Nakashima, H.; Seo, T.; Tanikawa, K.; Tsuda, Y.; Nishimura, M.; Nagata, R.; Yasui-Furukori, N.; et al. Effects of CYP2C19 and P450 Oxidoreductase Polymorphisms on the Population Pharmacokinetics of Clobazam and N-Desmethylclobazam in Japanese Patients with Epilepsy. Ther. Drug Monit. 2014, 36, 302–309. [Google Scholar] [CrossRef]
- Hashi, S.; Yano, I.; Shibata, M.; Masuda, S.; Kinoshita, M.; Matsumoto, R.; Ikeda, A.; Takahashi, R.; Matsubara, K. Effect of CYP2C19 Polymorphisms on the Clinical Outcome of Low-Dose Clobazam Therapy in Japanese Patients with Epilepsy. Eur. J. Clin. Pharmacol. 2015, 71, 51–58. [Google Scholar] [CrossRef]
- Boels, D.; Chhun, S.; Meyer, G.; Lelièvre, B.; Souday, V. Clinical Consequences Related to a Defective Elimination of Clobazam Caused by Homozygous Mutated CYP2C19 Allele. Clin. Toxicol. 2019, 57, 743–747. [Google Scholar] [CrossRef]
- Hamilton, K.E.; Shelton, C.M.; Wheless, J.; Phelps, S.J. Persistent Hypersomnolence Following Clobazam in a Child with Epilepsy and Undiagnosed CYP2C19 Polymorphism. J. Pediatr. Pharmacol. Ther. 2020, 25, 320–327. [Google Scholar] [CrossRef]
- Spina, E.; de Leon, J. Clinical Applications of CYP Genotyping in Psychiatry. J. Neural Transm. 2015, 122, 5–28. [Google Scholar] [CrossRef]
- Tolle-Sander, S. Midazolam Exhibits Characteristics of a Highly Permeable P-Glycoprotein Substrate. Pharm. Res. 2003, 20, 757–764. [Google Scholar] [CrossRef]
- Venkatakrishnan, K.; Gibbs, M.A. CYP3A5 Polymorphism and Alprazolam Pharmacokinetics/Pharmacodynamics. Clin. Pharmacol. Ther. 2006, 80, 719–720. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Kim, K.; Park, P.; Lee, O.; Kang, D.; Shon, J.; Liu, K.; Shin, J. Effect of CYP3A5*3 Genotype on the Pharmacokinetics and Pharmacodynamics of Alprazolam in Healthy Subjects. Clin. Pharmacol. Ther. 2006, 79, 590–599. [Google Scholar] [CrossRef] [PubMed]
- Elens, L.; van Gelder, T.; Hesselink, D.A.; Haufroid, V.; van Schaik, R.H.N. CYP3A4*22: Promising Newly Identified CYP3A4 Variant Allele for Personalizing Pharmacotherapy. Pharmacogenomics 2013, 14, 47–62. [Google Scholar] [CrossRef] [PubMed]
- Mulder, T.A.M.; van Eerden, R.A.G.; de With, M.; Elens, L.; Hesselink, D.A.; Matic, M.; Bins, S.; Mathijssen, R.H.J.; van Schaik, R.H.N. CYP3A4*22 Genotyping in Clinical Practice: Ready for Implementation? Front. Genet. 2021, 12, 711943. [Google Scholar] [CrossRef]
- Fukasawa, T.; Suzuki, A.; Otani, K. Effects of Genetic Polymorphism of Cytochrome P450 Enzymes on the Pharmacokinetics of Benzodiazepines. J. Clin. Pharm. Ther. 2007, 32, 333–341. [Google Scholar] [CrossRef]
- Zastrozhin, M.S.; Skryabin, V.Y.; Smirnov, V.V.; Petukhov, A.E.; Pankratenko, E.P.; Zastrozhina, A.K.; Grishina, E.A.; Ryzhikova, K.A.; Bure, I.V.; Golovinskii, P.A.; et al. Effects of Plasma Concentration of Micro-RNA Mir-27b and CYP3A4*22 on Equilibrium Concentration of Alprazolam in Patients with Anxiety Disorders Comorbid with Alcohol Use Disorder. Gene 2020, 739, 144513. [Google Scholar] [CrossRef]
- Zubiaur, P.; Abad-Santos, F. Use of Pharmacogenetics for Benzodiazepine Prescription: State of the Art and Expectations. Pharmacogenomics 2022, 23, 949–952. [Google Scholar] [CrossRef]
- Engin, E. GABAA Receptor Subtypes and Benzodiazepine Use, Misuse, and Abuse. Front. Psychiatry 2022, 13, 1060949. [Google Scholar] [CrossRef]
- Park, J.Y.; Kim, B.J.; Lee, S.W.; Kang, H.; Kim, J.W.; Jang, I.-J.; Kim, J.G. Influence of Midazolam-Related Genetic Polymorphism on Conscious Sedation during Upper Gastrointestinal Endoscopy in a Korean Population. Sci. Rep. 2019, 9, 16001. [Google Scholar] [CrossRef]
- Byon, H.-J.; Park, K.-S.; Park, Y.-H.; Kim, J.-T.; Jung, C.-W.; Kim, H.-S. The Influence of DNA Polymorphism of Multidrug Resistant 1 (MDR1) on the Effect of Midazolam Pretreatment in Children. Korean J. Anesthesiol. 2012, 62, 332–336. [Google Scholar] [CrossRef]
- Flores-Pérez, C.; Flores-Pérez, J.; de Jesús Castillejos López, M.; Chávez-Pacheco, J.L.; Tejada-Gutiérrez, K.M.; Aquino-Gálvez, A.; Torres-Espíndola, L.M. Sex and Age Influence on Association of CYP450 Polymorphism with Midazolam Levels in Critically Ill Children. Diagnostics 2022, 12, 2797. [Google Scholar] [CrossRef]
- Ghit, A.; Assal, D.; Al-Shami, A.S.; Hussein, D.E.E. GABAA Receptors: Structure, Function, Pharmacology, and Related Disorders. J. Genet. Eng. Biotechnol. 2021, 19, 123. [Google Scholar] [CrossRef]
- Chen, X.; Broeyer, F.; Kam, M.; Baas, J.; Cohen, A.; Gerven, J. Pharmacodynamic Response Profiles of Anxiolytic and Sedative Drugs: Pharmacodynamics of Anxiolytic and Sedative Drugs. Br. J. Clin. Pharmacol. 2017, 83, 1028–1038. [Google Scholar] [CrossRef]
- Kelly, M.D.; Smith, A.; Banks, G.; Wingrove, P.; Whiting, P.W.; Atack, J.; Seabrook, G.R.; Maubach, K.A. Role of the Histidine Residue at Position 105 in the Human Alpha 5 Containing GABA(A) Receptor on the Affinity and Efficacy of Benzodiazepine Site Ligands: BZ Pharmacology at Mutant GABAA receptors. Br. J. Pharmacol. 2002, 135, 248–256. [Google Scholar] [CrossRef]
- Petrou, S.; Reid, C.A. The GABAAγ2(R43Q) Mouse Model of Human Genetic Epilepsy. In Jasper’s Basic Mechanisms of the Epilepsies, 4th ed.; Noebels, J.L., Avoli, M., Rogawski, M.A., Olsen, R.W., Delgado-Escueta, A.V., Eds.; National Center for Biotechnology Information: Bethesda, MD, USA, 2012; pp. 731–739. [Google Scholar]
- Smith, K.S.; Rudolph, U. Anxiety and Depression: Mouse Genetics and Pharmacological Approaches to the Role of GABA(A) Receptor Subtypes. Neuropharmacology 2012, 62, 54–62. [Google Scholar] [CrossRef]
- Günther, U.; Benson, J.; Benke, D.; Fritschy, J.M.; Reyes, G.; Knoflach, F.; Crestani, F.; Aguzzi, A.; Arigoni, M.; Lang, Y.; et al. Benzodiazepine-Insensitive Mice Generated by Targeted Disruption of the Gamma 2 Subunit Gene of Gamma-Aminobutyric Acid Type A Receptors. Proc. Natl. Acad. Sci. USA 1995, 92, 7749–7753. [Google Scholar] [CrossRef]
- Chandra, D.; Korpi, E.R.; Miralles, C.P.; De Blas, A.L.; Homanics, G.E. GABAA Receptor Gamma 2 Subunit Knockdown Mice Have Enhanced Anxiety-like Behavior but Unaltered Hypnotic Response to Benzodiazepines. BMC Neurosci. 2005, 6, 30. [Google Scholar] [CrossRef]
- Uygun, D.S.; Ye, Z.; Zecharia, A.Y.; Harding, E.C.; Yu, X.; Yustos, R.; Vyssotski, A.L.; Brickley, S.G.; Franks, N.P.; Wisden, W. Bottom-up versus Top-down Induction of Sleep by Zolpidem Acting on Histaminergic and Neocortex Neurons. J. Neurosci. 2016, 36, 11171–11184. [Google Scholar] [CrossRef]
- Stephens, D.N.; King, S.L.; Lambert, J.J.; Belelli, D.; Duka, T. GABAA Receptor Subtype Involvement in Addictive Behaviour: GABAAReceptor Subtypes and Addiction. Genes Brain Behav. 2017, 16, 149–184. [Google Scholar] [CrossRef]
- Lind, P.A.; Macgregor, S.; Agrawal, A.; Montgomery, G.W.; Heath, A.C.; Martin, N.G.; Whitfield, J.B. The Role of GABRA2 in Alcohol Dependence, Smoking, and Illicit Drug Use in an Australian Population Sample. Alcohol. Clin. Exp. Res. 2008, 32, 1721–1731. [Google Scholar] [CrossRef]
- Strac, D.S.; Erjavec, G.N.; Perkovic, M.N.; Sviglin, K.N.; Borovecki, F.; Pivac, N. Association of GABAA receptor α2 subunit gene (GABRA2) with alcohol dependence-related aggressive behavior. Prog. Neuropsychopharmacol. Biol. Psychiatry 2015, 63, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Engin, E.; Liu, J.; Rudolph, U. A2-Containing GABA(A) Receptors: A Target for the Development of Novel Treatment Strategies for CNS Disorders. Pharmacol. Ther. 2012, 136, 142–152. [Google Scholar] [CrossRef] [PubMed]
- Tsai, J.-H.; Yang, P.; Lin, H.-H.; Cheng, K.-H.; Yang, Y.-H.; Wu, M.-T.; Chen, C.-C. Association between GABA(A) Receptor Subunit Gene Cluster and Zolpidem-Induced Complex Sleep Behaviors in Han Chinese. Sleep 2013, 36, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.-J.; Lee, S.Y.; Yang, K.-S.; Park, J.-Y.; Yoon, S.Z.; Yoon, S.M. Polymorphism Rs4263535 in GABRA1 Intron 4 Was Related to Deeper Sedation by Intravenous Midazolam. J. Int. Med. Res. 2015, 43, 686–698. [Google Scholar] [CrossRef] [PubMed]
- Bowser, D.N.; Wagner, D.A.; Czajkowski, C.; Cromer, B.A.; Parker, M.W.; Wallace, R.H.; Harkin, L.A.; Mulley, J.C.; Marini, C.; Berkovic, S.F.; et al. Altered Kinetics and Benzodiazepine Sensitivity of a GABAA Receptor Subunit Mutation [Gamma 2(R43Q)] Found in Human Epilepsy. Proc. Natl. Acad. Sci. USA 2002, 99, 15170–15175. [Google Scholar] [CrossRef]
- Chakraborty, A.; Dey, S.; Kumar, K.; Dixit, A.B.; Tripathi, M.; Sharma, M.C.; Chandra, P.S.; Banerjee, J. Novel Variants in GABAA Receptor Subunits: A Possible Association with Benzodiazepine Resistance in Patients with Drug-Resistant Epilepsy. Epilepsy Res. 2023, 189, 107056. [Google Scholar] [CrossRef]
- Engelmann, J.; Zillich, L.; Frank, J.; Wagner, S.; Cetin, M.; Herzog, D.P.; Müller, M.B.; Tadic, A.; Foo, J.C.; Sirignano, L.; et al. Epigenetic Signatures in Antidepressant Treatment Response: A Methylome-Wide Association Study in the EMC Trial. Transl. Psychiatry 2022, 12, 268. [Google Scholar] [CrossRef]
- Stefanska, B.; MacEwan, D.J. Epigenetics and Pharmacology. Br. J. Pharmacol. 2015, 172, 2701–2704. [Google Scholar] [CrossRef]
- Takeuchi, N.; Nonen, S.; Kato, M.; Wakeno, M.; Takekita, Y.; Kinoshita, T.; Kugawa, F. Therapeutic Response to Paroxetine in Major Depressive Disorder Predicted by DNA Methylation. Neuropsychobiology 2017, 75, 81–88. [Google Scholar] [CrossRef]
- Powell, T.R.; Smith, R.G.; Hackinger, S.; Schalkwyk, L.C.; Uher, R.; McGuffin, P.; Mill, J.; Tansey, K.E. DNA methylation in interleukin-11 predicts clinical response to antidepressants in GENDEP. Transl. Psychiatry 2013, 3, e300. [Google Scholar] [CrossRef]
- Duclot, F.; Kabbaj, M. Epigenetic Mechanisms Underlying the Role of Brain-Derived Neurotrophic Factor in Depression and Response to Antidepressants. J. Exp. Biol. 2015, 218, 21–31. [Google Scholar] [CrossRef]
- Lopez, J.P.; Mamdani, F.; Labonte, B.; Beaulieu, M.-M.; Yang, J.P.; Berlim, M.T.; Ernst, C.; Turecki, G. Epigenetic Regulation of BDNF Expression according to Antidepressant Response. Mol. Psychiatry 2013, 18, 398–399. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, C.; Lv, Q.; Bao, C.; Sun, H.; Ma, G.; Fang, Y.; Yi, Z.; Cai, W. Association of DNA Methylation in BDNF with Escitalopram Treatment Response in Depressed Chinese Han Patients. Eur. J. Clin. Pharmacol. 2018, 74, 1011–1020. [Google Scholar] [CrossRef]
- Tadić, A.; Wagner, S.; Schlicht, K.F.; Peetz, D.; Borysenko, L.; Dreimüller, N.; Hiemke, C.; Lieb, K. The early non-increase of serum BDNF predicts failure of antidepressant treatment in patients with major depression: A pilot study. Prog. Neuropsychopharmacol. Biol. Psychiatry 2011, 35, 415–420. [Google Scholar] [CrossRef]
- Gassen, N.C.; Fries, G.R.; Zannas, A.S.; Hartmann, J.; Zschocke, J.; Hafner, K.; Carrillo-Roa, T.; Steinbacher, J.; Preißinger, S.N.; Hoeijmakers, L.; et al. Chaperoning epigenetics: FKBP51 decreases the activity of DNMT1 and mediates epigenetic effects of the antidepressant paroxetine. Sci. Signal. 2015, 8, ra119. [Google Scholar] [CrossRef]
- Zannas, A.; Wiechmann, T.; Gassen, N.; Binder, E.B. Gene–Stress–Epigenetic Regulation of FKBP5: Clinical and Translational Implications. Neuropsychopharmacology 2016, 41, 261–274. [Google Scholar] [CrossRef]
- Mourtzi, N.; Sertedaki, A.; Charmandari, E. Glucocorticoid Signaling and Epigenetic Alterations in Stress-Related Disorders. Int. J. Mol. Sci. 2021, 22, 5964. [Google Scholar] [CrossRef]
- Anacker, C.; Zunszain, P.A.; Carvalho, L.A.; Pariante, C.M. The glucocorticoid receptor: Pivot of depression and of antidepressant treatment? Psychoneuroendocrinology 2011, 36, 415–425. [Google Scholar] [CrossRef]
- Elliott, E.; Ezra-Nevo, G.; Regev, L.; Neufeld-Cohen, A.; Chen, A. Resilience to social stress coincides with functional DNA methylation of the Crf gene in adult mice. Nat. Neurosci. 2010, 13, 1351–1353. [Google Scholar] [CrossRef]
- Schiele, M.A.; Zwanzger, P.; Schwarte, K.; Arolt, V.; Baune, B.T.; Domschke, K. Serotonin Transporter Gene Promoter Hypomethylation as a Predictor of Antidepressant Treatment Response in Major Depression—A Replication Study. Int. J. Neuropsychopharmacol. 2020, 24, 191–199. [Google Scholar] [CrossRef]
- Domschke, K.; Tidow, N.; Schwarte, K.; Deckert, J.; Lesch, K.-P.; Arolt, V.; Zwanzger, P.; Baune, B.T. Serotonin Transporter Gene Hypomethylation Predicts Impaired Antidepressant Treatment Response. Int. J. Neuropsychopharmacol. 2014, 17, 1167–1176. [Google Scholar] [CrossRef] [PubMed]
- Lisoway, A.; Zai, C.; Tiwari, A.K.; Harripaul, R.; Freeman, N.; French, L.; Kaminsky, Z.; Kennedy, J.L. DNA methylation and 5-HTTLPR genotype of the serotonin transporter gene (SLC6A4) in antidepressant treatment response of major depressive disorder. Eur. Neuropsychopharmacol. 2019, 29, S1001–S1002. [Google Scholar] [CrossRef]
- Ziegler, C.; Wolf, C.; Schiele, M.A.; Feric Bojic, E.; Kucukalic, S.; Sabic Dzananovic, E.; Goci Uka, A.; Hoxha, B.; Haxhibeqiri, V.; Haxhibeqiri, S.; et al. Monoamine Oxidase a Gene Methylation and Its Role in Posttraumatic Stress Disorder: First Evidence from the South Eastern Europe (SEE)-PTSD Study. Int. J. Neuropsychopharmacol. 2017, 21, 423–432. [Google Scholar] [CrossRef] [PubMed]
- Domschke, K.; Tidow, N.; Schwarte, K.; Ziegler, C.; Lesch, K.-P.; Deckert, J.; Arolt, V.; Zwanzger, P.; Baune, B.T. Pharmacoepigenetics of Depression: No Major Influence of MAO-A DNA Methylation on Treatment Response. J. Neural Transm. 2014, 122, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Checknita, D.; Ekström, T.J.; Comasco, E.; Nilsson, K.W.; Tiihonen, J.; Hodgins, S. Associations of Monoamine Oxidase a Gene First Exon Methylation with Sexual Abuse and Current Depression in Women. J. Neural Transm. 2018, 125, 1053–1064. [Google Scholar] [CrossRef]
- Tsankova, N.M.; Berton, O.; Renthal, W.; Kumar, A.; Neve, R.L.; Nestler, E.J. Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat. Neurosci. 2006, 9, 519–525. [Google Scholar] [CrossRef]
- Chen, E.S.; Ernst, C.; Turecki, G. The epigenetic effects of antidepressant treatment on human prefrontal cortex BDNF expression. Int. J. Neuropsychopharmacol. 2011, 14, 427–429. [Google Scholar] [CrossRef]
- Belzeaux, R.; Lin, R.; Ju, C.; Chay, M.A.; Fiori, L.M.; Lutz, P.E.; Turecki, G. Transcriptomic and epigenomic biomarkers of antidepressant response. J. Affect. Disord. 2018, 233, 36–44. [Google Scholar] [CrossRef]
- Fiori, L.M.; Lin, R.; Ju, C.; Belzeaux, R.; Turecki, G. Using Epigenetic Tools to Investigate Antidepressant Response. Prog. Mol. Biol. Transl. Sci. 2018, 158, 255–272. [Google Scholar] [CrossRef]
- Fiori, L.M.; Lopez, J.P.; Richard-Devantoy, S.; Berlim, M.; Chachamovich, E.; Jollant, F.; Foster, J.; Rotzinger, S.; Kennedy, S.H.; Turecki, G. Investigation of miR-1202, miR-135a, and miR-16 in Major Depressive Disorder and Antidepressant Response. Int. J. Neuropsychopharmacol. 2017, 20, 619–623. [Google Scholar] [CrossRef]
- Lopez, J.P.; Fiori, L.M.; Cruceanu, C.; Lin, R.; Labonte, B.; Cates, H.M.; Heller, E.A.; Vialou, V.; Ku, S.M.; Gerald, C.; et al. MicroRNAs 146a/b-5 and 425-3p and 24-3p are markers of antidepressant response and regulate MAPK/Wnt-system genes. Nat. Commun. 2017, 8, 15497. [Google Scholar] [CrossRef]
- Auta, J.; Gatta, E.; Davis, J.M.; Pandey, S.C.; Guidotti, A. Potential Role for Histone Deacetylation in Chronic Diazepam-Induced Downregulation of α1-GABAA Receptor Subunit Expression. Pharmacol. Res. Perspect. 2018, 6, e00416. [Google Scholar] [CrossRef]
- Pathak, S.; Gupta, G.; Gilhotra, R.M. The Role of Diazepam in Epigenetics: From the Molecular Level to Clinical Implications. Adv. Mind-Body Med. 2021, 35, 25–33. [Google Scholar]
- Peedicayil, J. The Potential Role of Epigenetic Drugs in the Treatment of Anxiety Disorders. Neuropsychiatr. Dis. Treat. 2020, 16, 597–606. [Google Scholar] [CrossRef]
- Swen, J.J.; van der Wouden, C.H.; Manson, L.E.; Abdullah-Koolmees, H.; Blagec, K.; Blagus, T.; Böhringer, S.; Cambon-Thomsen, A.; Cecchin, E.; Cheung, K.C.; et al. A 12-gene pharmacogenetic panel to prevent adverse drug reactions: An open-label, multicentre, controlled, cluster-randomised crossover implementation study. Lancet 2023, 401, 347–356. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radosavljevic, M.; Svob Strac, D.; Jancic, J.; Samardzic, J. The Role of Pharmacogenetics in Personalizing the Antidepressant and Anxiolytic Therapy. Genes 2023, 14, 1095. https://doi.org/10.3390/genes14051095
Radosavljevic M, Svob Strac D, Jancic J, Samardzic J. The Role of Pharmacogenetics in Personalizing the Antidepressant and Anxiolytic Therapy. Genes. 2023; 14(5):1095. https://doi.org/10.3390/genes14051095
Chicago/Turabian StyleRadosavljevic, Milica, Dubravka Svob Strac, Jasna Jancic, and Janko Samardzic. 2023. "The Role of Pharmacogenetics in Personalizing the Antidepressant and Anxiolytic Therapy" Genes 14, no. 5: 1095. https://doi.org/10.3390/genes14051095
APA StyleRadosavljevic, M., Svob Strac, D., Jancic, J., & Samardzic, J. (2023). The Role of Pharmacogenetics in Personalizing the Antidepressant and Anxiolytic Therapy. Genes, 14(5), 1095. https://doi.org/10.3390/genes14051095