Genes and Athletic Performance: The 2023 Update
Abstract
:1. Introduction
2. Gene Variants for Endurance Athlete Status
3. Gene Variants for Power Athlete Status
4. Gene Variants for Strength Athlete Status
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stepto, N.K.; Coffey, V.G.; Carey, A.L.; Ponnampalam, A.P.; Canny, B.J.; Powell, D.; Hawley, J.A. Global Gene Expression in Skeletal Muscle from Well-Trained Strength and Endurance Athletes. Med. Sci. Sport. Exerc. 2009, 41, 546–565. [Google Scholar] [CrossRef] [PubMed]
- Zhelankin, A.V.; Iulmetova, L.N.; Ahmetov, I.I.; Generozov, E.V.; Sharova, E.I. Diversity and Differential Expression of MicroRNAs in the Human Skeletal Muscle with Distinct Fiber Type Composition. Life 2023, 13, 659. [Google Scholar] [CrossRef] [PubMed]
- Ahmetov, I.I.; Stepanova, A.A.; Biktagirova, E.M.; Semenova, E.A.; Shchuplova, I.S.; Bets, L.V.; Andryushchenko, L.B.; Borisov, O.V.; Andryushchenko, O.N.; Generozov, E.V.; et al. Is testosterone responsible for athletic success in female athletes? J. Sport. Med. Phys. Fit. 2020, 60, 1377–1382. [Google Scholar] [CrossRef]
- Fuku, N.; Kumagai, H.; Ahmetov, I.I. Genetics of muscle fiber composition. In Sports, Exercise, and Nutritional Genomics: Current Status and Future Directions; Barh, D., Ahmetov, I., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 295–314. [Google Scholar] [CrossRef]
- Hall, E.C.R.; Semenova, E.A.; Borisov, O.V.; Andryushchenko, O.N.; Andryushchenko, L.B.; Zmijewski, P.; Generozov, E.V.; Ahmetov, I.I. Association of muscle fiber composition with health and exercise-related traits in athletes and untrained subjects. Biol. Sport 2021, 38, 659–666. [Google Scholar] [CrossRef] [PubMed]
- Rees, T.; Hardy, L.; Güllich, A.; Abernethy, B.; Côté, J.; Woodman, T.; Montgomery, H.; Laing, S.; Warr, C. The Great British Medalists Project: A Review of Current Knowledge on the Development of the World’s Best Sporting Talent. Sport. Med. 2016, 46, 1041–1058. [Google Scholar] [CrossRef] [Green Version]
- Blume, K.; Wolfarth, B. Identification of Potential Performance-Related Predictors in Young Competitive Athletes. Front. Physiol. 2019, 10, 1394. [Google Scholar] [CrossRef] [Green Version]
- Dines, H.R.; Nixon, J.; Lockey, S.J.; Herbert, A.J.; Kipps, C.; Pedlar, C.R.; Day, S.H.; Heffernan, S.M.; Antrobus, M.R.; Brazier, J.; et al. Collagen Gene Polymorphisms Previously Associated with Resistance to Soft-Tissue Injury Are More Common in Competitive Runners Than Nonathletes. J. Strength Cond. Res. 2023, 37, 799–805. [Google Scholar] [CrossRef]
- De Moor, M.H.M.; Spector, T.D.; Cherkas, L.F.; Falchi, M.; Hottenga, J.J.; Boomsma, D.I.; de Geus, E.J.C. Genome-wide linkage scan for athlete status in 700 British female DZ twin pairs. Twin Res. Hum. Genet. 2007, 10, 812–820. [Google Scholar] [CrossRef] [Green Version]
- Macnamara, B.N.; Hambrick, D.Z.; Oswald, F.L. Deliberate practice and performance in music, games, sports, education, and professions: A meta-analysis. Psychol. Sci. 2014, 25, 1608–1618. [Google Scholar] [CrossRef] [Green Version]
- Beck, K.L.; Thomson, J.S.; Swift, R.J.; von Hurst, P.R. Role of nutrition in performance enhancement and postexercise recovery. Open Access J. Sports Med. 2015, 6, 259–267. [Google Scholar] [CrossRef] [Green Version]
- Bezuglov, E.; Morgans, R.; Butovskiy, M.; Emanov, A.; Shagiakhmetova, L.; Pirmakhanov, B.; Waśkiewicz, Z.; Lazarev, A. The relative age effect is widespread among European adult professional soccer players but does not affect their market value. PLoS ONE 2023, 18, e0283390. [Google Scholar] [CrossRef]
- Rivera, M.A.; Dionne, F.T.; Wolfarth, B.; Chagnon, M.; Simoneau, J.A.; Pérusse, L.; Boulay, M.R.; Gagnon, J.; Song, T.M.; Keul, J.; et al. Muscle-specific creatine kinase gene polymorphisms in elite endurance athletes and sedentary controls. Med. Sci. Sport. Exerc. 1997, 29, 1444–1447. [Google Scholar] [CrossRef]
- Montgomery, H.E.; Marshall, R.; Hemingway, H.; Myerson, S.; Clarkson, P.; Dollery, C.; Hayward, M.; Holliman, D.E.; World, M.; Thomas, E.L.; et al. Human gene for physical performance. Nature 1998, 393, 221–222. [Google Scholar] [CrossRef]
- Gayagay, G.; Yu, B.; Hambly, B.; Boston, T.; Hahn, A.; Celermajer, D.S.; Trent, R.J. Elite endurance athletes and the ACE I allele--the role of genes in athletic performance. Hum. Genet. 1998, 103, 48–50. [Google Scholar] [CrossRef]
- Nazarov, I.B.; Woods, D.R.; Montgomery, H.E.; Shneider, O.V.; Kazakov, V.I.; Tomilin, N.V.; Rogozkin, V.A. The angiotensin converting enzyme I/D polymorphism in Russian athletes. Eur. J. Hum. Genet. 2001, 9, 797–801. [Google Scholar] [CrossRef]
- Yang, N.; MacArthur, D.G.; Gulbin, J.P.; Hahn, A.G.; Beggs, A.H.; Easteal, S.; North, K. ACTN3 genotype is associated with human elite athletic performance. Am. J. Hum. Genet. 2003, 73, 627–631. [Google Scholar] [CrossRef] [Green Version]
- Lucia, A.; Gómez-Gallego, F.; Barroso, I.; Rabadán, M.; Bandrés, F.; San Juan, A.F.; Chicharro, J.L.; Ekelund, U.; Brage, S.; Earnest, C.P.; et al. PPARGC1A genotype (Gly482Ser) predicts exceptional endurance capacity in European men. J. Appl. Physiol. 2005, 99, 344–348. [Google Scholar] [CrossRef] [Green Version]
- Rubio, J.C.; Martín, M.A.; Rabadán, M.; Gómez-Gallego, F.; San Juan, A.F.; Alonso, J.M.; Chicharro, J.L.; Pérez, M.; Arenas, J.; Lucia, A. Frequency of the C34T mutation of the AMPD1 gene in world-class endurance athletes: Does this mutation impair performance? J. Appl. Physiol. 2005, 98, 2108–2112. [Google Scholar] [CrossRef] [Green Version]
- Akhmetov, I.I.; Popov, D.V.; Mozhaĭskaia, I.A.; Missina, S.S.; Astratenkova, I.V.; Vinogradova, O.L.; Rogozkin, V.A. Association of regulatory genes polymorphisms with aerobic and anaerobic performance of athletes. Ross. Fiziol. Zh. Im. I.M. Sechenova 2007, 93, 837–843. [Google Scholar]
- Akhmetov, I.I.; Astranenkova, I.V.; Rogozkin, V.A. Association of PPARD gene polymorphism with human physical performance. Mol. Biol. 2007, 41, 852–857. [Google Scholar]
- Bray, M.S.; Hagberg, J.M.; Pérusse, L.; Rankinen, T.; Roth, S.M.; Wolfarth, B.; Bouchard, C. The human gene map for performance and health-related fitness phenotypes: The 2006–2007 update. Med. Sci. Sports Exerc. 2009, 41, 35–73. [Google Scholar] [CrossRef] [PubMed]
- Gineviciene, V.; Utkus, A.; Pranckevičienė, E.; Semenova, E.A.; Hall, E.C.R.; Ahmetov, I.I. Perspectives in Sports Genomics. Biomedicines 2022, 10, 298. [Google Scholar] [CrossRef] [PubMed]
- Cagnin, S.; Chemello, F.; Ahmetov, I.I. Genes and response to aerobic training. In Sports, Exercise, and Nutritional Genomics: Current Status and Future Directions; Barh, D., Ahmetov, I., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 169–188. [Google Scholar] [CrossRef]
- Maciejewska-Skrendo, A.; Sawczuk, M.; Cięszczyk, P.; Ahmetov, I.I. Genes and power athlete status. In Sports, Exercise, and Nutritional Genomics: Current Status and Future Directions; Barh, D., Ahmetov, I., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 41–72. [Google Scholar] [CrossRef]
- Massidda, M.; Calò, C.M.; Cięszczyk, P.; Kikuchi, N.; Ahmetov, I.I.; Williams, A.G. Genetics of Team Sports. In Sports, Exercise, and Nutritional Genomics: Current Status and Future Directions; Barh, D., Ahmetov, I., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 105–128. [Google Scholar] [CrossRef]
- Semenova, E.A.; Fuku, N.; Ahmetov, I.I. Genetic profile of elite endurance athletes. In Sports, Exercise, and Nutritional Genomics: Current Status and Future Directions; Barh, D., Ahmetov, I., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 73–104. [Google Scholar] [CrossRef]
- Valeeva, E.V.; Ahmetov, I.I.; Rees, T. Psychogenetics and sport. In Sports, Exercise, and Nutritional Genomics: Current Status and Future Directions; Barh, D., Ahmetov, I., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 147–165. [Google Scholar] [CrossRef]
- Varillas-Delgado, D.; Del Coso, J.; Gutiérrez-Hellín, J.; Aguilar-Navarro, M.; Muñoz, A.; Maestro, A.; Morencos, E. Genetics and sports performance: The present and future in the identification of talent for sports based on DNA testing. Eur. J. Appl. Physiol. 2022, 122, 1811–1830. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Tanaka, M.; Eynon, N.; North, K.N.; Williams, A.G.; Collins, M.; Moran, C.N.; Britton, S.L.; Fuku, N.; Ashley, E.A.; et al. The Future of Genomic Research in Athletic Performance and Adaptation to Training. Genet. Sport. 2016, 61, 55–67. [Google Scholar] [CrossRef]
- Yengo, L.; Vedantam, S.; Marouli, E.; Sidorenko, J.; Bartell, E.; Sakaue, S.; Graff, M.; Eliasen, A.U.; Jiang, Y.; Raghavan, S.; et al. A saturated map of common genetic variants associated with human height. Nature 2022, 610, 704–712. [Google Scholar] [CrossRef]
- Pei, Y.F.; Liu, Y.Z.; Yang, X.L.; Zhang, H.; Feng, G.J.; Wei, X.T.; Zhang, L. The genetic architecture of appendicular lean mass characterized by association analysis in the UK Biobank study. Commun. Biol. 2020, 3, 608. [Google Scholar] [CrossRef]
- Ruth, K.S.; Day, F.R.; Tyrrell, J.; Thompson, D.J.; Wood, A.R.; Mahajan, A.; Beaumont, R.N.; Wittemans, L.; Martin, S.; Busch, A.S.; et al. Using human genetics to understand the disease impacts of testosterone in men and women. Nat. Med. 2020, 26, 252–258. [Google Scholar] [CrossRef]
- Willems, S.M.; Wright, D.J.; Day, F.R.; Trajanoska, K.; Joshi, P.K.; Morris, J.A.; Matteini, A.M.; Garton, F.C.; Grarup, N.; Oskolkov, N.; et al. Large-scale GWAS identifies multiple loci for hand grip strength providing biological insights into muscular fitness. Nat. Commun. 2017, 8, 16015. [Google Scholar] [CrossRef] [Green Version]
- Tikkanen, E.; Gustafsson, S.; Amar, D.; Shcherbina, A.; Waggott, D.; Ashley, E.A.; Ingelsson, E. Biological Insights into Mus-cular Strength: Genetic Findings in the UK Biobank. Sci. Rep. 2018, 8, 6451. [Google Scholar] [CrossRef]
- Jones, G.; Trajanoska, K.; Santanasto, A.J.; Stringa, N.; Kuo, C.L.; Atkins, J.L.; Lewis, J.R.; Duong, T.; Hong, S.; Biggs, M.L.; et al. Genome-wide meta-analysis of muscle weakness identifies 15 susceptibility loci in older men and women. Nat. Commun. 2021, 12, 654. [Google Scholar] [CrossRef]
- Semenova, E.A.; Pranckevičienė, E.; Bondareva, E.A.; Gabdrakhmanova, L.J.; Ahmetov, I.I. Identification and Characterization of Genomic Predictors of Sarcopenia and Sarcopenic Obesity Using UK Biobank Data. Nutrients 2023, 15, 758. [Google Scholar] [CrossRef]
- Timmins, I.R.; Zaccardi, F.; Nelson, C.P.; Franks, P.W.; Yates, T.; Dudbridge, F. Genome-wide association study of self-reported walking pace suggests beneficial effects of brisk walking on health and survival. Commun. Biol. 2020, 3, 634. [Google Scholar] [CrossRef]
- Ahmetov, I.; Kulemin, N.; Popov, D.; Naumov, V.; Akimov, E.; Bravy, Y.; Egorova, E.; Galeeva, A.; Generozov, E.; Kostryukova, E.; et al. Genome-wide association study identifies three novel genetic markers associated with elite endurance performance. Biol. Sport 2015, 32, 3–9. [Google Scholar] [CrossRef]
- Rankinen, T.; Fuku, N.; Wolfarth, B.; Wang, G.; Sarzynski, M.A.; Alexeev, D.G.; Ahmetov, I.I.; Boulay, M.R.; Cieszczyk, P.; Eynon, N.; et al. No evidence of a common DNA variant profile specific to world class endurance athletes. PLoS ONE 2016, 11, e0147330. [Google Scholar] [CrossRef]
- Pickering, C.; Suraci, B.; Semenova, E.A.; Boulygina, E.A.; Kostryukova, E.S.; Kulemin, N.A.; Borisov, O.V.; Khabibova, S.A.; Larin, A.K.; Pavlenko, A.V.; et al. A genome-wide association study of sprint performance in elite youth football players. J. Strength Cond. Res. 2019, 33, 2344–2351. [Google Scholar] [CrossRef]
- Al-Khelaifi, F.; Yousri, N.A.; Diboun, I.; Semenova, E.A.; Kostryukova, E.S.; Kulemin, N.A.; Borisov, O.V.; Andryushchenko, L.B.; Larin, A.K.; Generozov, E.V.; et al. Genome-Wide Association Study Reveals a Novel Association Between MYBPC3 Gene Polymorphism, Endurance Athlete Status, Aerobic Capacity and Steroid Metabolism. Front. Genet. 2020, 11, 595. [Google Scholar] [CrossRef]
- Semenova, E.A.; Zempo, H.; Miyamoto-Mikami, E.; Kumagai, H.; Larin, A.K.; Sultanov, R.I.; Babalyan, K.A.; Zhelankin, A.V.; Tobina, T.; Shiose, K.; et al. Genome-Wide Association Study Identifies CDKN1A as a Novel Locus Associated with Muscle Fiber Composition. Cells 2022, 11, 3910. [Google Scholar] [CrossRef]
- Boulygina, E.A.; Borisov, O.V.; Valeeva, E.V.; Semenova, E.A.; Kostryukova, E.S.; Kulemin, N.A.; Larin, A.K.; Nabiullina, R.M.; Mavliev, F.A.; Akhatov, A.M.; et al. Whole genome sequencing of elite athletes. Biol. Sport 2020, 37, 295–304. [Google Scholar] [CrossRef]
- Bulgay, C.; Kasakolu, A.; Kazan, H.H.; Mijaica, R.; Zorba, E.; Akman, O.; Bayraktar, I.; Ekmekci, R.; Koncagul, S.; Ulucan, K.; et al. Exome-Wide Association Study of Competitive Performance in Elite Athletes. Genes 2023, 14, 660. [Google Scholar] [CrossRef]
- Malczewska-Lenczowska, J.; Orysiak, J.; Majorczyk, E.; Sitkowski, D.; Starczewski, M.; Zmijewski, P. HIF-1α and NFIA-AS2 Polymorphisms as Potential Determinants of Total Hemoglobin Mass in Endurance Athletes. J. Strength Cond. Res. 2022, 36, 1596–1604. [Google Scholar] [CrossRef]
- Díaz Ramírez, J.; Álvarez-Herms, J.; Castañeda-Babarro, A.; Larruskain, J.; Ramírez de la Piscina, X.; Borisov, O.V.; Semenova, E.A.; Kostryukova, E.S.; Kulemin, N.A.; Andryushchenko, O.N.; et al. The GALNTL6 Gene rs558129 Polymorphism is Associated with Power Performance. J. Strength Cond. Res. 2020, 34, 3031–3036. [Google Scholar] [CrossRef] [PubMed]
- Guilherme, J.P.L.F.; Semenova, E.A.; Zempo, H.; Martins, G.L.; Lancha-Junior, A.H.; Miyamoto-Mikami, E.; Kumagai, H.; Tobina, T.; Shiose, K.; Kakigi, R.; et al. Are Genome-Wide Association Study Identified Single-Nucleotide Polymorphisms Associated with Sprint Athletic Status? A Replication Study With 3 Different Cohorts. Int. J. Sport. Physiol. Perform. 2021, 16, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Guilherme, J.P.L.F.; Semenova, E.A.; Larin, A.K.; Yusupov, R.A.; Generozov, E.V.; Ahmetov, I.I. Genomic Predictors of Brisk Walking Are Associated with Elite Sprinter Status. Genes 2022, 13, 1710. [Google Scholar] [CrossRef] [PubMed]
- Guilherme, J.P.L.; Semenova, E.A.; Borisov, O.V.; Larin, A.K.; Moreland, E.; Generozov, E.V.; Ahmetov, I.I. Genomic predictors of testosterone levels are associated with muscle fiber size and strength. Eur. J. Appl. Physiol. 2022, 122, 415–423. [Google Scholar] [CrossRef] [PubMed]
- Moreland, E.; Borisov, O.V.; Semenova, E.A.; Larin, A.K.; Andryushchenko, O.N.; Andryushchenko, L.B.; Generozov, E.V.; Williams, A.G.; Ahmetov, I.I. Polygenic Profile of Elite Strength Athletes. J. Strength Cond. Res. 2022, 36, 2509–2514. [Google Scholar] [CrossRef]
- Ma, F.; Yang, Y.; Li, X.; Zhou, F.; Gao, C.; Li, M.; Gao, L. The association of sport performance with ACE and ACTN3 genetic polymorphisms: A systematic review and meta-analysis. PLoS ONE 2013, 8, e54685. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Leon, S.; Tuvblad, C.; Forero, D.A. Sports genetics: The PPARA gene and athletes’ high ability in endurance sports. A systematic review and meta-analysis. Biol. Sport 2016, 33, 3–6. [Google Scholar] [CrossRef]
- Chen, C.; Sun, Y.; Liang, H.; Yu, D.; Hu, S. A meta-analysis of the association of CKM gene rs8111989 polymorphism with sport performance. Biol. Sport 2017, 34, 323–330. [Google Scholar] [CrossRef]
- Yvert, T.P.; Zempo, H.; Gabdrakhmanova, L.J.; Kikuchi, N.; Miyamoto-Mikami, E.; Murakami, H.; Naito, H.; Cieszczyk, P.; Leznicka, K.; Kostryukova, E.S.; et al. AGTR2 and sprint/power performance: A case-control replication study for rs11091046 polymorphism in two ethnicities. Biol. Sport 2018, 35, 105–109. [Google Scholar] [CrossRef]
- Weyerstraß, J.; Stewart, K.; Wesselius, A.; Zeegers, M. Nine genetic polymorphisms associated with power athlete status—A Meta-Analysis. J. Sci. Med. Sport 2018, 21, 213–220. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, D.; Yan, P.; Yan, S.; Chang, Q.; Cheng, Z. Meta-analyses of the association between the PPARGC1A Gly482Ser polymorphism and athletic performance. Biol. Sport 2019, 36, 301–309. [Google Scholar] [CrossRef]
- Tharabenjasin, P.; Pabalan, N.; Jarjanazi, H. Association of the ACTN3 R577X (rs1815739) polymorphism with elite power sports: A meta-analysis. PLoS ONE 2019, 14, e0217390. [Google Scholar] [CrossRef] [Green Version]
- Tharabenjasin, P.; Pabalan, N.; Jarjanazi, H. Association of PPARGC1A Gly428Ser (rs8192678) polymorphism with potential for athletic ability and sports performance: A meta-analysis. PLoS ONE 2019, 14, e0200967. [Google Scholar] [CrossRef]
- Guilherme, J.P.L.F.; Bosnyák, E.; Semenova, E.A.; Szmodis, M.; Griff, A.; Móra, Á.; Almási, G.; Trájer, E.; Udvardy, A.; Kostryukova, E.S.; et al. The MCT1 gene Glu490Asp polymorphism (rs1049434) is associated with endurance athlete status, lower blood lactate accumulation and higher maximum oxygen uptake. Biol. Sport 2021, 38, 465–474. [Google Scholar] [CrossRef]
- McAuley, A.B.T.; Hughes, D.C.; Tsaprouni, L.G.; Varley, I.; Suraci, B.; Roos, T.R.; Herbert, A.J.; Kelly, A.L. The association of the ACTN3 R577X and ACE I/D polymorphisms with athlete status in football: A systematic review and meta-analysis. J. Sport. Sci. 2021, 39, 200–211. [Google Scholar] [CrossRef]
- Ipekoglu, G.; Bulbul, A.; Cakir, H.I. A meta-analysis on the association of ACE and PPARA gene variants and endurance athletic status. J. Sport. Med. Phys. Fitness 2022, 62, 795–802. [Google Scholar] [CrossRef]
- Konopka, M.J.; van den Bunder, J.C.M.L.; Rietjens, G.; Sperlich, B.; Zeegers, M.P. Genetics of long-distance runners and road cyclists-A systematic review with meta-analysis. Scand. J. Med. Sci. Sport. 2022, 32, 1414–1429. [Google Scholar] [CrossRef]
- Saito, M.; Ginszt, M.; Semenova, E.A.; Massidda, M.; Huminska-Lisowska, K.; Michałowska-Sawczyn, M.; Homma, H.; Cięszczyk, P.; Okamoto, T.; Larin, A.K.; et al. Is COL1A1 Gene rs1107946 Polymorphism Associated with Sport Climbing Status and Flexibility? Genes 2022, 13, 403. [Google Scholar] [CrossRef]
- Saito, M.; Ginszt, M.; Semenova, E.A.; Massidda, M.; Huminska-Lisowska, K.; Michałowska-Sawczyn, M.; Homma, H.; Cięszczyk, P.; Okamoto, T.; Larin, A.K.; et al. Genetic profile of sports climbing athletes from three different ethnicities. Biol. Sport 2022, 39, 913–919. [Google Scholar] [CrossRef]
- Kikuchi, N.; Tajima, T.; Tamura, Y.; Yamanaka, Y.; Menuki, K.; Okamoto, T.; Sakamaki-Sunaga, M.; Sakai, A.; Hiranuma, K.; Nakazato, K. The ALDH2 rs671 polymorphism is associated with athletic status and muscle strength in a Japanese population. Biol. Sport 2022, 39, 429–434. [Google Scholar] [CrossRef]
- De Almeida, K.Y.; Saito, M.; Homma, H.; Mochizuki, Y.; Saito, A.; Deguchi, M.; Kozuma, A.; Okamoto, T.; Nakazato, K.; Kikuchi, N. ALDH2 gene polymorphism is associated with fitness in the elderly Japanese population. J. Physiol. Anthropol. 2022, 41, 38. [Google Scholar] [CrossRef] [PubMed]
- Saito, A.; Saito, M.; Almeida, K.Y.; Homma, H.; Deguchi, M.; Kozuma, A.; Kobatake, N.; Okamoto, T.; Nakazato, K.; Kikuchi, N. The Association between the ALDH2 rs671 Polymorphism and Athletic Performance in Japanese Power and Strength Athletes. Genes 2022, 13, 1735. [Google Scholar] [CrossRef] [PubMed]
- Ahmetov, I.I.; Donnikov, A.E.; Trofimov, D.Y. Actn3 genotype is associated with testosterone levels of athletes. Biol. Sport 2014, 31, 105–108. [Google Scholar] [CrossRef] [PubMed]
- Baranova, T.I.; Berlov, D.N.; Glotov, O.S.; Korf, E.A.; Minigalin, A.D.; Mitrofanova, A.V.; Ahmetov, I.I.; Glotov, A.S. Genetic determination of the vascular reactions in humans in response to the diving reflex. Am. J. Physiol. Heart Circ. Physiol. 2017, 312, H622–H631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leońska-Duniec, A.; Ahmetov, I.I.; Zmijewski, P. Genetic variants influencing effectiveness of exercise training programmes in obesity—an overview of human studies. Biol. Sport 2016, 33, 207–214. [Google Scholar] [CrossRef] [Green Version]
- Leońska-Duniec, A.; Jastrzębski, Z.; Jażdżewska, A.; Moska, W.; Lulińska-Kuklik, E.; Sawczuk, M.; Gubaydullina, S.I.; Shakirova, A.T.; Cięszczyk, P.; Maszczyk, A.; et al. Individual Responsiveness to Exercise-Induced Fat Loss and Improvement of Metabolic Profile in Young Women is Associated with Polymorphisms of Adrenergic Receptor Genes. J. Sport. Sci. Med. 2018, 17, 134–144. [Google Scholar]
- Leonska-Duniec, A.; Cięszczyk, P.; Ahmetov, I.I. Genes and individual responsiveness to exercise-induced fat loss. In Sports, Exercise, and Nutritional Genomics: Current Status and Future Directions; Barh, D., Ahmetov, I., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 231–247. [Google Scholar] [CrossRef]
- Massidda, M.; Miyamoto, N.; Beckley, S.; Kikuchi, N.; Fuku, N. Genetics of flexibility. In Sports, Exercise, and Nutritional Genomics: Current Status and Future Directions; Barh, D., Ahmetov, I., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 273–293. [Google Scholar] [CrossRef]
- Peplonska, B.; Safranow, K.; Adamczyk, J.; Boguszewski, D.; Szymański, K.; Soltyszewski, I.; Barczak, A.; Siewierski, M.; Ploski, R.; Sozanski, H.; et al. Association of serotoninergic pathway gene variants with elite athletic status in the Polish population. J. Sport. Sci. 2019, 37, 1655–1662. [Google Scholar] [CrossRef]
- Yusof, H.A.; Aziz, A.R.; Muhamed, A.M.C. The influence of angiotensin I-converting enzyme (ACE) I/D gene polymorphism on cardiovascular and muscular adaptations following 8 weeks of isometric handgrip training (IHG) in untrained normotensive males. Biol. Sport 2019, 36, 81–94. [Google Scholar] [CrossRef]
- Mazur, I.I.; Drozdovska, S.; Andrieieva, O.; Vinnichuk, Y.; Polishchuk, A.; Dosenko, V.; Andreev, I.; Pickering, C.; Ahmetov, I.I. PPARGC1A gene polymorphism is associated with exercise-induced fat loss. Mol. Biol. Rep. 2020, 47, 7451–7457. [Google Scholar] [CrossRef]
- Zhao, Y.; Huang, G.; Chen, Z.; Fan, X.; Huang, T.; Liu, J.; Zhang, Q.; Shen, J.; Li, Z.; Shi, Y. Four Loci Are Associated with Cardiorespiratory Fitness and Endurance Performance in Young Chinese Females. Sci. Rep. 2020, 10, 10117. [Google Scholar] [CrossRef]
- Mountford, H.S.; Hill, A.; Barnett, A.L.; Newbury, D.F. Genome-Wide Association Study of Motor Coordination. Front. Hum. Neurosci. 2021, 15, 669902. [Google Scholar] [CrossRef]
- Williams, C.J.; Li, Z.; Harvey, N.; Lea, R.A.; Gurd, B.J.; Bonafiglia, J.T.; Papadimitriou, I.; Jacques, M.; Croci, I.; Stensvold, D.; et al. Genome wide association study of response to interval and continuous exercise training: The Predict-HIIT study. J. Biomed. Sci. 2021, 28, 37. [Google Scholar] [CrossRef]
- Klevjer, M.; Nordeidet, A.N.; Hansen, A.F.; Madssen, E.; Wisløff, U.; Brumpton, B.M.; Bye, A. Genome-Wide Association Study Identifies New Genetic Determinants of Cardiorespiratory Fitness: The Trøndelag Health Study. Med. Sci. Sport. Exerc. 2022, 54, 1534–1545. [Google Scholar] [CrossRef]
- Bojarczuk, A.; Boulygina, E.A.; Dzitkowska-Zabielska, M.; Łubkowska, B.; Leońska-Duniec, A.; Egorova, E.S.; Semenova, E.A.; Andryushchenko, L.B.; Larin, A.K.; Generozov, E.V.; et al. Genome-Wide Association Study of Exercise-Induced Fat Loss Efficiency. Genes 2022, 13, 1975. [Google Scholar] [CrossRef]
- McAuley, A.B.T.; Hughes, D.C.; Tsaprouni, L.G.; Varley, I.; Suraci, B.; Baker, J.; Herbert, A.J.; Kelly, A.L. Genetic associations with personality and mental toughness profiles of English academy football players: An exploratory study. Psychol. Sport Exerc. 2022, 61, 102209. [Google Scholar] [CrossRef]
- McAuley, A.B.; Hughes, D.C.; Tsaprouni, L.G.; Varley, I.; Suraci, B.; Baker, J.; Herbert, A.J.; Kelly, A.L. Genetic associations with technical capabilities in English academy football players: A preliminary study. J. Sport. Med. Phys. Fitness 2023, 63, 230–240. [Google Scholar] [CrossRef]
- Tartar, J.L.; Cabrera, D.; Knafo, S.; Thomas, J.D.; Antonio, J.; Peacock, C.A. The “Warrior” COMT Val/Met Genotype Occurs in Greater Frequencies in Mixed Martial Arts Fighters Relative to Controls. J. Sport. Sci. Med. 2020, 19, 38–42. [Google Scholar]
- Ahmetov, I.I.; Valeeva, E.V.; Yerdenova, M.B.; Datkhabayeva, G.K.; Bouzid, A.; Bhamidimarri, P.M.; Sharafetdinova, L.M.; Egorova, E.S.; Semenova, E.A.; Gabdrakhmanova, L.J.; et al. KIBRA Gene Variant Is Associated with Ability in Chess and Science. Genes 2023, 14, 204. [Google Scholar] [CrossRef]
- Womack, C.J.; Saunders, M.J.; Bechtel, M.K.; Bolton, D.J.; Martin, M.; Luden, N.D.; Dunham, W.; Hancock, M. The influence of a CYP1A2 polymorphism on the ergogenic effects of caffeine. J. Int. Soc. Sport. Nutr. 2012, 9, 7. [Google Scholar] [CrossRef] [Green Version]
- Guest, N.S.; Horne, J.; Vanderhout, S.M.; El-Sohemy, A. Sport Nutrigenomics: Personalized Nutrition for Athletic Performance. Front. Nutr. 2019, 6, 8. [Google Scholar] [CrossRef]
- Guest, N.; Corey, P.; Vescovi, J.; El-Sohemy, A. Caffeine, CYP1A2 Genotype, and Endurance Performance in Athletes. Med. Sci. Sport. Exerc. 2018, 50, 1570–1578. [Google Scholar] [CrossRef] [PubMed]
- Guest, N.S.; Corey, P.; Tyrrell, P.N.; El-Sohemy, A. Effect of Caffeine on Endurance Performance in Athletes May Depend on HTR2A and CYP1A2 Genotypes. J. Strength Cond. Res. 2022, 36, 2486–2492. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, A.; López-Samanes, Á.; Aguilar-Navarro, M.; Varillas-Delgado, D.; Rivilla-García, J.; Moreno-Pérez, V.; Del Coso, J. Effects of CYP1A2 and ADORA2A Genotypes on the Ergogenic Response to Caffeine in Professional Handball Players. Genes 2020, 11, 933. [Google Scholar] [CrossRef] [PubMed]
- Wong, O.; Marshall, K.; Sicova, M.; Guest, N.S.; García-Bailo, B.; El-Sohemy, A. CYP1A2 Genotype Modifies the Effects of Caffeine Compared With Placebo on Muscle Strength in Competitive Male Athletes. Int. J. Sport Nutr. Exerc. Metab. 2021, 31, 420–426. [Google Scholar] [CrossRef]
- Sicova, M.; Guest, N.S.; Tyrrell, P.N.; El-Sohemy, A. Caffeine, genetic variation and anaerobic performance in male athletes: A randomized controlled trial. Eur. J. Appl. Physiol. 2021, 121, 3499–3513. [Google Scholar] [CrossRef]
- Hall, E.C.R.; Semenova, E.A.; Bondareva, E.A.; Andryushchenko, L.B.; Larin, A.K.; Cięszczyk, P.; Generozov, E.V.; Ahmetov, I.I. Association of Genetically Predicted BCAA Levels with Muscle Fiber Size in Athletes Consuming Protein. Genes 2022, 13, 397. [Google Scholar] [CrossRef]
- Rahimi, R. The effect of CYP1A2 genotype on the ergogenic properties of caffeine during resistance exercise: A randomized, double-blind, placebo-controlled, crossover study. Ir. J. Med. Sci. 2019, 188, 337–345. [Google Scholar] [CrossRef]
- Loy, B.D.; O’Connor, P.J.; Lindheimer, J.B.; Covert, S.F. Caffeine is ergogenic for adenosine A2A receptor gene (ADORA2A) T allele homozygotes: A pilot study. J. Caffeine Res. 2015, 5, 73–81. [Google Scholar] [CrossRef]
- Pickering, C.; Kiely, J. Are the current guidelines on caffeine use in sport optimal for everyone? Inter-individual variation in caffeine ergogenicity, and a move towards personalised sports nutrition. Sport. Med. 2018, 48, 7–16. [Google Scholar] [CrossRef] [Green Version]
- Thomas, R.; Algrain, H.; Ryan, E.; Popojas, A.; Carrigan, P.; Abdulrahman, A.; Carrillo, A. Influence of a CYP1A2 polymorphism on post-exercise heart rate variability in response to caffeine intake: A double-blind, placebo-controlled trial. Ir. J. Med. Sci. 2017, 186, 285–291. [Google Scholar] [CrossRef]
- Rahimi, M.R.; Semenova, E.A.; Larin, A.K.; Kulemin, N.A.; Generozov, E.V.; Łubkowska, B.; Ahmetov, I.I.; Golpasandi, H. The ADORA2A TT Genotype Is Associated with Anti-Inflammatory Effects of Caffeine in Response to Resistance Exercise and Habitual Coffee Intake. Nutrients 2023, 15, 1634. [Google Scholar] [CrossRef]
- Guntoro, A.Y.; Melita, S.; Dijaya, R.; Subali, D.; Kartawidjajaputra, F.; Suwanto, A. Evaluation of Caffeine Ingested Timing on Endurance Performance based on CYP1A2 rs762551 Profiling in Healthy Sedentary Young Adults. Rep. Biochem. Mol. Biol. 2023, 11, 663–671. [Google Scholar] [CrossRef]
- Rahim, M.; Collins, M.; September, A. Genes and Musculoskeletal Soft-Tissue Injuries. Med. Sport Sci. 2016, 61, 68–91. [Google Scholar] [CrossRef]
- Kim, S.K.; Roche, M.D.; Fredericson, M.; Dragoo, J.L.; Horton, B.H.; Avins, A.L.; Belanger, H.G.; Ioannidis, J.P.A.; Abrams, G.D. A Genome-wide Association Study for Concussion Risk. Med. Sci. Sport. Exerc. 2021, 53, 704–711. [Google Scholar] [CrossRef]
- Lim, T.; Santiago, C.; Pareja-Galeano, H.; Iturriaga, T.; Sosa-Pedreschi, A.; Fuku, N.; Pérez-Ruiz, M.; Yvert, T. Genetic variations associated with non-contact muscle injuries in sport: A systematic review. Scand. J. Med. Sci. Sport. 2021, 31, 2014–2032. [Google Scholar] [CrossRef]
- Antrobus, M.R.; Brazier, J.; Stebbings, G.K.; Day, S.H.; Heffernan, S.M.; Kilduff, L.P.; Erskine, R.M.; Williams, A.G. Genetic Factors That Could Affect Concussion Risk in Elite Rugby. Sports 2021, 9, 19. [Google Scholar] [CrossRef]
- Brazier, J.; Antrobus, M.R.; Herbert, A.J.; Callus, P.C.; Khanal, P.; Stebbings, G.K.; Day, S.H.; Heffernan, S.M.; Kilduff, L.P.; Bennett, M.A.; et al. Gene variants previously associated with reduced soft-tissue injury risk: Part 2—Polygenic associations with elite status in Rugby. Eur. J. Sport Sci. 2022, 26, 1–10. [Google Scholar] [CrossRef]
- Brazier, J.; Antrobus, M.R.; Herbert, A.J.; Callus, P.C.; Stebbings, G.K.; Day, S.H.; Heffernan, S.M.; Kilduff, L.P.; Bennett, M.A.; Erskine, R.M.; et al. Gene variants previously associated with reduced soft tissue injury risk: Part 1—independent associations with elite status in rugby. Eur. J. Sport Sci. 2022, 29, 1–10. [Google Scholar] [CrossRef]
- de Almeida, K.Y.; Cetolin, T.; Marrero, A.R.; Aguiar Junior, A.S.; Mohr, P.; Kikuchi, N. A Pilot Study on the Prediction of Non-Contact Muscle Injuries Based on ACTN3 R577X and ACE I/D Polymorphisms in Professional Soccer Athletes. Genes 2022, 13, 2009. [Google Scholar] [CrossRef]
- Ginevičienė, V.; Urnikytė, A. Association of COL12A1 rs970547 Polymorphism with Elite Athlete Status. Biomedicines 2022, 10, 2495. [Google Scholar] [CrossRef]
- Jacob, Y.; Anderton, R.S.; Cochrane Wilkie, J.L.; Rogalski, B.; Laws, S.M.; Jones, A.; Spiteri, T.; Hince, D.; Hart, N.H. Genetic Variants within NOGGIN, COL1A1, COL5A1, and IGF2 are Associated with Musculoskeletal Injuries in Elite Male Australian Football League Players: A Preliminary Study. Sport. Med. Open 2022, 8, 126. [Google Scholar] [CrossRef] [PubMed]
- Antrobus, M.R.; Brazier, J.; Callus, P.C.; Herbert, A.J.; Stebbings, G.K.; Khanal, P.; Day, S.H.; Kilduff, L.P.; Bennett, M.A.; Erskine, R.M.; et al. Concussion-Associated Polygenic Profiles of Elite Male Rugby Athletes. Genes 2022, 13, 820. [Google Scholar] [CrossRef]
- Hall, E.C.R.; Baumert, P.; Larruskain, J.; Gil, S.M.; Lekue, J.A.; Rienzi, E.; Moreno, S.; Tannure, M.; Murtagh, C.F.; Ade, J.D.; et al. The genetic association with injury risk in male academy soccer players depends on maturity status. Scand. J. Med. Sci. Sport. 2022, 32, 338–350. [Google Scholar] [CrossRef] [PubMed]
- Kumagai, H.; Miyamoto-Mikami, E.; Kikuchi, N.; Kamiya, N.; Zempo, H.; Fuku, N. A rs936306 C/T Polymorphism in the CYP19A1 Is Associated with Stress Fractures. J. Strength Cond. Res. 2022, 36, 2322–2325. [Google Scholar] [CrossRef] [PubMed]
- Varillas-Delgado, D.; Morencos, E.; Gutierrez-Hellín, J.; Aguilar-Navarro, M.; Maestro, A.; Perucho, T.; Coso, J.D. Association of the CKM rs8111989 Polymorphism with Injury Epidemiology in Football Players. Int. J. Sport. Med. 2023, 44, 145–152. [Google Scholar] [CrossRef]
- Varillas-Delgado, D.; Gutierrez-Hellín, J.; Maestro, A. Genetic Profile in Genes Associated with Sports Injuries in Elite Endurance Athletes. Int. J. Sport. Med. 2023, 44, 64–71. [Google Scholar] [CrossRef]
- Ahmetov, I.I.; Hall, E.C.R.; Semenova, E.A.; Pranckevičienė, E.; Ginevičienė, V. Advances in sports genomics. Adv. Clin. Chem. 2022, 107, 215–263. [Google Scholar] [CrossRef]
- Egorova, E.S.; Borisova, A.V.; Mustafina, L.J.; Arkhipova, A.A.; Gabbasov, R.T.; Druzhevskaya, A.M.; Astratenkova, I.V.; Ahmetov, I.I. The polygenic profile of Russian football players. J. Sport. Sci. 2014, 32, 1286–1293. [Google Scholar] [CrossRef]
- Youn, B.Y.; Ko, S.G.; Kim, J.Y. Genetic basis of elite combat sports athletes: A systematic review. Biol. Sport 2021, 38, 667–675. [Google Scholar] [CrossRef]
- Abernethy, P.J.; Thayer, R.; Taylor, A.W. Acute and chronic responses of skeletal muscle to endurance and sprint exercise. A review. Sports Med. 1990, 10, 365–389. [Google Scholar] [CrossRef]
- Simoneau, J.A.; Bouchard, C. Genetic determinism of fiber type proportion in human skeletal muscle. FASEB J. 1995, 9, 1091–1095. [Google Scholar] [CrossRef]
- Bassett, D.R., Jr.; Howley, E.T. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med. Sci. Sport. Exerc. 2000, 32, 70–84. [Google Scholar] [CrossRef]
- Ahmetov, I.I.; Vinogradova, O.L.; Williams, A.G. Gene polymorphisms and fiber-type composition of human skeletal muscle. Int. J. Sport Nutr. Exerc. Metab. 2012, 22, 292–303. [Google Scholar] [CrossRef]
- Malczewska-Lenczowska, J.; Orysiak, J.; Majorczyk, E.; Zdanowicz, R.; Szczepańska, B.; Starczewski, M.; Kaczmarski, J.; Dybek, T.; Pokrywka, A.; Ahmetov, I.I.; et al. Total Hemoglobin Mass, Aerobic Capacity, and HBB Gene in Polish Road Cyclists. J. Strength Cond. Res. 2016, 30, 3512–3519. [Google Scholar] [CrossRef]
- Semenova, E.A.; Khabibova, S.A.; Borisov, O.V.; Generozov, E.V.; Ahmetov, I.I. The Variability of DNA Structure and Muscle-Fiber Composition. Hum. Physiol. 2019, 45, pp. 225–232. [Google Scholar] [CrossRef]
- Konopka, M.J.; Zeegers, M.P.; Solberg, P.A.; Delhaije, L.; Meeusen, R.; Ruigrok, G.; Rietjens, G.; Sperlich, B. Factors associated with high-level endurance performance: An expert consensus derived via the Delphi technique. PLoS ONE 2022, 17, e0279492. [Google Scholar] [CrossRef]
- Miyamoto-Mikami, E.; Zempo, H.; Fuku, N.; Kikuchi, N.; Miyachi, M.; Murakami, H. Heritability estimates of endurance-related phenotypes: A systematic review and meta-analysis. Scand. J. Med. Sci. Sport. 2018, 28, 834–845. [Google Scholar] [CrossRef]
- Ahmetov, I.I.; Fedotovskaya, O.N. Current Progress in Sports Genomics. Adv. Clin. Chem. 2015, 70, 247–314. [Google Scholar] [CrossRef]
- Ahmetov, I.I.; Egorova, E.S.; Gabdrakhmanova, L.J.; Fedotovskaya, O.N. Genes and Athletic Performance: An Update. Med. Sport Sci. 2016, 61, 41–54. [Google Scholar] [CrossRef]
- Myerson, S.; Hemingway, H.; Budget, R.; Martin, J.; Humphries, S.; Montgomery, H. Human angiotensin I-converting enzyme gene and endurance performance. J. Appl. Physiol. 1999, 87, 1313–1316. [Google Scholar] [CrossRef] [Green Version]
- Jelakovic, B.; Kuzmanic, D.; Milicic, D. Influence of angiotensin converting enzyme (ACE) gene polymorphism and circadian blood pressure (BP) changes on left ventricle (LV) mass in competitive oarsmen. Am. J. Hypertens. 2000, 13, 182A. [Google Scholar] [CrossRef] [Green Version]
- Ahmetov, I.I.; Popov, D.V.; Astratenkova, I.V.; Druzhevskaia, A.M.; Missina, S.S.; Vinogradova, O.L.; Rogozkin, V.A. The use of molecular genetic methods for prognosis of aerobic and anaerobic performance in athletes. Hum. Physiol. 2008, 34, 338–342. [Google Scholar] [CrossRef]
- Alvarez, R.; Terrados, N.; Ortolano, R.; Iglesias-Cubero, G.; Reguero, J.R.; Batalla, A.; Cortina, A.; Fernández-García, B.; Rodríguez, C.; Braga, S.; et al. Genetic variation in the renin-angiotensin system and athletic performance. Eur. J. Appl. Physiol. 2000, 82, 117–120. [Google Scholar] [CrossRef] [PubMed]
- Collins, M.; Xenophontos, S.L.; Cariolou, M.A.; Mokone, G.G.; Hudson, D.E.; Anastasiades, L.; Noakes, T.D. The ACE gene and endurance performance during the South African Ironman Triathlons. Med. Sci. Sport. Exerc. 2004, 36, 1314–1320. [Google Scholar] [CrossRef] [PubMed]
- Lucía, A.; Gómez-Gallego, F.; Chicharro, J.L.; Hoyos, J.; Celaya, K.; Córdova, A.; Villa, G.; Alonso, J.M.; Barriopedro, M.; Pérez, M.; et al. Is there an association between ACE and CKMM polymorphisms and cycling performance status during 3-week races? Int. J. Sport. Med. 2005, 26, 442–447. [Google Scholar] [CrossRef]
- Hruskovicová, H.; Dzurenková, D.; Selingerová, M.; Bohus, B.; Timkanicová, B.; Kovács, L. The angiotensin converting enzyme I/D polymorphism in long distance runners. J. Sports Med. Phys. Fitness 2006, 46, 509–513. [Google Scholar]
- Scanavini, D.; Bernardi, F.; Castoldi, E.; Conconi, F.; Mazzoni, G. Increased frequency of the homozygous II ACE genotype in Italian Olympic endurance athletes. Eur. J. Hum. Genet. 2002, 10, 576–577. [Google Scholar] [CrossRef]
- Turgut, G.; Turgut, S.; Genc, O.; Atalay, A.; Atalay, E.O. The angiotensin converting enzyme I/D polymorphism in Turkish athletes and sedentary controls. Acta Med. 2004, 47, 133–136. [Google Scholar] [CrossRef] [Green Version]
- Tsianos, G.; Sanders, J.; Dhamrait, S.; Humphries, S.; Grant, S.; Montgomery, H. The ACE gene insertion/deletion polymorphism and elite endurance swimming. Eur. J. Appl. Physiol. 2004, 92, 360–362. [Google Scholar] [CrossRef]
- Cieszczyk, P.; Krupecki, K.; Maciejewska, A.; Sawczuk, M. The angiotensin converting enzyme gene I/D polymorphism in Polish rowers. Int. J. Sport. Med. 2009, 30, 624–627. [Google Scholar] [CrossRef] [Green Version]
- Min, S.K.; Takahashi, K.; Ishigami, H.; Hiranuma, K.; Mizuno, M.; Ishii, T.; Kim, C.S.; Nakazato, K. Is there a gender difference between ACE gene and race distance? Appl. Physiol. Nutr. Metab. 2009, 34, 926–932. [Google Scholar] [CrossRef]
- Shenoy, S.; Tandon, S.; Sandhu, J.; Bhanwer, A.S. Association of Angiotensin Converting Enzyme gene Polymorphism and Indian Army Triathletes Performance. Asian J. Sport. Med. 2010, 1, 143–150. [Google Scholar] [CrossRef] [Green Version]
- Znazen, H.; Mejri, A.; Touhami, I.; Chtara, M.; Siala, H.; LE Gallais, D.; Ahmetov, I.I.; Messaoud, T.; Chamari, K.; Soussi, N. Genetic advantageous predisposition of angiotensin converting enzyme id polymorphism in Tunisian athletes. J. Sport. Med. Phys. Fit. 2016, 56, 724–730. [Google Scholar]
- Ash, G.I.; Scott, R.A.; Deason, M.; Dawson, T.A.; Wolde, B.; Bekele, Z.; Teka, S.; Pitsiladis, Y.P. No association between ACE gene variation and endurance athlete status in Ethiopians. Med. Sci. Sport. Exerc. 2011, 43, 590–597. [Google Scholar] [CrossRef]
- Tobina, T.; Michishita, R.; Yamasawa, F.; Zhang, B.; Sasaki, H.; Tanaka, H.; Saku, K.; Kiyonaga, A. Association between the angiotensin I-converting enzyme gene insertion/deletion polymorphism and endurance running speed in Japanese runners. J. Physiol. Sci. 2010, 60, 325–330. [Google Scholar] [CrossRef]
- Ahmetov, I.I.; Williams, A.G.; Popov, D.V.; Lyubaeva, E.V.; Hakimullina, A.M.; Fedotovskaya, O.N.; Mozhayskaya, I.A.; Vinogradova, O.L.; Astratenkova, I.V.; Montgomery, H.E.; et al. The combined impact of metabolic gene polymorphisms on elite endurance athlete status and related phenotypes. Hum. Genet. 2009, 126, 751–761. [Google Scholar] [CrossRef]
- Papadimitriou, I.D.; Papadopoulos, C.; Kouvatsi, A.; Triantaphyllidis, C. The ACE I/D polymorphism in elite Greek track and field athletes. J. Sport. Med. Phys. Fit. 2009, 49, 459–463. [Google Scholar]
- Scott, R.A.; Moran, C.; Wilson, R.H.; Onywera, V.; Boit, M.K.; Goodwin, W.H.; Gohlke, P.; Payne, J.; Montgomery, H.; Pitsiladis, Y.P. No association between Angiotensin Converting Enzyme (ACE) gene variation and endurance athlete status in Kenyans. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2005, 141, 169–175. [Google Scholar] [CrossRef]
- Rankinen, T.; Wolfarth, B.; Simoneau, J.A.; Maier-Lenz, D.; Rauramaa, R.; Rivera, M.A.; Boulay, M.R.; Chagnon, Y.C.; Pérusse, L.; Keul, J.; et al. No association between the angiotensin-converting enzyme ID polymorphism and elite endurance athlete status. J. Appl. Physiol. 2000, 88, 1571–1575. [Google Scholar] [CrossRef]
- Taylor, R.R.; Mamotte, C.D.; Fallon, K.; van Bockxmeer, F.M. Elite athletes and the gene for angiotensin-converting enzyme. J. Appl. Physiol. 1999, 87, 1035–1037. [Google Scholar] [CrossRef] [Green Version]
- Orysiak, J.; Zmijewski, P.; Klusiewicz, A.; Kaliszewski, P.; Malczewska-Lenczowska, J.; Gajewski, J.; Pokrywka, A. The association between ace gene variation and aerobic capacity in winter endurance disciplines. Biol. Sport 2013, 30, 249–253. [Google Scholar] [CrossRef] [PubMed]
- Ginevičienė, V.; Pranculis, A.; Jakaitienė, A.; Milašius, K.; Kučinskas, V. Genetic variation of the human ACE and ACTN3 genes and their association with functional muscle properties in Lithuanian elite athletes. Medicina 2011, 47, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muniesa, C.A.; González-Freire, M.; Santiago, C.; Lao, J.I.; Buxens, A.; Rubio, J.C.; Martín, M.A.; Arenas, J.; Gomez-Gallego, F.; Lucia, A. World-class performance in lightweight rowing: Is it genetically influenced? A comparison with cyclists, runners and non-athletes. Br. J. Sport. Med. 2010, 44, 898–901. [Google Scholar] [CrossRef] [PubMed]
- Papadimitriou, I.D.; Lockey, S.J.; Voisin, S.; Herbert, A.J.; Garton, F.; Houweling, P.J.; Cieszczyk, P.; Maciejewska-Skrendo, A.; Sawczuk, M.; Massidda, M.; et al. No association between ACTN3 R577X and ACE I/D polymorphisms and endurance running times in 698 Caucasian athletes. BMC Genomics 2018, 19, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varillas-Delgado, D.; Morencos, E.; Gutiérrez-Hellín, J.; Aguilar-Navarro, M.; Muñoz, A.; Mendoza Láiz, N.; Perucho, T.; Maestro, A.; Tellería-Orriols, J.J. Genetic profiles to identify talents in elite endurance athletes and professional football players. PLoS ONE 2022, 17, e0274880. [Google Scholar] [CrossRef]
- Shang, X.; Huang, C.; Chang, Q.; Zhang, L.; Huang, T. Association between the ACTN3 R577X polymorphism and female endurance athletes in China. Int. J. Sport. Med. 2010, 31, 913–916. [Google Scholar] [CrossRef]
- Gasser, B.; Flück, M.; Frey, W.O.; Valdivieso, P.; Spörri, J. Association of Gene Variants for Mechanical and Metabolic Muscle Quality with Cardiorespiratory and Muscular Variables Related to Performance in Skiing Athletes. Genes 2022, 13, 1798. [Google Scholar] [CrossRef]
- Orysiak, J.; Sitkowski, D.; Zmijewski, P.; Malczewska-Lenczowska, J.; Cieszczyk, P.; Zembron-Lacny, A.; Pokrywka, A. Overrepresentation of the ACTN3 XX genotype in elite canoe and kayak paddlers. J. Strength Cond. Res. 2015, 29, 1107–1112. [Google Scholar] [CrossRef]
- Ahmetov, I.I.; Druzhevskaya, A.M.; Astratenkova, I.V.; Popov, D.V.; Vinogradova, O.L.; Rogozkin, V.A. The ACTN3 R577X polymorphism in Russian endurance athletes. Br. J. Sport. Med. 2010, 44, 649–652. [Google Scholar] [CrossRef]
- Döring, F.E.; Onur, S.; Geisen, U.; Boulay, M.R.; Pérusse, L.; Rankinen, T.; Rauramaa, R.; Wolfahrt, B.; Bouchard, C. ACTN3 R577X and other polymorphisms are not associated with elite endurance athlete status in the Genathlete study. J. Sport. Sci. 2010, 28, 1355–1359. [Google Scholar] [CrossRef]
- Ginevičienė, V.; Pranckevičienė, E.; Milašius, K.; Kučinskas, V. Relating fitness phenotypes to genotypes in Lithuanian elite athletes. Acta Med. Litu. 2010, 17, 1–10. [Google Scholar] [CrossRef]
- Tsianos, G.I.; Evangelou, E.; Boot, A.; Zillikens, M.C.; van Meurs, J.B.; Uitterlinden, A.G.; Ioannidis, J.P. Associations of polymorphisms of eight muscle- or metabolism-related genes with performance in Mount Olympus marathon runners. J. Appl. Physiol. 2010, 108, 567–574. [Google Scholar] [CrossRef]
- Niemi, A.K.; Majamaa, K. Mitochondrial DNA and ACTN3 genotypes in Finnish elite endurance and sprint athletes. Eur. J. Hum. Genet. 2005, 13, 965–969. [Google Scholar] [CrossRef]
- Papadimitriou, I.D.; Papadopoulos, C.; Kouvatsi, A.; Triantaphyllidis, C. The ACTN3 gene in elite Greek track and field athletes. Int. J. Sport. Med. 2008, 29, 352–355. [Google Scholar] [CrossRef]
- Paparini, A.; Ripani, M.; Giordano, G.D.; Santoni, D.; Pigozzi, F.; Romano-Spica, V. ACTN3 genotyping by real-time PCR in the Italian population and athletes. Med. Sci. Sport. Exerc. 2007, 39, 810–815. [Google Scholar] [CrossRef]
- Saunders, C.J.; September, A.V.; Xenophontos, S.L.; Cariolou, M.A.; Anastassiades, L.C.; Noakes, T.D.; Collins, M. No association of the ACTN3 gene R577X polymorphism with endurance performance in Ironman Triathlons. Ann. Hum. Genet. 2007, 71, 777–781. [Google Scholar] [CrossRef]
- Yang, N.; MacArthur, D.G.; Wolde, B.; Onywera, V.O.; Boit, M.K.; Lau, S.Y.; Wilson, R.H.; Scott, R.A.; Pitsiladis, Y.P.; North, K. The ACTN3 R577X polymorphism in East and West African athletes. Med. Sci. Sports Exerc. 2007, 39, 1985–1988. [Google Scholar] [CrossRef] [Green Version]
- Lucia, A.; Gómez-Gallego, F.; Santiago, C.; Bandrés, F.; Earnest, C.; Rabadán, M.; Alonso, J.M.; Hoyos, J.; Córdova, A.; Villa, G.; et al. ACTN3 genotype in professional endurance cyclists. Int. J. Sports Med. 2006, 27, 880–884. [Google Scholar] [CrossRef]
- Grealy, R.; Smith, C.L.; Chen, T.; Hiller, D.; Haseler, L.J.; Griffiths, L.R. The genetics of endurance: Frequency of the ACTN3 R577X variant in Ironman World Championship athletes. J. Sci. Med. Sport 2013, 16, 365–371. [Google Scholar] [CrossRef]
- Mikami, E.; Fuku, N.; Murakami, H.; Tsuchie, H.; Takahashi, H.; Ohiwa, N.; Tanaka, H.; Pitsiladis, Y.P.; Higuchi, M.; Miyachi, M.; et al. ACTN3 R577X genotype is associated with sprinting in elite Japanese athletes. Int. J. Sport. Med. 2014, 35, 172–177. [Google Scholar] [CrossRef]
- Wang, G.; Mikami, E.; Chiu, L.L.; DE Perini, A.; Deason, M.; Fuku, N.; Miyachi, M.; Kaneoka, K.; Murakami, H.; Tanaka, M.; et al. Association analysis of ACE and ACTN3 in elite Caucasian and East Asian swimmers. Med. Sci. Sport. Exerc. 2013, 45, 892–900. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Jin, F.; Wang, L.; Shen, X.; Guo, Q.; Song, H.; Hu, J.; Zhao, Q.; Wan, J.; Cai, M. Prediction and Identification of Power Performance Using Polygenic Models of Three Single-Nucleotide Polymorphisms in Chinese Elite Athletes. Front. Genet. 2021, 12, 726552. [Google Scholar] [CrossRef] [PubMed]
- Wagoner, L.E.; Craft, L.L.; Singh, B.; Suresh, D.P.; Zengel, P.W.; McGuire, N.; Abraham, W.T.; Chenier, T.C.; Dorn, G.W., 2nd; Liggett, S.B. Polymorphisms of the β(2)-adrenergic receptor determine exercise capacity in patients with heart failure. Circ. Res. 2000, 86, 834–840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolfarth, B.; Rankinen, T.; Mühlbauer, S.; Scherr, J.; Boulay, M.R.; Pérusse, L.; Rauramaa, R.; Bouchard, C. Association between a beta2-adrenergic receptor polymorphism and elite endurance performance. Metabolism 2007, 56, 1649–1651. [Google Scholar] [CrossRef] [PubMed]
- Santiago, C.; Ruiz, J.R.; Buxens, A.; Artieda, M.; Arteta, D.; González-Freire, M.; Rodríguez-Romo, G.; Altmäe, S.; Lao, J.I.; Gómez-Gallego, F.; et al. Trp64Arg polymorphism in ADRB3 gene is associated with elite endurance performance. Br. J. Sport. Med. 2011, 45, 147–149. [Google Scholar] [CrossRef] [Green Version]
- Sawczuk, M.; Maciejewska-Karlowska, A.; Cieszczyk, P.; Skotarczak, B.; Ficek, K. Association of the ADRB2 Gly16Arg and Glu27Gln polymorphisms with athlete status. J. Sports Sci. 2013, 31, 1535–1544. [Google Scholar] [CrossRef]
- Moore, G.E.; Shuldiner, A.R.; Zmuda, J.M.; Ferrell, R.E.; McCole, S.D.; Hagberg, J.M. Obesity gene variant and elite endurance performance. Metabolism 2001, 50, 1391–1392. [Google Scholar] [CrossRef]
- Mustafina, L.J.; Naumov, V.A.; Cieszczyk, P.; Popov, D.V.; Lyubaeva, E.V.; Kostryukova, E.S.; Fedotovskaya, O.N.; Druzhevskaya, A.M.; Astratenkova, I.V.; Glotov, A.S.; et al. AGTR2 gene polymorphism is associated with muscle fibre composition, athletic status and aerobic performance. Exp. Physiol. 2014, 99, 1042–1052. [Google Scholar] [CrossRef]
- Guilherme, J.P.L.F.; Silva, M.S.; Bertuzzi, R.; Lancha Junior, A.H. The AGTR2 rs11091046 (A>C) polymorphism and power athletic status in top-level Brazilian athletes. J. Sport. Sci. 2018, 36, 2327–2332. [Google Scholar] [CrossRef]
- Martínez, J.L.; Carrión, A.; Florián, M.E.; Martín, J.A.; López-Taylor, J.R.; Fahey, T.D.; Rivera, M.A. Aquaporin-1 gene DNA variation predicts performance in Hispanic marathon runners. Med. Sport 2009, 13, 251–255. [Google Scholar] [CrossRef] [Green Version]
- Rivera, M.A.; Martínez, J.L.; Carrion, A.; Fahey, T.D. AQP-1 association with body fluid loss in 10-km runners. Int. J. Sport. Med. 2011, 32, 229–233. [Google Scholar] [CrossRef]
- Saunders, C.J.; Posthumus, M.; O’Connell, K.; September, A.V.; Collins, M. A variant within the AQP1 3′-untranslated region is associated with running performance, but not weight changes, during an Ironman Triathlon. J. Sports Sci. 2015, 33, 1342–1348. [Google Scholar] [CrossRef]
- Rico-Sanz, J.; Rankinen, T.; Joanisse, D.R.; Leon, A.S.; Skinner, J.S.; Wilmore, J.H.; Rao, D.C.; Bouchard, C.; HERITAGE Family study. Associations between cardiorespiratory responses to exercise and the C34T AMPD1 gene polymorphism in the HERITAGE Family Study. Physiol. Genom. 2003, 14, 161–166. [Google Scholar] [CrossRef] [Green Version]
- Thomaes, T.; Thomis, M.; Onkelinx, S.; Fagard, R.; Matthijs, G.; Buys, R.; Schepers, D.; Cornelissen, V.; Vanhees, L. A genetic predisposition score for muscular endophenotypes predicts the increase in aerobic power after training: The CAREGENE study. BMC Genet. 2011, 12, 84. [Google Scholar] [CrossRef] [Green Version]
- Ciȩszczyk, P.; Eider, J.; Ostanek, M.; Leońska-Duniec, A.; Ficek, K.; Kotarska, K.; Girdauskas, G. Is the C34T polymorphism of the AMPD1 gene associated with athlete performance in rowing? Int. J. Sport. Med. 2011, 32, 987–991. [Google Scholar] [CrossRef]
- Ginevičienė, V.; Jakaitienė, A.; Pranculis, A.; Milašius, K.; Tubelis, L.; Utkus, A. AMPD1 rs17602729 is associated with physical performance of sprint and power in elite Lithuanian athletes. BMC Genet. 2014, 15, 58. [Google Scholar] [CrossRef] [Green Version]
- Williams, A.G.; Dhamrait, S.S.; Wootton, P.T.; Day, S.H.; Hawe, E.; Payne, J.R.; Myerson, S.G.; World, M.; Budgett, R.; Humphries, S.E.; et al. Bradykinin receptor gene variant and human physical performance. J. Appl. Physiol. 2004, 96, 938–942. [Google Scholar] [CrossRef] [Green Version]
- Saunders, C.J.; Xenophontos, S.L.; Cariolou, M.A.; Anastassiades, L.C.; Noakes, T.D.; Collins, M. The bradykinin β 2 receptor (BDKRB2) and endothelial nitric oxide synthase 3 (NOS3) genes and endurance performance during Ironman Triathlons. Hum. Mol. Genet. 2006, 15, 979–987. [Google Scholar] [CrossRef] [Green Version]
- Sawczuk, M.; Timshina, Y.I.; Astratenkova, I.V.; Maciejewska-Karlowska, A.; Leońska-Duniec, A.; Ficek, K.; Mustafina, L.J.; Cięszczyk, P.; Klocek, T.; Ahmetov, I.I. The −9/+9 polymorphism of the bradykinin receptor β 2 gene and athlete status: A study involving two European cohorts. Hum. Biol. 2013, 85, 741–756. [Google Scholar] [CrossRef] [Green Version]
- Grenda, A.; Leońska-Duniec, A.; Cięszczyk, P.; Zmijewski, P. Bdkrb2 gene -9/+9 polymorphism and swimming performance. Biol. Sport 2014, 31, 109–113. [Google Scholar] [CrossRef] [Green Version]
- Zmijewski, P.; Grenda, A.; Leońska-Duniec, A.; Ahmetov, I.; Orysiak, J.; Cięszczyk, P. Effect of BDKRB2 Gene -9/+9 Polymorphism on Training Improvements in Competitive Swimmers. J. Strength Cond. Res. 2016, 30, 665–671. [Google Scholar] [CrossRef] [PubMed]
- Rivera, M.A.; Dionne, F.T.; Simoneau, J.A.; Pérusse, L.; Chagnon, M.; Chagnon, Y.; Gagnon, J.; Leon, A.S.; Rao, D.C.; Skinner, J.S.; et al. Muscle-specific creatine kinase gene polymorphism and VO2max in the HERITAGE Family Study. Med. Sci. Sport. Exerc. 1997, 29, 1311–1317. [Google Scholar] [CrossRef] [PubMed]
- Rivera, M.A.; Pérusse, L.; Simoneau, J.A.; Gagnon, J.; Dionne, F.T.; Leon, A.S.; Skinner, J.S.; Wilmore, J.H.; Province, M.; Rao, D.C.; et al. Linkage between a muscle-specific CK gene marker and VO2max in the HERITAGE Family Study. Med. Sci. Sport. Exerc. 1999, 31, 698–701. [Google Scholar] [CrossRef] [PubMed]
- Fedotovskaya, O.N.; Popov, D.V.; Vinogradova, O.L.; Akhmetov, I.I. Association of muscle-specific creatine kinase (CKMM) gene polymorphism with physical performance of athletes. Hum. Physiol. 2012, 38, 89–93. [Google Scholar] [CrossRef]
- Martínez, J.L.; Khorsandi, S.; Sojo, R.; Martínez, C.; Martín, J.A.; López-Taylor, J.R.; Fahey, T.D.; Rivera, M.A. Lack of an Association Between CKMM Genotype and Endurance Performance Level in Hispanic Marathon Runners. Med. Sport 2009, 13, 219–223. [Google Scholar] [CrossRef]
- Posthumus, M.; Schwellnus, M.P.; Collins, M. The COL5A1 gene: A novel marker of endurance running performance. Med. Sci. Sport. Exerc. 2011, 43, 584–589. [Google Scholar] [CrossRef]
- Brown, J.C.; Miller, C.J.; Posthumus, M.; Schwellnus, M.P.; Collins, M. The COL5A1 gene, ultra-marathon running performance, and range of motion. Int. J. Sport. Physiol. Perform. 2011, 6, 485–496. [Google Scholar] [CrossRef] [Green Version]
- Guilherme, J.; Egorova, E.S.; Semenova, E.A.; Kostryukova, E.S.; Kulemin, N.A.; Borisov, O.V.; Khabibova, S.A.; Larin, A.K.; Ospanova, E.A.; Pavlenko, A.V.; et al. The A-allele of the FTO gene rs9939609 polymorphism is associated with decreased proportion of slow oxidative muscle fibers and over-represented in heavier athletes. J. Strength Cond. Res. 2019, 33, 691–700. [Google Scholar] [CrossRef]
- Zmijewski, P.; Leońska-Duniec, A. Association between the FTO A/T Polymorphism and Elite Athlete Status in Caucasian Swimmers. Genes 2021, 12, 715. [Google Scholar] [CrossRef]
- Eynon, N.; Nasibulina, E.S.; Banting, L.K.; Cieszczyk, P.; Maciejewska-Karlowska, A.; Sawczuk, M.; Bondareva, E.A.; Shagimardanova, R.R.; Raz, M.; Sharon, Y.; et al. The FTO A/T polymorphism and elite athletic performance: A study involving three groups of European athletes. PLoS ONE 2013, 8, e60570. [Google Scholar] [CrossRef] [Green Version]
- He, Z.; Hu, Y.; Feng, L.; Lu, Y.; Liu, G.; Xi, Y.; Wen, L.; McNaughton, L.R. NRF2 genotype improves endurance capacity in response to training. Int. J. Sport. Med. 2007, 28, 717–721. [Google Scholar] [CrossRef] [Green Version]
- Eynon, N.; Ruiz, J.R.; Bishop, D.J.; Santiago, C.; Gómez-Gallego, F.; Lucia, A.; Birk, R. The rs12594956 polymorphism in the NRF-2 gene is associated with top-level Spanish athlete’s performance status. J. Sci. Med. Sport 2013, 16, 135–139. [Google Scholar] [CrossRef] [Green Version]
- Maciejewska-Karłowska, A.; Leońska-Duniec, A.; Cięszczyk, P.; Sawczuk, M.; Eider, J.; Ficek, K.; Sawczyn, S. The GABPB1 gene A/G polymorphism in Polish rowers. J. Hum. Kinet. 2012, 31, 115–120. [Google Scholar] [CrossRef]
- Zarebska, A.; Jastrzebski, Z.; Kaczmarczyk, M.; Ficek, K.; Maciejewska-Karlowska, A.; Sawczuk, M.; Leońska-Duniec, A.; Krol, P.; Cieszczyk, P.; Zmijewski, P.; et al. The GSTP1 c.313A>G polymorphism modulates the cardiorespiratory response to aerobic training. Biol. Sport 2014, 31, 261–266. [Google Scholar] [CrossRef] [Green Version]
- Zarebska, A.; Jastrzebski, Z.; Ahmetov, I.I.; Zmijewski, P.; Cieszczyk, P.; Leonska-Duniec, A.; Sawczuk, M.; Leznicka, K.; Trybek, G.; Semenova, E.A.; et al. GSTP1 c.313A>G polymorphism in Russian and Polish athletes. Physiol. Genom. 2017, 49, 127–131. [Google Scholar] [CrossRef] [Green Version]
- Deugnier, Y.; Loréal, O.; Carré, F.; Duvallet, A.; Zoulim, F.; Vinel, J.P.; Paris, J.C.; Blaison, D.; Moirand, R.; Turlin, B.; et al. Increased body iron stores in elite road cyclists. Med. Sci. Sport. Exerc. 2002, 34, 876–880. [Google Scholar] [CrossRef]
- Chicharro, J.L.; Hoyos, J.; Gómez-Gallego, F.; Villa, J.G.; Bandrés, F.; Celaya, P.; Jiménez, F.; Alonso, J.M.; Córdova, A.; Lucia, A. Mutations in the hereditary haemochromatosis gene HFE in professional endurance athletes. Br. J. Sport. Med. 2004, 38, 418–421. [Google Scholar] [CrossRef] [Green Version]
- Hermine, O.; Dine, G.; Genty, V.; Marquet, L.A.; Fumagalli, G.; Tafflet, M.; Guillem, F.; Van Lierde, F.; Rousseaux-Blanchi, M.P.; Palierne, C.; et al. Eighty percent of French sport winners in Olympic, World and Europeans competitions have mutations in the hemochromatosis HFE gene. Biochimie 2015, 119, 1–5. [Google Scholar] [CrossRef]
- Semenova, E.A.; Miyamoto-Mikami, E.; Akimov, E.B.; Al-Khelaifi, F.; Murakami, H.; Zempo, H.; Kostryukova, E.S.; Kulemin, N.A.; Larin, A.K.; Borisov, O.V.; et al. The association of HFE gene H63D polymorphism with endurance athlete status and aerobic capacity: Novel findings and a meta-analysis. Eur. J. Appl. Physiol. 2020, 120, 665–673. [Google Scholar] [CrossRef] [Green Version]
- Prior, S.J.; Hagberg, J.M.; Phares, D.A.; Brown, M.D.; Fairfull, L.; Ferrell, R.E.; Roth, S.M. Sequence variation in hypoxia-inducible factor 1alpha (HIF1A): Association with maximal oxygen consumption. Physiol. Genom. 2003, 15, 20–26. [Google Scholar] [CrossRef] [Green Version]
- Döring, F.; Onur, S.; Fischer, A.; Boulay, M.R.; Pérusse, L.; Rankinen, T.; Rauramaa, R.; Wolfarth, B.; Bouchard, C. A common haplotype and the Pro582Ser polymorphism of the hypoxia-inducible factor-1alpha (HIF1A) gene in elite endurance athletes. J. Appl. Physiol. 2010, 108, 1497–1500. [Google Scholar] [CrossRef] [PubMed]
- Bosnyák, E.; Trájer, E.; Alszászi, G.; Móra, Á.; Györe, I.; Udvardy, A.; Tóth, M.; Szmodis, M. Lack of association between the GNB3 rs5443, HIF1A rs11549465 polymorphisms, physiological and functional characteristics. Ann. Hum. Genet. 2020, 84, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Merezhinskaya, N.; Fishbein, W.N.; Davis, J.I.; Foellmer, J.W. Mutations in MCT1 cDNA in patients with symptomatic deficiency in lactate transport. Muscle Nerve 2000, 23, 90–97. [Google Scholar] [CrossRef]
- Cupeiro, R.; Benito, P.J.; Maffulli, N.; Calderón, F.J.; González-Lamuño, D. MCT1 genetic polymorphism influence in high intensity circuit training: A pilot study. J. Sci. Med. Sport 2010, 13, 526–530. [Google Scholar] [CrossRef] [Green Version]
- Fedotovskaya, O.N.; Mustafina, L.J.; Popov, D.V.; Vinogradova, O.L.; Ahmetov, I.I. A common polymorphism of the MCT1 gene and athletic performance. Int. J. Sport. Physiol. Perform. 2014, 9, 173–180. [Google Scholar] [CrossRef] [Green Version]
- Ramírez de la Piscina-Viúdez, X.; Álvarez-Herms, J.; Bonilla, D.A.; Castañeda-Babarro, A.; Larruskain, J.; Díaz-Ramírez, J.; Ahmetov, I.I.; Martínez-Ascensión, A.; Kreider, R.B.; Odriozola-Martínez, A. Putative Role of MCT1 rs1049434 Polymorphism in High-Intensity Endurance Performance: Concept and Basis to Understand Possible Individualization Stimulus. Sports 2021, 9, 143. [Google Scholar] [CrossRef]
- Sawczuk, M.; Banting, L.K.; Cięszczyk, P.; Maciejewska-Karłowska, A.; Zarębska, A.; Leońska-Duniec, A.; Jastrzębski, Z.; Bishop, D.J.; Eynon, N. MCT1 A1470T: A novel polymorphism for sprint performance? J. Sci. Med. Sport 2015, 18, 114–118. [Google Scholar] [CrossRef] [Green Version]
- Maruszak, A.; Adamczyk, J.G.; Siewierski, M.; Sozański, H.; Gajewski, A.; Żekanowski, C. Mitochondrial DNA variation is associated with elite athletic status in the Polish population. Scand. J. Med. Sci. Sport. 2014, 24, 311–318. [Google Scholar] [CrossRef]
- Drozdovska, S.B.; Dosenko, V.E.; Ilyin, V.N.; Filippov, M.M.; Kuzmina, L.M. Allelic Polymorphism of Endothelial No-Synthase (eNOS) Association with Exercise-Induced Hypoxia Adaptation. Baltic. J. Health Phys. Activ. 2009, 1, 13–19. [Google Scholar] [CrossRef] [Green Version]
- Zmijewski, P.; Cięszczyk, P.; Ahmetov, I.I.; Gronek, P.; Lulińska-Kuklik, E.; Dornowski, M.; Rzeszutko, A.; Chycki, J.; Moska, W.; Sawczuk, M. The NOS3 G894T (rs1799983) and -786T/C (rs2070744) polymorphisms are associated with elite swimmer status. Biol. Sport 2018, 35, 313–319. [Google Scholar] [CrossRef]
- Gómez-Gallego, F.; Ruiz, J.R.; Buxens, A.; Artieda, M.; Arteta, D.; Santiago, C.; Rodríguez-Romo, G.; Lao, J.I.; Lucia, A. The -786 T/C polymorphism of the NOS3 gene is associated with elite performance in power sports. Eur. J. Appl. Physiol. 2009, 107, 565–569. [Google Scholar] [CrossRef]
- Ahmetov, I.I.; Mozhayskaya, I.A.; Flavell, D.M.; Astratenkova, I.V.; Komkova, A.I.; Lyubaeva, E.V.; Tarakin, P.P.; Shenkman, B.S.; Vdovina, A.B.; Netreba, A.I.; et al. PPARalpha gene variation and physical performance in Russian athletes. Eur. J. Appl. Physiol. 2006, 97, 103–108. [Google Scholar] [CrossRef]
- Maciejewska, A.; Sawczuk, M.; Cięszczyk, P. Variation in the PPARα gene in Polish rowers. J. Sci. Med. Sport 2011, 14, 58–64. [Google Scholar] [CrossRef]
- Tural, E.; Kara, N.; Agaoglu, S.A.; Elbistan, M.; Tasmektepligil, M.Y.; Imamoglu, O. PPAR-α and PPARGC1A gene variants have strong effects on aerobic performance of Turkish elite endurance athletes. Mol. Biol. Rep. 2014, 41, 5799–5804. [Google Scholar] [CrossRef]
- Maciejewska, A.; Sawczuk, M.; Cieszczyk, P.; Mozhayskaya, I.A.; Ahmetov, I.I. The PPARGC1A gene Gly482Ser in Polish and Russian athletes. J. Sport. Sci. 2012, 30, 101–113. [Google Scholar] [CrossRef]
- He, Z.H.; Hu, Y.; Li, Y.C.; Gong, L.J.; Cieszczyk, P.; Maciejewska-Karlowska, A.; Leonska-Duniec, A.; Muniesa, C.A.; Marín-Peiro, M.; Santiago, C.; et al. PGC-related gene variants and elite endurance athletic status in a Chinese cohort: A functional study. Scand. J. Med. Sci. Sport. 2015, 25, 184–195. [Google Scholar] [CrossRef]
- Hall, E.C.R.; Lockey, S.J.; Heffernan, S.M.; Herbert, A.J.; Stebbings, G.K.; Day, S.H.; Collins, M.; Pitsiladis, Y.P.; Erskine, R.M.; Williams, A.G. The PPARGC1A Gly482Ser polymorphism is associated with elite long-distance running performance. J. Sport. Sci. 2023, 41, 56–62. [Google Scholar] [CrossRef]
- Akhmetov, I.I.; Popov, D.V.; Missina, S.S.; Vinogradova, O.L.; Rogozkin, V.A. The analysis of PPARGC1B gene polymorphism in athletes. Ross. Fiziol. Zh. Im. I.M. Sechenova 2009, 95, 1247–1253. [Google Scholar]
- Akhmetov, I.I.; Linde, E.V.; Shikhova, I.V.; Popov, D.V.; Missina, S.S.; Vinogradoba, O.L.; Rogozkin, V.A. The influence of calcineurin gene polymorphism on morphofunctional characteristics of cardiovascular system of athletes. Ross. Fiziol. Zh. Im. I.M. Sechenova 2008, 94, 915–922. [Google Scholar]
- Bouchard, C.; Sarzynski, M.A.; Rice, T.K.; Kraus, W.E.; Church, T.S.; Sung, Y.J.; Rao, D.C.; Rankinen, T. Genomic predictors of the maximal O₂ uptake response to standardized exercise training programs. J. Appl. Physiol. 2011, 110, 1160–1170. [Google Scholar] [CrossRef] [Green Version]
- Hall, E.C.R.; Almeida, S.S.; Heffernan, S.M.; Lockey, S.J.; Herbert, A.J.; Callus, P.; Day, S.H.; Pedlar, C.R.; Kipps, C.; Collins, M.; et al. Genetic Polymorphisms Related to VO2max Adaptation Are Associated with Elite Rugby Union Status and Competitive Marathon Performance. Int. J. Sport. Physiol. Perform. 2021, 16, 1858–1864. [Google Scholar] [CrossRef] [PubMed]
- Kusić, D.; Connolly, J.; Kainulainen, H.; Semenova, E.A.; Borisov, O.V.; Larin, A.K.; Popov, D.V.; Generozov, E.V.; Ahmetov, I.I.; Britton, S.L.; et al. Striated muscle-specific serine/threonine-protein kinase β segregates with high versus low responsiveness to endurance exercise training. Physiol. Genom. 2020, 52, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Ahmetov, I.I.; Popov, D.V.; Missina, S.S.; Vinogradova, O.L.; Rogozkin, V.A. Association of mitochondrial transcription factor (TFAM) gene polymorphism with physical performance in athletes. Hum. Physiol. 2010, 36, 229–233. [Google Scholar] [CrossRef]
- Gronek, P.; Gronek, J.; Lulińska-Kuklik, E.; Spieszny, M.; Niewczas, M.; Kaczmarczyk, M.; Petr, M.; Fischerova, P.; Ahmetov, I.I.; Żmijewski, P. Polygenic Study of Endurance-Associated Genetic Markers NOS3 (Glu298Asp), BDKRB2 (-9/+9), UCP2 (Ala55Val), AMPD1 (Gln45Ter) and ACE (I/D) in Polish Male Half Marathoners. J. Hum. Kinet. 2018, 64, 87–98. [Google Scholar] [CrossRef] [Green Version]
- Hudson, D.E.; Mokone, G.G.; Noakes, T.D.; Collins, M. The -55 C/T polymorphism within the UCP3 gene and performance during the South African Ironman Triathlon. Int. J. Sport. Med. 2004, 25, 427–432. [Google Scholar] [CrossRef]
- Prior, S.J.; Hagberg, J.M.; Paton, C.M.; Douglass, L.W.; Brown, M.D.; McLenithan, J.C.; Roth, S.M. DNA sequence variation in the promoter region of the VEGF gene impacts VEGF gene expression and maximal oxygen consumption. Am. J. Physiol. Heart Circ. Physiol. 2006, 290, H1848–H1855. [Google Scholar] [CrossRef] [Green Version]
- Ahmetov, I.I.; Khakimullina, A.M.; Popov, D.V.; Missina, S.S.; Vinogradova, O.L.; Rogozkin, V.A. Polymorphism of the vascular endothelial growth factor gene (VEGF) and aerobic performance in athletes. Hum. Physiol. 2008, 34, 477–481. [Google Scholar] [CrossRef]
- Ahmetov, I.I.; Hakimullina, A.M.; Popov, D.V.; Lyubaeva, E.V.; Missina, S.S.; Vinogradova, O.L.; Williams, A.G.; Rogozkin, V.A. Association of the VEGFR2 gene His472Gln polymorphism with endurance-related phenotypes. Eur. J. Appl. Physiol. 2009, 107, 95–103. [Google Scholar] [CrossRef]
- Eider, J.; Leonska-Duniec, A.; Maciejewska-Karlowska, A.; Sawczuk, M.; Ficek, K.; Sawczyn, S. The VEGFR2 gene His472Gln polymorphism in Polish endurance athletes. Int. SportMed. J. 2013, 14, 29–35. [Google Scholar]
- Kumagai, K.; Abe, T.; Brechue, W.F.; Ryushi, T.; Takano, S.; Mizuno, M. Sprint performance is related to muscle fascicle length in male 100-m sprinters. J. Appl. Physiol. 2000, 88, 811–816. [Google Scholar] [CrossRef]
- Weyand, P.G.; Davis, J.A. Running performance has a structural basis. J. Exp. Biol. 2005, 208, 2625–2631. [Google Scholar] [CrossRef] [Green Version]
- Uth, N. Anthropometric comparison of world-class sprinters and normal populations. J. Sport. Sci. Med. 2005, 4, 608–616. [Google Scholar]
- Tønnessen, E.; Haugen, T.; Shalfawi, S.A. Reaction time aspects of elite sprinters in athletic world championships. J. Strength Cond. Res. 2013, 27, 885–892. [Google Scholar] [CrossRef]
- Haugen, T.; Seiler, S.; Sandbakk, Ø.; Tønnessen, E. The Training and Development of Elite Sprint Performance: An Integration of Scientific and Best Practice Literature. Sport. Med. Open 2019, 5, 44. [Google Scholar] [CrossRef] [Green Version]
- Suga, T.; Terada, M.; Tanaka, T.; Miyake, Y.; Ueno, H.; Otsuka, M.; Nagano, A.; Isaka, T. Calcaneus height is a key morphological factor of sprint performance in sprinters. Sci. Rep. 2020, 10, 15425. [Google Scholar] [CrossRef]
- Hall, E.C.R.; Lysenko, E.A.; Semenova, E.A.; Borisov, O.V.; Andryushchenko, O.N.; Andryushchenko, L.B.; Vepkhvadze, T.F.; Lednev, E.M.; Zmijewski, P.; Popov, D.V.; et al. Prediction of muscle fiber composition using multiple repetition testing. Biol. Sport 2021, 38, 277–283. [Google Scholar] [CrossRef]
- Hughes, D.C.; Day, S.H.; Ahmetov, I.I.; Williams, A.G. Genetics of muscle strength and power: Polygenic profile similarity limits skeletal muscle performance. J. Sport. Sci. 2011, 29, 1425–1434. [Google Scholar] [CrossRef]
- Zempo, H.; Miyamoto-Mikami, E.; Kikuchi, N.; Fuku, N.; Miyachi, M.; Murakami, H. Heritability estimates of muscle strength-related phenotypes: A systematic review and meta-analysis. Scand. J. Med. Sci. Sport. 2017, 27, 1537–1546. [Google Scholar] [CrossRef]
- Woods, D.; Hickman, M.; Jamshidi, Y.; Brull, D.; Vassiliou, V.; Jones, A.; Humphries, S.; Montgomery, H. Elite swimmers and the D allele of the ACE I/D polymorphism. Hum. Genet. 2001, 108, 230–232. [Google Scholar] [CrossRef]
- Costa, A.M.; Silva, A.J.; Garrido, N.D.; Louro, H.; de Oliveira, R.J.; Breitenfeld, L. Association between ACE D allele and elite short distance swimming. Eur. J. Appl. Physiol. 2009, 106, 785–790. [Google Scholar] [CrossRef]
- Boraita, A.; de la Rosa, A.; Heras, M.E.; de la Torre, A.I.; Canda, A.; Rabadán, M.; Díaz, A.E.; González, C.; López, M.; Hernández, M. Cardiovascular adaptation, functional capacity and Angiotensin-converting enzyme I/D polymorphism in elite athletes. Rev. Esp. Cardiol. 2010, 63, 810–819. [Google Scholar] [CrossRef] [PubMed]
- Papadimitriou, I.D.; Lucia, A.; Pitsiladis, Y.P.; Pushkarev, V.P.; Dyatlov, D.A.; Orekhov, E.F.; Artioli, G.G.; Guilherme, J.P.; Lancha, A.H., Jr.; Ginevičienė, V.; et al. ACTN3 R577X and ACE I/D gene variants influence performance in elite sprinters: A multi-cohort study. BMC Genom. 2016, 17, 285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amir, O.; Amir, R.; Yamin, C.; Attias, E.; Eynon, N.; Sagiv, M.; Sagiv, M.; Meckel, Y. The ACE deletion allele is associated with Israeli elite endurance athletes. Exp. Physiol. 2007, 92, 881–886. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.H.; Cho, J.Y.; Jeon, J.Y.; Koh, Y.G.; Kim, Y.M.; Kim, H.J.; Park, M.; Um, H.S.; Kim, C. ACE DD genotype is unfavorable to Korean short-term muscle power athletes. Int. J. Sport. Med. 2010, 31, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Shahmoradi, S.; Ahmadalipour, A.; Salehi, M. Evaluation of ACE gene I/D polymorphism in Iranian elite athletes. Adv. Biomed. Res. 2014, 3, 207. [Google Scholar] [CrossRef]
- Scott, R.A.; Irving, R.; Irwin, L.; Morrison, E.; Charlton, V.; Austin, K.; Tladi, D.; Deason, M.; Headley, S.A.; Kolkhorst, F.W.; et al. ACTN3 and ACE genotypes in elite Jamaican and US sprinters. Med. Sci. Sport. Exerc. 2010, 42, 107–112. [Google Scholar] [CrossRef]
- Windelinckx, A.; De Mars, G.; Huygens, W.; Peeters, M.W.; Vincent, B.; Wijmenga, C.; Lambrechts, D.; Delecluse, C.; Roth, S.M.; Metter, E.J.; et al. Comprehensive fine mapping of chr12q12-14 and follow-up replication identify activin receptor 1B (ACVR1B) as a muscle strength gene. Eur. J. Hum. Genet. 2011, 19, 208–215. [Google Scholar] [CrossRef]
- Voisin, S.; Guilherme, J.P.; Yan, X.; Pushkarev, V.P.; Cieszczyk, P.; Massidda, M.; Calò, C.M.; Dyatlov, D.A.; Kolupaev, V.A.; Pushkareva, Y.E.; et al. ACVR1B rs2854464 Is Associated with Sprint/Power Athletic Status in a Large Cohort of Europeans but Not Brazilians. PLoS ONE 2016, 11, e0156316. [Google Scholar] [CrossRef] [Green Version]
- Venckunas, T.; Degens, H. Genetic polymorphisms of muscular fitness in young healthy men. PLoS ONE 2022, 17, e0275179. [Google Scholar] [CrossRef]
- Druzhevskaya, A.M.; Ahmetov, I.I.; Astratenkova, I.V.; Rogozkin, V.A. Association of the ACTN3 R577X polymorphism with power athlete status in Russians. Eur. J. Appl. Physiol. 2008, 103, 631–634. [Google Scholar] [CrossRef]
- Massidda, M.; Vona, G.; Calò, C.M. Association between the ACTN3 R577X polymorphism and artistic gymnastic performance in Italy. Genet. Test. Mol. Biomark. 2009, 13, 377–380. [Google Scholar] [CrossRef]
- Chiu, L.L.; Wu, Y.F.; Tang, M.T.; Yu, H.C.; Hsieh, L.L.; Hsieh, S.S. ACTN3 genotype and swimming performance in Taiwan. Int. J. Sport. Med. 2011, 32, 476–480. [Google Scholar] [CrossRef]
- Ahmetov, I.I.; Druzhevskaya, A.M.; Lyubaeva, E.V.; Popov, D.V.; Vinogradova, O.L.; Williams, A.G. The dependence of preferred competitive racing distance on muscle fibre type composition and ACTN3 genotype in speed skaters. Exp. Physiol. 2011, 96, 1302–1310. [Google Scholar] [CrossRef]
- Cięszczyk, P.; Eider, J.; Ostanek, M.; Arczewska, A.; Leońska-Duniec, A.; Sawczyn, S.; Ficek, K.; Krupecki, K. Association of the ACTN3 R577X Polymorphism in Polish Power-Orientated Athletes. J. Hum. Kinet. 2011, 28, 55–61. [Google Scholar] [CrossRef]
- Yang, R.; Shen, X.; Wang, Y.; Voisin, S.; Cai, G.; Fu, Y.; Xu, W.; Eynon, N.; Bishop, D.J.; Yan, X. ACTN3 R577X Gene Variant Is Associated With Muscle-Related Phenotypes in Elite Chinese Sprint/Power Athletes. J. Strength Cond. Res. 2017, 31, 1107–1115. [Google Scholar] [CrossRef]
- Akazawa, N.; Ohiwa, N.; Shimizu, K.; Suzuki, N.; Kumagai, H.; Fuku, N.; Suzuki, Y. The association of ACTN3 R577X polymorphism with sports specificity in Japanese elite athletes. Biol. Sport 2022, 39, 905–911. [Google Scholar] [CrossRef]
- Koku, F.E.; Karamızrak, S.O.; Çiftçi, A.S.; Taşlıdere, H.; Durmaz, B.; Çoğulu, Ö. The relationship between ACTN3 R577X gene polymorphism and physical performance in amateur soccer players and sedentary individuals. Biol. Sport 2019, 36, 9–16. [Google Scholar] [CrossRef]
- Zaccagni, L.; Lunghi, B.; Barbieri, D.; Rinaldo, N.; Missoni, S.; Šaric, T.; Šarac, J.; Babic, V.; Rakovac, M.; Bernardi, F.; et al. Performance prediction models based on anthropometric, genetic and psychological traits of Croatian sprinters. Biol. Sport 2019, 36, 17–23. [Google Scholar] [CrossRef]
- Gomez-Gallego, F.; Santiago, C.; González-Freire, M.; Yvert, T.; Muniesa, C.A.; Serratosa, L.; Altmäe, S.; Ruiz, J.R.; Lucia, A. The C allele of the AGT Met235Thr polymorphism is associated with power sports performance. Appl. Physiol. Nutr. Metab. 2009, 34, 1108–1111. [Google Scholar] [CrossRef]
- Zarębska, A.; Sawczyn, S.; Kaczmarczyk, M.; Ficek, K.; Maciejewska-Karłowska, A.; Sawczuk, M.; Leońska-Duniec, A.; Eider, J.; Grenda, A.; Cięszczyk, P. Association of rs699 (M235T) polymorphism in the AGT gene with power but not endurance athlete status. J. Strength Cond. Res. 2013, 27, 2898–2903. [Google Scholar] [CrossRef]
- Cieszczyk, P.; Ostanek, M.; Leońska-Duniec, A.; Sawczuk, M.; Maciejewska, A.; Eider, J.; Ficek, K.; Sygit, K.; Kotarska, K. Distribution of the AMPD1 C34T polymorphism in Polish power-oriented athletes. J. Sport. Sci. 2012, 30, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Fedotovskaya, O.N.; Danilova, A.A.; Akhmetov, I.I. Effect of AMPD1 gene polymorphism on muscle activity in humans. Bull. Exp. Biol. Med. 2013, 154, 489–491. [Google Scholar] [CrossRef] [PubMed]
- Guilherme, J.P.L.F.; Semenova, E.A.; Borisov, O.V.; Kostryukova, E.S.; Vepkhvadze, T.F.; Lysenko, E.A.; Andryushchenko, O.N.; Andryushchenko, L.B.; Lednev, E.M.; Larin, A.K.; et al. The BDNF-Increasing Allele is Associated with Increased Proportion of Fast-Twitch Muscle Fibers, Handgrip Strength, and Power Athlete Status. J. Strength Cond. Res. 2022, 36, 1884–1889. [Google Scholar] [CrossRef] [PubMed]
- Fedotovskaya, O.; Eider, J.; Cięszczyk, P.; Ahmetov, I.; Moska, W.; Sawczyn, S.; Leońska–Duniec, A.; Maciejewska-Karłowska, A.; Sawczuk, M.; Czubek, Z.; et al. Association of muscle-specific creatine kinase (CKM) gene polymorphism with combat athlete status in Polish and Russian cohorts. Arch. Budo. 2013, 9, 233–237. [Google Scholar]
- He, E.P.; Li, Y.H.; Qian, J.D.; Yan, H.W. Association of CKMM gene A/G polymorphism and athletic performance of uyghurnationality. Zhongguo Ying Yong Sheng Li Xue Za Zhi 2016, 32, 82–86. [Google Scholar]
- Ginevičienė, V.; Jakaitienė, A.; Utkus, A.; Hall, E.C.R.; Semenova, E.A.; Andryushchenko, L.B.; Larin, A.K.; Moreland, E.; Generozov, E.V.; Ahmetov, I.I. CKM Gene rs8111989 Polymorphism and Power Athlete Status. Genes 2021, 12, 1499. [Google Scholar] [CrossRef]
- Miyamoto-Mikami, E.; Fujita, Y.; Murakami, H.; Ito, M.; Miyachi, M.; Kawahara, T.; Fuku, N. CNTFR Genotype and Sprint/power Performance: Case-control Association and Functional Studies. Int. J. Sport. Med. 2016, 37, 411–417. [Google Scholar] [CrossRef]
- Zmijewski, P.; Trybek, G.; Czarny, W.; Leońska-Duniec, A. GALNTL6 Rs558129: A Novel Polymorphism for Swimming Performance? J. Hum. Kinet. 2021, 80, 199–205. [Google Scholar] [CrossRef]
- Cieszczyk, P.; Eider, J.; Arczewska, A.; Ostanek, M.; Leońska-Duniec, A.; Sawczyn, S.; Ficek, K.; Jascaniene, N.; Kotarska, K.; Sygit, K. The HIF1A gene Pro582Ser polymorphism in polish power-orientated athletes. Biol. Sport 2011, 28, 111–114. [Google Scholar] [CrossRef]
- Gabbasov, R.T.; Arkhipova, A.A.; Borisova, A.V.; Hakimullina, A.M.; Kuznetsova, A.V.; Williams, A.G.; Day, S.H.; Ahmetov, I.I. The HIF1A Gene Pro582Ser Polymorphism in Russian Strength Athletes. J. Strength Cond. Res. 2013, 27, 2055–2058. [Google Scholar] [CrossRef]
- Drozdovska, S.B.; Dosenko, V.E.; Ahmetov, I.I.; Ilyin, V.N. The association of gene polymorphisms with athlete status in ukrainians. Biol. Sport 2013, 30, 163–167. [Google Scholar] [CrossRef] [Green Version]
- Ben-Zaken, S.; Meckel, Y.; Nemet, D.; Eliakim, A. Can IGF-I polymorphism affect power and endurance athletic performance? Growth Horm. IGF Res. 2013, 23, 175–178. [Google Scholar] [CrossRef]
- Ben-Zaken, S.; Meckel, Y.; Remmel, L.; Nemet, D.; Jürimäe, J.; Eliakim, A. The prevalence of IGF-I axis genetic polymorphisms among decathlon athletes. Growth Horm. IGF Res. 2022, 64, 101468. [Google Scholar] [CrossRef]
- Itaka, T.; Agemizu, K.; Aruga, S.; Machida, S. G Allele of the IGF2 ApaI Polymorphism Is Associated with Judo Status. J. Strength Cond. Res. 2016, 30, 2043–2048. [Google Scholar] [CrossRef]
- Ruiz, J.R.; Buxens, A.; Artieda, M.; Arteta, D.; Santiago, C.; Rodríguez-Romo, G.; Lao, J.I.; Gómez-Gallego, F.; Lucia, A. The -174 G/C polymorphism of the IL6 gene is associated with elite power performance. J. Sci. Med. Sport 2010, 13, 549–553. [Google Scholar] [CrossRef]
- Eider, J.; Cieszczyk, P.; Leońska-Duniec, A.; Maciejewska, A.; Sawczuk, M.; Ficek, K.; Kotarska, K. Association of the 174 G/C polymorphism of the IL6 gene in Polish power-orientated athletes. J. Sport. Med. Phys. Fitness 2013, 53, 88–92. [Google Scholar]
- Terruzzi, I.; Senesi, P.; Montesano, A.; La Torre, A.; Alberti, G.; Benedini, S.; Caumo, A.; Fermo, I.; Luzi, L. Genetic polymorphisms of the enzymes involved in DNA methylation and synthesis in elite athletes. Physiol. Genom. 2011, 43, 965–973. [Google Scholar] [CrossRef] [Green Version]
- Zarebska, A.; Ahmetov, I.; Sawczyn, S.; Weiner, A.S.; Kaczmarczyk, M.; Ficek, K.; Maciejewska-Karlowska, A.; Sawczuk, M.; Leonska-Duniec, A.; Klocek, T.; et al. Association of the MTHFR 1298A>C (rs1801131) polymorphism with speed and strength sports in Russian and Polish athletes. J. Sport. Sci. 2013, 32, 375–382. [Google Scholar] [CrossRef]
- Murtagh, C.F.; Brownlee, T.E.; Rienzi, E.; Roquero, S.; Moreno, S.; Huertas, G.; Lugioratto, G.; Baumert, P.; Turner, D.C.; Lee, D.; et al. The genetic profile of elite youth soccer players and its association with power and speed depends on maturity status. PLoS ONE 2020, 15, e0234458. [Google Scholar] [CrossRef]
- Nakamichi, R.; Ma, S.; Nonoyama, T.; Chiba, T.; Kurimoto, R.; Ohzono, H.; Olmer, M.; Shukunami, C.; Fuku, N.; Wang, G.; et al. The mechanosensitive ion channel PIEZO1 is expressed in tendons and regulates physical performance. Sci. Transl. Med. 2022, 14, eabj5557. [Google Scholar] [CrossRef]
- Maciejewska-Skrendo, A.; Mieszkowski, J.; Kochanowicz, A.; Niespodziński, B.; Cieszczyk, P.; Leźnicka, K.; Leońska-Duniec, A.; Kolbowicz, M.; Kaczmarczyk, M.; Piskorska, E.; et al. Does the PPARA Intron 7 Gene Variant (rs4253778) Influence Performance in Power/Strength-Oriented Athletes? A Case-Control Replication Study in Three Cohorts of European Gymnasts. J. Hum. Kinet. 2021, 79, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Ahmetov, I.I.; Mozhayskaya, I.A.; Lyubaeva, E.V.; Vinogradova, O.L.; Rogozkin, V.A. PPARG Gene polymorphism and locomotor activity in humans. Bull. Exp. Biol. Med. 2008, 146, 630–632. [Google Scholar] [CrossRef] [PubMed]
- Maciejewska-Karlowska, A.; Sawczuk, M.; Cieszczyk, P.; Zarebska, A.; Sawczyn, S. Association between the Pro12Ala polymorphism of the peroxisome proliferator-activated receptor γ gene and strength athlete status. PLoS ONE 2013, 8, e67172. [Google Scholar] [CrossRef] [PubMed]
- Guilherme, J.P.L.F.; Bertuzzi, R.; Lima-Silva, A.E.; Pereira, A.D.C.; Lancha Junior, A.H. Analysis of sports-relevant polymorphisms in a large Brazilian cohort of top-level athletes. Ann. Hum. Genet. 2018, 82, 254–264. [Google Scholar] [CrossRef]
- Ahmetov, I.I.; Naumov, V.A.; Donnikov, A.E.; Maciejewska-Karłowska, A.; Kostryukova, E.S.; Larin, A.K.; Maykova, E.V.; Alexeev, D.G.; Fedotovskaya, O.N.; Generozov, E.V.; et al. SOD2 gene polymorphism and muscle damage markers in elite athletes. Free Radic. Res. 2014, 48, 948–955. [Google Scholar] [CrossRef]
- Miyamoto-Mikami, E.; Murakami, H.; Tsuchie, H.; Takahashi, H.; Ohiwa, N.; Miyachi, M.; Kawahara, T.; Fuku, N. Lack of association between genotype score and sprint/power performance in the Japanese population. J. Sci. Med. Sport 2017, 20, 98–103. [Google Scholar] [CrossRef]
- Khanal, P.; He, L.; Herbert, A.J.; Stebbings, G.K.; Onambele-Pearson, G.L.; Degens, H.; Morse, C.I.; Thomis, M.; Williams, A.G. The Association of Multiple Gene Variants with Ageing Skeletal Muscle Phenotypes in Elderly Women. Genes 2020, 11, 1459. [Google Scholar] [CrossRef]
- Seaborne, R.A.; Hughes, D.C.; Turner, D.C.; Owens, D.J.; Baehr, L.M.; Gorski, P.; Semenova, E.A.; Borisov, O.V.; Larin, A.K.; Popov, D.V.; et al. UBR5 is a novel E3 ubiquitin ligase involved in skeletal muscle hypertrophy and recovery from atrophy. J. Physiol. 2019, 597, 3727–3749. [Google Scholar] [CrossRef]
- Kuschel, L.B.; Sonnenburg, D.; Engel, T. Factors of Muscle Quality and Determinants of Muscle Strength: A Systematic Literature Review. Healthcare 2022, 10, 1937. [Google Scholar] [CrossRef]
- Kikuchi, N.; Moreland, E.; Homma, H.; Semenova, E.A.; Saito, M.; Larin, A.K.; Kobatake, N.; Yusupov, R.A.; Okamoto, T.; Nakazato, K.; et al. Genes and Weightlifting Performance. Genes 2022, 13, 25. [Google Scholar] [CrossRef]
- Colakoglu, M.; Cam, F.S.; Kayitken, B.; Cetinoz, F.; Colakoglu, S.; Turkmen, M.; Sayin, M. ACE genotype may have an effect on single versus multiple set preferences in strength training. Eur. J. Appl. Physiol. 2005, 95, 20–26. [Google Scholar] [CrossRef]
- Giaccaglia, V.; Nicklas, B.; Kritchevsky, S.; Mychalecky, J.; Messier, S.; Bleecker, E.; Pahor, M. Interaction between angiotensin converting enzyme insertion/deletion genotype and exercise training on knee extensor strength in older individuals. Int. J. Sport. Med. 2008, 29, 40–44. [Google Scholar] [CrossRef] [Green Version]
- Costa, A.M.; Silva, A.J.; Garrido, N.; Louro, H.; Marinho, D.A.; Cardoso Marques, M.; Breitenfeld, L. Angiotensin-converting enzyme genotype affects skeletal muscle strength in elite athletes. J. Sport. Sci. Med. 2009, 8, 410–418. [Google Scholar]
- Pimjan, L.; Ongvarrasopone, C.; Chantratita, W.; Polpramool, C.; Cherdrungsi, P.; Bangrak, P.; Yimlamai, T. A Study on ACE, ACTN3, and VDR Genes Polymorphism in Thai Weightlifters. Walailak J. Sci. Technol. (WJST) 2017, 15, 609–626. [Google Scholar] [CrossRef]
- Melián Ortiz, A.; Laguarta-Val, S.; Varillas-Delgado, D. Muscle Work and Its Relationship with ACE and ACTN3 Polymorphisms Are Associated with the Improvement of Explosive Strength. Genes 2021, 12, 1177. [Google Scholar] [CrossRef]
- Khanal, P.; Morse, C.I.; He, L.; Herbert, A.J.; Onambélé-Pearson, G.L.; Degens, H.; Thomis, M.; Williams, A.G.; Stebbings, G.K. Polygenic Models Partially Predict Muscle Size and Strength but Not Low Muscle Mass in Older Women. Genes 2022, 13, 982. [Google Scholar] [CrossRef]
- Gineviciene, V.; Jakaitiene, A.; Aksenov, M.O.; Aksenova, A.V.; Astratenkova, A.D.; Egorova, E.S.; Gabdrakhmanova, L.J.; Tubelis, L.; Kucinskas, V.; Utkus, A. Association analysis of ACE, ACTN3 and PPARGC1A gene polymorphisms in two cohorts of European strength and power athletes. Biol. Sport 2016, 33, 199. [Google Scholar] [CrossRef]
- Roth, S.M.; Walsh, S.; Liu, D.; Metter, E.J.; Ferrucci, L.; Hurley, B.F. The ACTN3 R577X nonsense allele is under-represented in elite-level strength athletes. Eur. J. Hum. Genet. 2007, 16, 391–394. [Google Scholar] [CrossRef]
- Erskine, R.M.; Williams, A.G.; Jones, D.A.; Stewart, C.E.; Degens, H. The individual and combined influence of ACE and ACTN3 genotypes on muscle phenotypes before and after strength training. Scand. J. Med. Sci Sport. 2014, 24, 642–648. [Google Scholar] [CrossRef] [Green Version]
- Homma, H.; Saito, M.; Saito, A.; Kozuma, A.; Matsumoto, R.; Matsumoto, S.; Kobatake, N.; Okamoto, T.; Nakazato, K.; Nishiyama, T.; et al. The Association between Total Genotype Score and Athletic Performance in Weightlifters. Genes 2022, 13, 2091. [Google Scholar] [CrossRef]
- Orysiak, J.; Mazur-Różycka, J.; Busko, K.; Gajewski, J.; Szczepanska, B.; Malczewska-Lenczowska, J. Individual and Combined Influence of ACE and ACTN3 Genes on Muscle Phenotypes in Polish Athletes. J. Strength Cond. Res. 2018, 32, 2776–2782. [Google Scholar] [CrossRef] [PubMed]
- Ben-Zaken, S.; Eliakim, A.; Nemet, D.; Meckel, Y. Genetic Variability among Power Athletes: The Stronger vs. Faster. J. Strength Cond. Res. 2019, 33, 1505–1511. [Google Scholar] [CrossRef] [PubMed]
- Aleksandra, Z.; Zbigniew, J.; Waldemar, M.; Agata, L.D.; Mariusz, K.; Marek, S.; Agnieszka, M.S.; Piotr, Ż.; Krzysztof, F.; Grzegorz, T.; et al. The AGT Gene M235T Polymorphism and Response of Power-Related Variables to Aerobic Training. J. Sport. Sci. Med. 2016, 15, 616–624. [Google Scholar] [PubMed]
- Matteini, A.M.; Tanaka, T.; Karasik, D.; Atzmon, G.; Chou, W.C.; Eicher, J.D.; Johnson, A.D.; Arnold, A.M.; Callisaya, M.L.; Davies, G.; et al. GWAS analysis of handgrip and lower body strength in older adults in the CHARGE consortium. Aging Cell 2016, 15, 792–800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walsh, S.; Zmuda, J.M.; Cauley, J.A.; Shea, P.R.; Metter, E.J.; Hurley, B.F.; Ferrell, R.E.; Roth, S.M. Androgen receptor CAG repeat polymorphism is associated with fat-free mass in men. J. Appl. Physiol. 2005, 98, 132–137. [Google Scholar] [CrossRef] [Green Version]
- Guilherme, J.P.L.; Shikhova, Y.V.; Dondukovskaya, R.R.; Topanova, A.A.; Semenova, E.A.; Astratenkova, I.V.; Ahmetov, I.I. Androgen receptor gene microsatellite polymorphism is associated with muscle mass and strength in bodybuilders and power athlete status. Ann. Hum. Biol. 2021, 48, 142–149. [Google Scholar] [CrossRef]
- Fedotovskaia, O.N.; Popov, D.V.; Vinogradova, O.L.; Akhmetov, I.I. Association of the muscle-specific creatine kinase (CKMM) gene polymorphism with physical performance of athletes. Fiziol. Cheloveka 2012, 38, 105–109. [Google Scholar] [CrossRef]
- Homma, H.; Kobatake, N.; Sekimoto, Y.; Saito, M.; Mochizuki, Y.; Okamoto, T.; Nakazato, K.; Nishiyama, T.; Kikuchi, N. Ciliary Neurotrophic Factor Receptor rs41274853 Polymorphism Is Associated with Weightlifting Performance in Japanese Weightlifters. J. Strength Cond. Res. 2020, 34, 3037–3041. [Google Scholar] [CrossRef]
- Grishina, E.E.; Zmijewski, P.; Semenova, E.A.; Cięszczyk, P.; Humińska-Lisowska, K.; Michałowska-Sawczyn, M.; Maculewicz, E.; Crewther, B.; Orysiak, J.; Kostryukova, E.S.; et al. Three DNA Polymorphisms Previously Identified as Markers for Handgrip Strength Are Associated with Strength in Weightlifters and Muscle Fiber Hypertrophy. J. Strength Cond. Res. 2019, 33, 2602–2607. [Google Scholar] [CrossRef] [Green Version]
- Ahmetov, I.I.; Hakimullina, A.M.; Lyubaeva, E.V.; Vinogradova, O.L.; Rogozkin, V.A. Effect of HIF1A gene polymorphism on human muscle performance. Bull. Exp. Biol. Med. 2008, 146, 351–353. [Google Scholar] [CrossRef]
- Kostek, M.C.; Devaney, J.M.; Gordish-Dressman, H.; Harris, T.B.; Thompson, P.D.; Clarkson, P.M.; Angelopoulos, T.J.; Gordon, P.M.; Moyna, N.M.; Pescatello, L.S.; et al. A polymorphism near IGF1 is associated with body composition and muscle function in women from the Health, Aging, and Body Composition Study. Eur. J. Appl. Physiol. 2010, 110, 315–324. [Google Scholar] [CrossRef] [Green Version]
- Ahmetov, I.I.; Gavrilov, D.N.; Astratenkova, I.V.; Druzhevskaya, A.M.; Malinin, A.V.; Romanova, E.E.; Rogozkin, V.A. The association of ACE, ACTN3 and PPARA gene variants with strength phenotypes in middle school-age children. J. Physiol. Sci. 2013, 63, 79–85. [Google Scholar] [CrossRef]
- Petr, M.; Stastny, P.; Pecha, O.; Šteffl, M.; Šeda, O.; Kohlíková, E. PPARA intron polymorphism associated with power performance in 30-s anaerobic Wingate Test. PLoS ONE 2014, 9, e107171. [Google Scholar] [CrossRef]
- Mann, D.L.; Dehghansai, N.; Baker, J. Searching for the elusive gift: Advances in talent identification in sport. Curr. Opin. Psychol. 2017, 16, 128–133. [Google Scholar] [CrossRef]
- Johnston, K.; Wattie, N.; Schorer, J.; Baker, J. Talent Identification in Sport: A Systematic Review. Sport. Med. 2018, 48, 97–109. [Google Scholar] [CrossRef]
- Baker, J.; Wilson, S.; Johnston, K.; Dehghansai, N.; Koenigsberg, A.; de Vegt, S.; Wattie, N. Talent Research in Sport 1990-2018: A Scoping Review. Front. Psychol. 2020, 11, 607710. [Google Scholar] [CrossRef]
- Wang, G.; Padmanabhan, S.; Wolfarth, B.; Fuku, N.; Lucia, A.; Ahmetov, I.I.; Cieszczyk, P.; Collins, M.; Eynon, N.; Klissouras, V.; et al. Genomics of elite sporting performance: What little we know and necessary advances. Adv. Genet. 2013, 84, 123–149. [Google Scholar] [CrossRef]
- Webborn, N.; Williams, A.; McNamee, M.; Bouchard, C.; Pitsiladis, Y.; Ahmetov, I.; Ashley, E.; Byrne, N.; Camporesi, S.; Collins, M.; et al. Direct-to-consumer genetic testing for predicting sports performance and talent identification: Consensus statement. Br. J. Sport. Med 2015, 49, 1486–1491. [Google Scholar] [CrossRef]
- Pitsiladis, Y.P.; Tanaka, M.; Eynon, N.; Bouchard, C.; North, K.N.; Williams, A.G.; Collins, M.; Moran, C.N.; Britton, S.L.; Fuku, N.; et al. Athlome Project Consortium: A concerted effort to discover genomic and other “omic” markers of athletic performance. Physiol. Genom. 2016, 48, 183–190. [Google Scholar] [CrossRef] [Green Version]
- de la Chapelle, A.; Sistonen, P.; Lehväslaiho, H.; Ikkala, E.; Juvonen, E. Familial erythrocytosis genetically linked to erythropoietin receptor gene. Lancet 1993, 341, 82–84. [Google Scholar] [CrossRef]
- Schuelke, M.; Wagner, K.R.; Stolz, L.E.; Hübner, C.; Riebel, T.; Kömen, W.; Braun, T.; Tobin, J.F.; Lee, S.J. Myostatin mutation associated with gross muscle hypertrophy in a child. N. Engl. J. Med. 2004, 350, 2682–2688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner, D.C.; Gorski, P.P.; Maasar, M.F.; Seaborne, R.A.; Baumert, P.; Brown, A.D.; Kitchen, M.O.; Erskine, R.M.; Dos-Remedios, I.; Voisin, S.; et al. DNA methylation across the genome in aged human skeletal muscle tissue and muscle-derived cells: The role of HOX genes and physical activity. Sci. Rep. 2020, 10, 15360. [Google Scholar] [CrossRef] [PubMed]
- Seaborne, R.A.; Strauss, J.; Cocks, M.; Shepherd, S.; O’Brien, T.D.; van Someren, K.A.; Bell, P.G.; Murgatroyd, C.; Morton, J.P.; Stewart, C.E.; et al. Human Skeletal Muscle Possesses an Epigenetic Memory of Hypertrophy. Sci. Rep. 2018, 8, 1898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner, D.C.; Seaborne, R.A.; Sharples, A.P. Comparative Transcriptome and Methylome Analysis in Human Skeletal Muscle Anabolism, Hypertrophy and Epigenetic Memory. Sci. Rep. 2019, 9, 4251. [Google Scholar] [CrossRef] [Green Version]
- Demirci, B.; Bulgay, C.; Ceylan, H.İ.; Öztürk, M.E.; Öztürk, D.; Kazan, H.H.; Ergun, M.A.; Cerit, M.; Semenova, E.A.; Larin, A.K.; et al. Association of ACTN3 R577X Polymorphism with Elite Basketball Player Status and Training Responses. Genes 2023, 14, 1190. [Google Scholar] [CrossRef]
- Murtagh, C.F.; Hall, E.C.; Brownlee, T.E.; Drust, B.; Williams, A.G.; Erskine, R.M. The genetic association with athlete status, physical performance and injury risk in soccer. Int. J. Sport. Med. 2023, in press. [Google Scholar] [CrossRef]
Gene | Full Name | Locus | Polymorphism | Endurance-Related Allele | References | |
---|---|---|---|---|---|---|
Studies with Positive Results | Studies with Negative or Controversial Results | |||||
ACE | Angiotensin I converting enzyme | 17q23.3 | Alu I/D (rs4343 A/G or rs4341 C/G) | I (A or C) | [14,15,16,128,129,130,131,132,133,134,135,136,137,138,139,140,141] | [133,142,143,144,145,146,147,148,149,150,151,152,153] |
ACTN3 | Actinin α 3 | 11q13.1 | rs1815739 C/T | T | [17,154,155,156] | [152,157,158,159,160,161,162,163,164,165,166,167,168,169,170] |
ADRB2 | Adrenoceptor β 2 | 5q31-q32 | rs1042713 G/A | A | [160,171,172] | [173,174] |
ADRB2 | Adrenoceptor β 2 | 5q31-q32 | rs1042714 G/C | C | [153,175] | [173,174] |
ADRB3 | Adrenoceptor β 3 | 8p11.23 | rs4994 A/G | G | [170,173] | |
AGTR2 | Angiotensin II receptor type 2 | Xq22-q23 | rs11091046 A/C | C | [176] | [177] |
AQP1 | Aquaporin 1 | 7p14 | rs1049305 C/G | C | [178,179,180] | |
AMPD1 | Adenosine monophosphate deaminase 1 | 1p13 | rs17602729 C/T | C | [19,153,181,182,183] | [184] |
BDKRB2 | Bradykinin receptor B2 | 14q32.1-q32.2 | +9/−9 (exon 1) | –9 | [185,186] | [153,187,188,189] |
CDKN1A | Cyclin Dependent Kinase Inhibitor 1A | 6p21.2 | rs236448 A/C | A | [43] | |
CKM | Creatine kinase M-type | 19q13.32 | rs8111989 A/G | A | [190,191,192] | [133,193] |
COL5A1 | Collagen type V α 1 chain | 9q34.2-q34.3 | rs12722 C/T | T | [194,195] | |
FTO | FTO α-Ketoglutarate Dependent Dioxygenase | 16q12.2 | rs9939609 T/A | T | [196,197] | [198] |
GABPB1 | GA binding protein transcription factor subunit β 1 | 15q21.2 | rs12594956 A/C | A | [199,200] | |
rs7181866 A/G | G | [199,201] | [200] | |||
GALNTL6 | Polypeptide N-acetylgalactosaminyltransferase 6 | 4q34.1 | rs558129 T/C | C | [40] | |
GSTP1 | Glutathione S-transferase Pi 1 | 11q13.2 | rs1695 A/G | G | [202,203] | |
HFE | Homeostatic iron regulator | 6p21.3 | rs1799945 C/G | G | [153,204,205,206,207] | |
HIF1A | Hypoxia inducible factor 1 subunit α | 14q23.2 | rs11549465 C/T | C | [208,209] | [144,210] |
MCT1 | Monocarboxylate transporter 1 | 1p12 | rs1049434 A/T | T | [60,211,212,213,214] | [215] |
MtDNA loci | Mitochondrial DNA | MtDNA | MtDNA haplogroups | H | [161,216] | |
Unfavourable: K | [161,216] | |||||
MYBPC3 | Myosin Binding Protein C3 | 11p11.2 | rs1052373 A/G | G | [42] | |
NFATC4 | Nuclear factor of activated T cells 4 | 14q11.2 | rs2229309 G/C | G | [144] | |
NFIA-AS2 | NFIA antisense RNA 2 | 1p31.3 | rs1572312 C/A | C | [39,46] | |
NOS3 | Nitric oxide synthase 3 | 7q36 | rs2070744 T/C | T | [153,217,218] | [219] |
PPARA | Peroxisome proliferator activated receptor α | 22q13.31 | rs4253778 G/C | G | [20,220,221,222] | |
PPARGC1A | Peroxisome proliferative activated receptor, γ, coactivator 1 α | 4p15.1 | rs8192678 G/A | G | [18,20,170,223] | [216,224,225] |
PPARGC1B | Peroxisome proliferative activated receptor, γ, coactivator 1 β | 5q32 | rs7732671 G/C | C | [144,226] | |
PPP3R1 | Protein phosphatase 3 regulatory subunit B, α | 2p15 | Promoter 5I/5D | 5I | [144,227] | |
PRDM1 | PR/SET Domain 1 | 6q21 | rs10499043 C/T | T | [228,229] | |
RBFOX1 | RNA binding fox-1 homolog 1 | 16p13.3 | rs7191721 G/A | G | [39] | |
SIRT1 | Sirtuin 1 | 10q21.3 | rs41299232 C/G | G | [45] | |
SPEG | Striated Muscle Enriched Protein Kinase | 2q35 | rs7564856 G/A | G | [230] | |
TFAM | Transcription factor A, mitochondrial | 10q21 | rs1937 G/C | C | [144,231] | [216] |
TRPM2 | Transient Receptor Potential Cation Channel Subfamily M Member 2 | 21q22.3 | rs1785440 A/G | G | [45] | |
TSHR | Thyroid stimulating hormone receptor | 14q31 | rs7144481 T/C | C | [39] | |
UCP2 | Uncoupling protein 2 | 11q13 | rs660339 C/T | T | [130,144,232] | |
UCP3 | Uncoupling Protein 3 | 11q13 | rs1800849 C/T | T | [130,144] | [233] |
VEGFA | Vascular endothelial growth factor A | 6p12 | rs2010963 G/C | C | [144,234,235] | |
VEGFR2 | Vascular endothelial growth factor receptor 2 | 4q11-q12 | rs1870377 T/A | A | [236,237] |
Gene | Full Name | Locus | Polymorphism | Power-Related Allele | References | |
---|---|---|---|---|---|---|
Studies with Positive Results | Studies with Negative or Controversial Results | |||||
ACE | Angiotensin I converting enzyme | 17q23.3 | Alu I/D (rs4343 A/G or rs4341 C/G) | D (G) | [16,128,145,169,247,248,249,250] | [150,251,252,253,254] |
ACVR1B | Activin A type IB receptor | 12q13.13 | rs2854464 A/G | A | [255,256] | [256,257] |
ACTN3 | Actinin α 3 | 11q13.1 | rs1815739 C/T | C | [17,161,162,168,170,250,258,259,260,261,262,263,264] | [159,165,254,265,266] |
ADAM15 | ADAM Metallopeptidase Domain 15 | 1q21.3 | rs11264302 G/A | G | [49] | |
ADRB2 | Adrenoceptor β 2 | 5q31-q32 | rs1042713 G/A | G | [41,174] | |
rs1042714 C/G | G | [41,174] | ||||
AGRN | Agrin | 1p36.33 | rs4074992 C/T | C | [45] | |
AGT | Angiotensinogen | 1q42.2 | rs699 T/C | C | [41,267,268] | |
AGTR2 | Angiotensin II receptor type 2 | Xq22-q23 | rs11091046 A/C | A | [176,177] | [55] |
AKAP6 | A-Kinase Anchoring Protein 6 | 14q12 | rs12883788 C/T | C | [49] | |
AMPD1 | Adenosine monophosphate deaminase 1 | 1p13 | rs17602729 C/T | C | [184,269,270] | |
AUTS2 | Activator of Transcription and Developmental Regulator AUTS2 | 7q11.22 | rs10452738 A/G | A | [49] | |
BDNF | Brain derived neurotrophic factor | 11p14.1 | rs10501089 G/A | A | [271] | |
CCT3 | Chaperonin Containing TCP1 Subunit 3 | 1q22 | rs11548200 T/C | T | [49] | |
CDKN1A | Cyclin Dependent Kinase Inhibitor 1A | 6p21.2 | rs236448 A/C | C | [43] | |
CKM | Creatine kinase, M-type | 19q13.32 | rs8111989 A/G | G | [65,272,273] | [274] |
CNTFR | Ciliary neurotrophic factor receptor | 9p13.3 | rs41274853 C/T | T | [275] | |
CPNE5 | Copine V | 6p21.2 | rs3213537 G/A | G | [41,48] | |
CRTAC1 | Cartilage Acidic Protein 1 | 10q24.2 | rs2439823 A/G | A | [49] | |
CRTC1 | CREB Regulated Transcription Coactivator 1 | 19p13.11 | rs11881338 T/A | A | [49] | |
E2F3 | E2F Transcription Factor 3 | 6p22.3 | rs4134943 C/T | T | [49] | |
FHL2 | Four and a Half LIM Domains 2 | 2q12.2 | rs55680124 C/T | C | [49] | |
GALNTL6 | Polypeptide N-acetylgalactosaminyltransferase like 6 | 4q34.1 | rs558129 C/T | T | [47,276] | |
GDF5 | Growth Differentiation Factor 5 | 20q11.22 | rs143384 A/G | G | [49] | |
HIF1A | Hypoxia inducible factor 1 α subunit | 14q21-q24 | rs11549465 C/T | T | [277,278,279] | |
HSD17B14 | Hydroxysteroid 17-β dehydrogenase 14 | 19q13.33 | rs7247312 A/G | G | [41] | |
IGF1 | Insulin like growth factor 1 | 12q23.2 | rs35767 C/T | T | [280,281] | |
IGF2 | Insulin like growth factor 2 | 11p15.5 | rs680 A/G | G | [41,281,282] | |
IGSF3 | Immunoglobulin Superfamily Member 3 | 1p13.1 | rs699785 G/A | A | [49] | |
IL6 | Interleukin 6 | 7p21 | rs1800795 C/G | G | [41,283,284] | |
ILRUN | Inflammation and Lipid Regulator with UBA-Like and NBR1-Like Domains | 6p21.31 | rs205262 A/G | A | [49] | |
MTHFR | Methylenetetrahydrofolate reductase | 1p36.3 | rs1801131 A/C | C | [285,286] | |
NOS3 | Nitric oxide synthase 3 | 7q36 | rs2070744 T/C | T | [219,279,287] | |
NRXN3 | Neurexin 3 | 14q24.3-q31.1 | rs8011870 G/A | G | [49] | |
NUP210 | Nucleoporin 210 | 3p25.1 | rs2280084 C/A | C | [45] | |
PIEZO1 | Piezo Type Mechanosensitive Ion Channel Component 1 | 16q24.3 | rs572934641 (TCC/-) E756del | D | [288] | |
PPARA | Peroxisome proliferator activated receptor α | 22q13.31 | rs4253778 G/C | C | [159,220,289] | |
PPARG | Peroxisome proliferator activated receptor γ | 3p25.2 | rs1801282 C/G | G | [279,290,291] | [292] |
rs2920503 C/T | T | [49] | ||||
SLC39A8 | Solute Carrier Family 39 Member 8 | 4q24 | rs13107325 C/T | C | [49] | |
SOD2 | Superoxide dismutase 2 | 6q25.3 | rs4880 C/T | C | [293] | |
TRHR | Thyrotropin releasing hormone receptor | 8q23.1 | rs7832552 C/T | T | [65,294,295] | |
UBR5 | Ubiquitin Protein Ligase E3 Component N-Recognin 5 | 8q22.3 | rs10505025 G/A | A | [296] | |
rs4734621 G/A | A | [296] | ||||
ZNF568 | Zinc Finger Protein 568 | 19q13.12 | rs1667369 A/C | A | [49] |
Gene | Full Name | Locus | Polymorphism | Strength-Related Allele | References | |
---|---|---|---|---|---|---|
Studies with Positive Results | Studies with Negative or Controversial Results | |||||
ABHD17C | Abhydrolase domain containing 17C | 15q25.1 | rs7165759 G/A | A | [35,51] | |
ACE | Angiotensin I converting enzyme | 17q23.3 | Alu I/D (rs4343 A/G or rs4341 C/G) | D (G) | [299,300,301,302,303,304] | [305] |
ACTG1 | Actin γ 1 | 17q25.3 | rs6565586 T/A | A | [34,51] | |
ACTN3 | Actinin α 3 | 11q13.1 | rs1815739 C/T | C | [302,306,307,308] | [51,305,309,310] |
ADCY3 | Adenylate cyclase 3 | 2p23.3 | rs10203386 T/A | T | [35,51] | |
ADPGK | ADP dependent glucokinase | 15q24.1 | rs4776614 C/G | C | [35,51] | |
AGT | Angiotensinogen | 1q42.2 | rs699 T/C | C | [310,311] | [51] |
ALDH2 | Aldehyde Dehydrogenase 2 Family Member | 12q24.12 | rs671 G/A | G | [66,67,68] | |
ANGPT2 | Angiopoietin 2 | 8p23.1 | rs890022 G/A | A | [51,312] | |
AR | Androgen Receptor | Xq12 | (CAG)n | ≥21 | [313,314] | |
ARPP21 | CAMP regulated phosphoprotein 21 | 3p22.3 | rs1513475 T/C | C | [35,51] | |
BCDIN3D | Bicoid interacting 3 domain containing RNA methyltransferase | 12q13.12 | rs12367809 C/T | C | [35,51] | |
CKM | Creatine kinase, M-type | 19q13.32 | rs8111989 A/G | G | [54,315] | [51,274] |
CNTFR | Ciliary neurotrophic factor receptor | 9p13.3 | rs41274853 C/T | T | [275,316] | [51] |
CRTAC1 | Cartilage acidic protein 1 | 10q24.2 | rs563296 G/A | G | [35,51] | |
DHODH | Dihydroorotate dehydrogenase (Quinone) | 16q22.2 | rs12599952 G/A | A | [35,51] | |
GALNTL6 | Polypeptide N-acetylgalactosaminyltransferase-like 6 | 4q34.1 | rs558129 C/T | T | [47] | |
GBE1 | 1, 4-α-glucan branching enzyme 1 | 3p12.2 | rs9877408 A/G | A | [35,51] | |
GBF1 | Golgi brefeldin A resistant guanine nucleotide exchange factor 1 | 10q24.32 | rs2273555 G/A | A | [34,317] | |
GLIS3 | GLIS Family Zinc Finger 3 | 9p24.2 | rs34706136 T/TG | TG | [50] | |
HIF1A | Hypoxia inducible factor 1 α | 14q21-q24 | rs11549465 C/T | T | [278,295,318] | [51] |
IGF1 | Insulin-like growth factor 1 | 12q23.2 | rs35767 C/T | T | [51,280,319] | |
IL6 | Interleukin 6 | 7p21 | rs1800795 C/G | G | [51,283] | |
ITPR1 | Inositol 1, 4, 5-Triphosphate Receptor Type 1 | 3p26.1 | rs901850 G/T | T | [35,51] | |
KIF1B | Kinesin family member 1B | 1p36.22 | rs11121542 G/A | G | [35,51] | |
LRPPRC | Leucine-rich pentatricopeptide repeat cassette | 2p21 | rs10186876 A/G | A | [34,51,298] | |
MLN | Motilin | 6p21.31 | rs12055409 A/G | G | [35,317] | |
MMS22L | Methyl methanesulfonate-sensitivity protein 22-Like | 6q16.1 | rs9320823 T/C | T | [35,51,298] | |
MTHFR | Methylenetetrahydrofolate reductase | 1p36.3 | rs1801131 A/C | C | [51,286,298] | |
NPIPB6 | Nuclear pore complex interacting protein family member B6 | 16p12.1 | rs2726036 A/C | A | [35,51] | |
PHACTR1 | Phosphate and actin regulator 1 | 6p24.1 | rs6905419 C/T | C | [35,51,298] | |
PLEKHB1 | Pleckstrin homology domain containing B1 | 11q13.4 | rs7128512 A/G | G | [51,312] | |
PPARA | Peroxisome proliferator activated receptor α | 22q13.31 | rs4253778 G/C | C | [220,320,321] | [51] |
PPARG | Peroxisome proliferator activated receptor γ | 3p25.2 | rs1801282 C/G | G | [51,290,291] | |
PPARGC1A | Peroxisome proliferative activated receptor, γ, coactivator 1 α | 4p15.2 | rs8192678 G/A | A | [51,305,308] | |
R3HDM1 | R3H domain containing 1 | 2q21.3 | rs6759321 G/T | T | [35,51] | |
RASGRF1 | Ras protein specific guanine nucleotide Releasing Factor 1 | 15q25.1 | rs1521624 C/A | A | [35,51] | |
RMC1 | Regulator of MON1-CCZ1 | 18q11.2 | rs303760 C/T | C | [35,51] | |
SLC39A8 | Solute carrier family 39 member 8 | 4q24 | rs13135092 A/G | A | [35,51] | |
TFAP2D | Transcriptional factor AP-2 delta | 6p12.3 | rs56068671 G/T | T | [35,51] | |
ZKSCAN5 | Zinc finger with KRAB and SCAN domains 5 | 7q22.1 | rs3843540 T/C | C | [35,51] | |
ZNF608 | Zinc finger protein 608 | 5q23.2 | rs4626333 G/A | G | [312,317] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Semenova, E.A.; Hall, E.C.R.; Ahmetov, I.I. Genes and Athletic Performance: The 2023 Update. Genes 2023, 14, 1235. https://doi.org/10.3390/genes14061235
Semenova EA, Hall ECR, Ahmetov II. Genes and Athletic Performance: The 2023 Update. Genes. 2023; 14(6):1235. https://doi.org/10.3390/genes14061235
Chicago/Turabian StyleSemenova, Ekaterina A., Elliott C. R. Hall, and Ildus I. Ahmetov. 2023. "Genes and Athletic Performance: The 2023 Update" Genes 14, no. 6: 1235. https://doi.org/10.3390/genes14061235
APA StyleSemenova, E. A., Hall, E. C. R., & Ahmetov, I. I. (2023). Genes and Athletic Performance: The 2023 Update. Genes, 14(6), 1235. https://doi.org/10.3390/genes14061235