Collagen Gene Variants and Anterior Cruciate Ligament Rupture in Italian Athletes: A Preliminary Report
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Genotyping
2.3. Statistical Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nagano, Y.; Ida, H.; Akai, M.; Fukubayashi, T. Biomechanical characteristics of the knee joint in female athletes during tasks associated with anterior cruciate ligament injury. Knee 2009, 16, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Kaynak, M.; Nijman, F.; van Meurs, J.; Reijman, M.; Meufels, D.E. Genetic variants and anterior cruciate ligament rupture: A systematic review. Sports Med. 2017, 47, 1637–1650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flynn, R.K.; Pedersen, C.L.; Birmingham, T.B.; Kirkley, A.; Jackowski, D.; Fowler, P.J. The familial predisposition toward tearing the anterior cruciate ligament: A case control study. Am. J. Sports Med. 2005, 33, 23–28. [Google Scholar] [CrossRef]
- Shultz, S.J.; Schmitz, R.J.; Benjaminse, A.; Collins, M.; Ford, K.; Kulas, A.S. ACL Research Retreat VII: An Update on Anterior Cruciate Ligament Injury Risk Factor Identification, Screening, and Prevention. J. Athl. Train. 2015, 50, 1076–1093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griffin, L.Y.; Agel, J.; Albohm, M.J.; Arendt, E.A.; Dick, R.W.; Garrett, W.E.; Garrick, J.G.; Hewett, T.E.; Huston, L.; Ireland, M.L.; et al. Noncontact Anterior Cruciate Ligament Injuries: Risk Factors and Prevention Strategies. J. Am. Acad. Orthop. Surg. 2000, 8, 141–150. [Google Scholar] [CrossRef] [Green Version]
- Joseph, A.M.; Collins, C.L.; Henke, N.M.; Yard, E.E.; Fields, S.K.; Comstock, R.D. A multisport epidemiologic comparison of anterior cruciate ligament injuries in high school athletics. J. Athl. Train. 2013, 48, 810–817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hewett, T.E.; Myer, G.D.; Ford, K.R. Anterior cruciate ligament injuries in female athletes: Part 1, mechanisms and risk factors. Am. J. Sports Med. 2006, 34, 299–311. [Google Scholar] [CrossRef]
- Liu, S.H.; al-Shaikh, R.; Ponossian, V.; Yang, R.S.; Nelson, S.D.; Soleiman, N.; Fineman, G.A.; Lane, J.M. Primary immunolocalization of estrogen and progesterone target cells in the human anterior cruciate ligament. J. Orthop. Res. 1996, 14, 526–533. [Google Scholar] [CrossRef]
- Ford, K.R.; Myer, G.D.; Hewett, T.E. Valgus knee motion during landing in high school female and male basketball players. Med. Sci. Sports Exerc. 2003, 35, 1745–1750. [Google Scholar] [CrossRef] [Green Version]
- Hewett, T.E.; Myer, G.D.; Ford, K.R.; Heidt, R.S., Jr.; Colosimo, A.J.; Mclean, S.G.; van den Bogert, A.J.; Paterno, M.V.; Succop, P. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: A prospective study. Am. J. Sports Med. 2005, 33, 492–501. [Google Scholar] [CrossRef] [Green Version]
- Frank, C.B. Ligament structure, physiology and function. J. Musculoskelet. Neuronal Interact. 2004, 4, 199–201. [Google Scholar] [PubMed]
- O’Connell, K.; Knight, H.; Ficek, K.; Leonska-Duniec, A.; Maciejewska-Karlowska, A.; Sawczuk, M.; Stepien-Slodkowska, M.; O’Cuinneagain, D.; van der Merwe, W.; Posthumus, M.; et al. Interactions between Collagen Gene Variants and Risk of Anterior Cruciate Ligament Rupture. Eur. J. Sport Sci. 2015, 15, 341–350. [Google Scholar] [CrossRef]
- Olsen, B.R. New insights into the function of collagens from genetic analysis. Curr. Opin. Cell Biol. 1995, 7, 720–727. [Google Scholar] [CrossRef]
- Young, B.B.; Zhang, G.; Koch, M.; Birk, D.E. The roles of types XII and XIV collagen in fibrillogenesis and matrix assembly in the developing cornea. J. Cell. Biochem. 2002, 87, 208–220. [Google Scholar] [CrossRef]
- Khoschnau, S.; Melhus, H.; Jacobson, A.; Rahme, H.; Bengtsson, H.; Ribom, E.; Grundberg, E.; Mallmin, H.; Michaëlsson, K. Type I collagen alpha1 Sp1 polymorphism and the risk of cruciate ligament ruptures or shoulder dislocations. Am. J. Sports Med. 2008, 36, 2432–2436. [Google Scholar] [CrossRef]
- Ficek, K.; Cieszczyk, P.; Kaczmarczyk, M.; Maciejewska-Karlowska, A.; Sawczuk, M.; Cholewinski, J.; Leonska-Duniec, A.; Stepien-Slodkowska, M.; Zarebska, A.; Stepto, N.K.; et al. Gene variants within the COL1A1 gene are associated with reduced anterior cruciate ligament injury in professional soccer players. J. Sci. Med. Sport 2013, 16, 396–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Posthumus, M.; September, A.V.; Keegan, M.; O’Cuinneagain, D.; Van der Merwe, W.; Schwellnus, M.P.; Collins, M. Genetic risk factors for anterior cruciate ligament ruptures: COL1A1 gene variant. Br. J. Sports Med. 2009, 43, 352–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stepien-Slodkowska, M.; Ficek, K.; Kaczmarczyk, M.; Maciejewska-Karlowska, A.; Sawczuk, M.; Leonska-Duniec, A.; Stepinski, M.; Zietek, P.; Krol, P.; Chudecka, M.; et al. The Variants Within the COL5A1 Gene are Associated with Reduced Risk of Anterior Cruciate Ligament Injury in Skiers. J. Hum. Kinet. 2015, 45, 103–111. [Google Scholar] [CrossRef] [Green Version]
- Posthumus, M.; September, A.V.; O’Cuinneagain, D.; van der Merwe, W.; Schwellnus, M.P.; Collins, M. The Association between the COL12A1 Gene and Anterior Cruciate Ligament Ruptures. Br. J. Sports Med. 2010, 44, 1160–1165. [Google Scholar] [CrossRef]
- Mann, V.; Hobson, E.E.; Li, B.; Stewart, T.L.; Grant, S.F.; Robins, S.P.; Aspden, R.M.; Ralston, S.H. A COL1A1 Sp1 binding site polymorphism predisposes to osteoporotic fracture by affecting bone density and quality. J. Clin. Investig. 2001, 107, 899–907. [Google Scholar] [CrossRef] [Green Version]
- Deak, S.B.; van der Rest, M.; Prockop, D.J. Altered helical structure of a homotrimer of alpha 1(I)chains synthesized by fibroblasts from a variant of osteogenesis imperfecta. Collagen Relat. Res. 1985, 5, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Wenstrup, R.J.; Florer, J.B.; Davidson, J.M.; Phillips, C.L.; Pfeiffer, B.J.; Menezes, D.W.; Chervoneva, I.; Birk, D.E. Murine model of the Ehlers-Danlos syndrome. col5a1 haploinsufficiency disrupts collagen fibril assembly at multiple stages. J. Biol. Chem. 2006, 281, 12888–12895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alvarez-Romero, J.; Laguette, M.-J.N.; Seale, K.; Jacques, M.; Voisin, S.; Hiam, D.; Feller, J.A.; Tirosh, O.; Miyamoto-Mikami, E.; Kumagai, H.; et al. Genetic variants within the COL5A1 gene are associated with ligament injuries in physically active populations from Australia, South Africa, and Japan. Eur. J. Sport Sci. 2023, 23, 284–293. [Google Scholar] [CrossRef]
- Lulińska-Kuklik, E.; Rahim, M.; Domańska-Senderowska, D.; Ficek, K.; Michałowska-Sawczyn, M.; Moska, W.; Kaczmarczyk, M.; Brzeziański, M.; Brzeziańska-Lasota, E.; Cięszczyk, P.; et al. Interactions between COL5A1 Gene and Risk of the Anterior Cruciate Ligament Rupture. J. Hum. Kinet. 2018, 62, 65–71. [Google Scholar] [CrossRef] [Green Version]
- Caso, E.; Maestro, A.; Sabiers, C.C.; Godino, M.; Caracuel, Z.; Pons, J.; Gonzalez, F.J.; Bautista, R.; Gonzalo, C.M.; Caso-Onzain, J.; et al. Whole-exome sequencing analysis in twin sibling males with an anterior cruciate ligament rupture. Injury 2016, 47 (Suppl. 3), S41–S50. [Google Scholar] [CrossRef]
- Lv, Z.T.; Wang, W.; Zhao, D.M.; Huang, J.M. COL12A1 rs970547 Polymorphism Does Not Alter Susceptibility to Anterior Cruciate Ligament Rupture: A Meta-Analysis. Front. Genet. 2021, 12, 665861. [Google Scholar] [CrossRef]
- Massidda, M.; Kikuchi, N.; Calo, C.; Pushkarev, V.; Cieszczyk, P.; Salvi, M. COL14A1 rs4870723 and Anterior Cruciate Ligament Rupture in physically active people from four different countries. In Proceedings of the 35th World Congress of Sports Medicine, Rio de Janeiro, Brazil, 12–15 September 2018. [Google Scholar]
- Galasso, O.; Iaccino, E.; Galleli, L.; Perrotta, I.; Conforti, F.; Donato, G.; Gasparini, G. Collagen type V polymorphism in spontaneous quadriceps tendon ruptures. Orthopedics 2012, 35, e580-4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calò, C.M.; Onali, F.; Robledo, R.; Flore, L.; Massidda, M.; Francalacci, P. Worldwide variation of the COL14A1 gene is shaped by genetic drift rather than selective pressure. Mol. Genet. Genomic Med. 2021, 9, e1629. [Google Scholar] [CrossRef]
- September, A.V.; Schwellnus, M.P.; Collins, M. Tendon and ligament injuries: The genetic component. Br. J. Sports Med. 2007, 41, 241–246. [Google Scholar] [CrossRef]
- Tanha, H.M.; Naeini, M.M.; Rahgozar, S.; Mahdi Rasa, S.M.; Vallian, S. Modified Tetra-Primer ARMS PCR as a Single-Nucleotide Polymorphism Genotyping Tool. Genet. Test. Mol. Biomark. 2015, 19, 156–161. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. 2021. Available online: https://www.R-project.org (accessed on 26 April 2023).
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.; et al. 1000 Genomes Project Analysis Group. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yi, X.; Liang, Y.; Huerta-Sanchez, E.; Jin, X.; Cuo, Z.X.; Pool, J.E.; Xu, X.; Jiang, H.; Vinckenbosch, N.; Korneliussen, T.S.; et al. Sequencing of 50 Human Exomes Reveals Adaptation to High Altitude. Science 2010, 329, 75–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hendricks, A.E.; Dupuis, J.; Logue, M.W.; Myers, R.H.; Lunetta, K.L. Correction for multiple testing in a gene region. Eur. J. Hum. Genet. 2014, 22, 414–418. [Google Scholar] [CrossRef] [Green Version]
- Hewett, T.E.; Johnson, D.L. ACL prevention programs: Fact or fiction? Orthopedics 2010, 33, 36–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magnusson, K.; Turkiewicz, A.; Hughes, V.; Frobell, R.; Englund, M. High genetic contribution to anterior cruciate ligament rupture: Heritability ~69%. Br. J. Sports Med. 2021, 55, 385–389. [Google Scholar] [CrossRef]
- John, R.; Dhillon, M.S.; Sharma, S.; Prabhakar, S.; Bhandari, M. Is there a genetic predisposition to anterior cruciate ligament tear? A systematic review. Am. J. Sports Med. 2016, 44, 3262–3269. [Google Scholar] [CrossRef]
COL1A1 rs1800012 | ||||
All (n = 166) | ACL (n = 85) | Control (n = 81) | p value | |
G | 0.720 (238) | 0.685 (117) | 0.750 (121) | 0.281 |
T | 0.280 (94) | 0.315 (53) | 0.250 (41) | |
GG | 0.490 (82) | 0.450 (38) | 0.540 (44) | 0.250 |
GT | 0.450 (74) | 0.480 (41) | 0.410 (33) | |
TT | 0.060 (10) | 0.070 (6) | 0.050 (4) | |
COL5A1 DpnII rs13946 | ||||
All (n = 155) | ACL (n = 84) | Control (n = 71) | p value | |
C | 0.790 (245) | 0.180 (30) | 0.250 (35) | 0.165 |
T | 0.210 (65) | 0.820 (138) | 0.750 (107) | |
CC | 0.080 (12) | 0.060 (5) | 0.100 (7) | 0.203 |
CT | 0.260 (41) | 0.240 (20) | 0.300 (21) | |
TT | 0.660 (102) | 0.700 (59) | 0.610 (43) | |
COL12A1 rs970547 | ||||
All (n = 176) | ACL (n = 85) | Control (n = 91) | p value | |
T | 0.540 (191) | 0.550 (94) | 0.530 (97) | 0.746 |
C | 0.460 (161) | 0.450 (76) | 0.470 (85) | |
CC | 0.200 (35) | 0.180 (15) | 0.220 (20) | 0.744 |
TC | 0.520 (91) | 0.540 (46) | 0.490 (45) | |
TT | 0.280 (50) | 0.280 (24) | 0.290 (26) | |
COL12A1 rs240736 | ||||
All (n = 174) | ACL (n = 86) | Control (n = 85) | p value | |
A | 0.790 (276) | 0.770 (131) | 0.810 (145) | 0.354 |
G | 0.210 (52) | 0.230 (39) | 0.190 (33) | |
AA | 0.600 (104) | 0.550 (47) | 0.640 (57) | 0.299 |
AG | 0.390 (68) | 0.440 (37) | 0.350 (31) | |
GG | 0.010 (2) | 0.010 (1) | 0.010 (1) | |
COL14A1 rs4870723 | ||||
All (n = 164) | ACL (n = 84) | Control (n = 80) | p value | |
A | 0.680 (223) | 0.700 (117) | 0.660 (106) | 0.554 |
C | 0.320 (105) | 0.300 (51) | 0.340 (54) | |
AA | 0.450 (73) | 0.450 (38) | 0.440 (35) | 0.541 |
AC | 0.470 (77) | 0.490 (41) | 0.450 (36) | |
CC | 0.090 (14) | 0.060 (5) | 0.110 (9) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Massidda, M.; Flore, L.; Scorcu, M.; Monteleone, G.; Tiloca, A.; Salvi, M.; Tocco, F.; Calò, C.M. Collagen Gene Variants and Anterior Cruciate Ligament Rupture in Italian Athletes: A Preliminary Report. Genes 2023, 14, 1418. https://doi.org/10.3390/genes14071418
Massidda M, Flore L, Scorcu M, Monteleone G, Tiloca A, Salvi M, Tocco F, Calò CM. Collagen Gene Variants and Anterior Cruciate Ligament Rupture in Italian Athletes: A Preliminary Report. Genes. 2023; 14(7):1418. https://doi.org/10.3390/genes14071418
Chicago/Turabian StyleMassidda, Myosotis, Laura Flore, Marco Scorcu, Giovanni Monteleone, Alessandra Tiloca, Massimiliano Salvi, Filippo Tocco, and Carla M. Calò. 2023. "Collagen Gene Variants and Anterior Cruciate Ligament Rupture in Italian Athletes: A Preliminary Report" Genes 14, no. 7: 1418. https://doi.org/10.3390/genes14071418
APA StyleMassidda, M., Flore, L., Scorcu, M., Monteleone, G., Tiloca, A., Salvi, M., Tocco, F., & Calò, C. M. (2023). Collagen Gene Variants and Anterior Cruciate Ligament Rupture in Italian Athletes: A Preliminary Report. Genes, 14(7), 1418. https://doi.org/10.3390/genes14071418