Genetic Variations between Youth and Professional Development Phase English Academy Football Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Genetic Procedures
2.2.1. Genotyping
2.2.2. Variant Selection
2.2.3. Total Genotype Score
2.3. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McAuley, A.B.T.; Baker, J.; Kelly, A.L. How Nature and Nurture Conspire to Influence Athletic Success. In Birth Advantages and Relative Age Effects in Sport: Exploring Organizational Structures and Creating Appropriate Settings; Kelly, A.L., Côté, J., Jeffreys, M., Turnnidge, J., Eds.; Routledge: London, UK, 2021; pp. 159–183. [Google Scholar]
- Sarmento, H.; Anguera, M.T.; Pereira, A.; Araújo, D. Talent Identification and Development in Male Football: A Systematic Review. Sports Med. 2018, 48, 907–931. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.M.; Ford, P.R.; Drust, B. Talent Identification and Development in Soccer since the Millennium. J. Sports Sci. 2020, 38, 1199–1210. [Google Scholar] [CrossRef]
- Bergkamp, T.L.G.; Niessen, A.S.M.; den Hartigh, R.J.R.; Frencken, W.G.P.; Meijer, R.R. Methodological Issues in Soccer Talent Identification Research. Sports Med. 2019, 49, 1317–1335. [Google Scholar] [CrossRef] [Green Version]
- Abarghoueinejad, M.; Baxter-Jones, A.D.G.; Gomes, T.N.; Barreira, D.; Maia, J. Motor Performance in Male Youth Soccer Players: A Systematic Review of Longitudinal Studies. Sports 2021, 9, 53. [Google Scholar] [CrossRef]
- Kelly, A.L.; Wilson, M.R.; Jackson, D.T.; Turnnidge, J.; Williams, C.A. Speed of Thought and Speed of Feet: Examining Perceptual-Cognitive Expertise and Physical Performance in an English Football Academy. J. Sci. Sport Exerc. 2021, 3, 88–97. [Google Scholar] [CrossRef]
- Kelly, A.L.; Wilson, M.R.; Jackson, D.T.; Williams, C.A. Technical Testing and Match Analysis Statistics as Part of the Talent Development Process in an English Football Academy. Int. J. Perform. Anal. Sport 2020, 20, 1035–1051. [Google Scholar] [CrossRef]
- Kelly, A.L.; Wilson, M.R.; Jackson, D.T.; Goldman, D.E.; Turnnidge, J.; Côté, J.; Williams, C.A. A Multidisciplinary Investigation into “Playing-up” in Academy Football According to Age Phase. J. Sports Sci. 2021, 39, 854–864. [Google Scholar] [CrossRef]
- Saward, C.; Hulse, M.; Morris, J.G.; Goto, H.; Sunderland, C.; Nevill, M.E. Longitudinal Physical Development of Future Professional Male Soccer Players: Implications for Talent Identification and Development? Front. Sports Act. Living 2020, 2, 578203. [Google Scholar] [CrossRef] [PubMed]
- McAuley, A.B.T.; Hughes, D.C.; Tsaprouni, L.G.; Varley, I.; Suraci, B.; Roos, T.R.; Herbert, A.J.; Kelly, A.L. Genetic Association Research in Football: A Systematic Review. Eur. J. Sport Sci. 2021, 21, 714–752. [Google Scholar] [CrossRef] [PubMed]
- Horsburgh, V.A.; Schermer, J.A.; Veselka, L.; Vernon, P.A. A Behavioural Genetic Study of Mental Toughness and Personality. Personal. Individ. Differ. 2009, 46, 100–105. [Google Scholar] [CrossRef]
- Livshits, G.; Gao, F.; Malkin, I.; Needhamsen, M.; Xia, Y.; Yuan, W.; Bell, C.G.; Ward, K.; Liu, Y.; Wang, J.; et al. Contribution of Heritability and Epigenetic Factors to Skeletal Muscle Mass Variation in United Kingdom Twins. J. Clin. Endocrinol. Metab. 2016, 101, 2450–2459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Missitzi, J.; Gentner, R.; Misitzi, A.; Geladas, N.; Politis, P.; Klissouras, V.; Classen, J. Heritability of Motor Control and Motor Learning. Physiol. Rep. 2013, 1, e00188. [Google Scholar] [CrossRef] [PubMed]
- Silventoinen, K.; Magnusson, P.K.E.; Tynelius, P.; Kaprio, J.; Rasmussen, F. Heritability of Body Size and Muscle Strength in Young Adulthood: A Study of One Million Swedish Men. Genet. Epidemiol. 2008, 32, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Zempo, H.; Miyamoto-Mikami, E.; Kikuchi, N.; Fuku, N.; Miyachi, M.; Murakami, H. Heritability Estimates of Muscle Strength-Related Phenotypes: A Systematic Review and Meta-Analysis. Scand. J. Med. Sci. Sports 2017, 27, 1537–1546. [Google Scholar] [CrossRef] [PubMed]
- De Moor, M.H.M.; Spector, T.D.; Cherkas, L.F.; Falchi, M.; Hottenga, J.J.; Boomsma, D.I.; Geus, E.J.C.D. Genome-Wide Linkage Scan for Athlete Status in 700 British Female DZ Twin Pairs. Twin Res. Hum. Genet. 2007, 10, 812–820. [Google Scholar] [CrossRef] [Green Version]
- Magnusson, K.; Turkiewicz, A.; Hughes, V.; Frobell, R.; Englund, M. High Genetic Contribution to Anterior Cruciate Ligament Rupture: Heritability ~69%. Br. J. Sports Med. 2021, 55, 385–389. [Google Scholar] [CrossRef]
- McAuley, A.B.T.; Hughes, D.C.; Tsaprouni, L.G.; Varley, I.; Suraci, B.; Roos, T.R.; Herbert, A.J.; Kelly, A.L. Genetic Testing in Professional Football: Perspectives of Key Stakeholders. J. Sci. Sport Exerc. 2022, 4, 49–59. [Google Scholar] [CrossRef]
- McAuley, A.B.T.; Hughes, D.C.; Tsaprouni, L.G.; Varley, I.; Suraci, B.; Baker, J.; Herbert, A.J.; Kelly, A.L. Genetic Associations with Personality and Mental Toughness Profiles of English Academy Football Players: An Exploratory Study. Psychol. Sport Exerc. 2022, 61, 102209. [Google Scholar] [CrossRef]
- McAuley, A.B.T.; Hughes, D.C.; Tsaprouni, L.G.; Varley, I.; Suraci, B.; Baker, J.; Herbert, A.J.; Kelly, A.L. Genetic Associations with Technical Capabilities in English Academy Football Players: A Preliminary Study. J. Sports Med. Phys. Fit. 2022; online ahead of print. [Google Scholar] [CrossRef]
- Murtagh, C.F.; Brownlee, T.E.; Rienzi, E.; Roquero, S.; Moreno, S.; Huertas, G.; Lugioratto, G.; Baumert, P.; Turner, D.C.; Lee, D.; et al. The Genetic Profile of Elite Youth Soccer Players and Its Association with Power and Speed Depends on Maturity Status. PLoS ONE 2020, 15, e0234458. [Google Scholar] [CrossRef]
- McAuley, A.B.T.; Hughes, D.C.; Tsaprouni, L.G.; Varley, I.; Suraci, B.; Roos, T.R.; Herbert, A.J.; Kelly, A.L. The Association of the ACTN3 R577X and ACE I/D Polymorphisms with Athlete Status in Football: A Systematic Review and Meta-Analysis. J. Sports Sci. 2021, 39, 200–211. [Google Scholar] [CrossRef]
- Premier League Elite Player Performance Plan. Available online: https://www.premierleague.com/youth/EPPP (accessed on 9 August 2021).
- Pickering, C.; Suraci, B.; Semenova, E.A.; Boulygina, E.A.; Kostryukova, E.S.; Kulemin, N.A.; Borisov, O.V.; Khabibova, S.A.; Larin, A.K.; Pavlenko, A.V.; et al. A Genome-Wide Association Study of Sprint Performance in Elite Youth Football Players. J. Strength Cond. Res. 2019, 33, 2344–2351. [Google Scholar] [CrossRef] [PubMed]
- Hall, E.C.R.; Baumert, P.; Larruskain, J.; Gil, S.M.; Lekue, J.A.; Rienzi, E.; Moreno, S.; Tannure, M.; Murtagh, C.F.; Ade, J.D.; et al. The Genetic Association with Injury Risk in Male Academy Soccer Players Depends on Maturity Status. Scand. J. Med. Sci. Sports 2022, 32, 338–350. [Google Scholar] [CrossRef] [PubMed]
- 1000 Genomes Project Consortium; Auton, A.; Brooks, L.D.; Durbin, R.M.; Garrison, E.P.; Kang, H.M.; Korbel, J.O.; Marchini, J.L.; McCarthy, S.; McVean, G.A.; et al. A Global Reference for Human Genetic Variation. Nature 2015, 526, 68–74. [Google Scholar] [CrossRef] [Green Version]
- Varillas Delgado, D.; Tellería Orriols, J.J.; Monge Martín, D.; Del Coso, J. Genotype Scores in Energy and Iron-Metabolising Genes Are Higher in Elite Endurance Athletes than in Nonathlete Controls. Appl. Physiol. Nutr. Metab. 2020, 45, 1225–1231. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.G.; Folland, J.P. Similarity of Polygenic Profiles Limits the Potential for Elite Human Physical Performance. J. Physiol. 2008, 586, 113–121. [Google Scholar] [CrossRef] [Green Version]
- Hosmer, D.; Stanley, L.; Rodney, S. Applied Logistic Regression; John Wiley & Sons: Hoboken, NJ, USA, 2013; ISBN 978-0-470-58247-3. [Google Scholar]
- Yamin, C.; Duarte, J.A.R.; Oliveira, J.M.F.; Amir, O.; Sagiv, M.; Eynon, N.; Sagiv, M.; Amir, R.E. IL6 (-174) and TNFA (-308) Promoter Polymorphisms Are Associated with Systemic Creatine Kinase Response to Eccentric Exercise. Eur. J. Appl. Physiol. 2008, 104, 579–586. [Google Scholar] [CrossRef]
- Fishman, D.; Faulds, G.; Jeffery, R.; Mohamed-Ali, V.; Yudkin, J.S.; Humphries, S.; Woo, P. The Effect of Novel Polymorphisms in the Interleukin-6 (IL-6) Gene on IL-6 Transcription and Plasma IL-6 Levels, and an Association with Systemic-Onset Juvenile Chronic Arthritis. J. Clin. Investig. 1998, 102, 1369–1376. [Google Scholar] [CrossRef] [Green Version]
- Carey, A.L.; Steinberg, G.R.; Macaulay, S.L.; Thomas, W.G.; Holmes, A.G.; Ramm, G.; Prelovsek, O.; Hohnen-Behrens, C.; Watt, M.J.; James, D.E.; et al. Interleukin-6 Increases Insulin-Stimulated Glucose Disposal in Humans and Glucose Uptake and Fatty Acid Oxidation In Vitro via AMP-Activated Protein Kinase. Diabetes 2006, 55, 2688–2697. [Google Scholar] [CrossRef] [Green Version]
- Petersen, A.M.W.; Pedersen, B.K. The Anti-Inflammatory Effect of Exercise. J. Appl. Physiol. 2005, 98, 1154–1162. [Google Scholar] [CrossRef]
- Eider, J.; Cieszczyk, P.; Leońska-Duniec, A.; Maciejewska, A.; Sawczuk, M.; Ficek, K.; Kotarska, K. Association of the 174 G/C Polymorphism of the IL6 Gene in Polish Power-Orientated Athletes. J. Sports Med. Phys. Fit. 2013, 53, 88–92. [Google Scholar]
- Ruiz, J.R.; Buxens, A.; Artieda, M.; Arteta, D.; Santiago, C.; Rodríguez-Romo, G.; Lao, J.I.; Gómez-Gallego, F.; Lucia, A. The -174 G/C Polymorphism of the IL6 Gene Is Associated with Elite Power Performance. J. Sci. Med. Sport 2010, 13, 549–553. [Google Scholar] [CrossRef]
- Kelly, A.L.; Williams, C.A. Physical Characteristics and the Talent Identification and Development Processes in Male Youth Soccer: A Narrative Review. Strength Cond. J. 2020, 42, 15–34. [Google Scholar] [CrossRef]
- Murtagh, C.F.; Brownlee, T.E.; OʼBoyle, A.; Morgans, R.; Drust, B.; Erskine, R.M. Importance of Speed and Power in Elite Youth Soccer Depends on Maturation Status. J. Strength Cond. Res. 2018, 32, 297–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casamichana, D.; Castellano, J.; Castagna, C. Comparing the Physical Demands of Friendly Matches and Small-Sided Games in Semiprofessional Soccer Players. J. Strength Cond. Res. 2012, 26, 837–843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuhre, J.; Øygard, A.; Sæther, S.A. Coaches’ Criteria for Talent Identification of Youth Male Soccer Players. Sports 2022, 10, 14. [Google Scholar] [CrossRef]
- Larkin, P.; O’Connor, D. Talent Identification and Recruitment in Youth Soccer: Recruiter’s Perceptions of the Key Attributes for Player Recruitment. PLoS ONE 2017, 12, e0175716. [Google Scholar] [CrossRef] [Green Version]
- McAuley, A.B.T.; Baker, J.; Kelly, A.L. Defining “Elite” Status in Sport: From Chaos to Clarity. Ger. J. Exerc. Sport Res. 2022, 52, 193–197. [Google Scholar] [CrossRef]
- Althouse, A.D. Adjust for Multiple Comparisons? It’s Not That Simple. Ann. Thorac. Surg. 2016, 101, 1644–1645. [Google Scholar] [CrossRef]
Gene | Symbol | Chr | SNV | Consequence | MAF |
---|---|---|---|---|---|
5-hydroxytryptamine receptor 2A | HTR2A | 13q14.2 | rs6311 | Intron variant C > T | T = 0.44 |
Actinin α 3 | ACTN3 | 11q13.2 | rs1815739 | Nonsense variant C > T (Arg > Ter) | T = 0.43 |
Adenosine monophosphate deaminase 1 | AMPD1 | 1p13.2 | rs17602729 | Nonsense variant G > A (Gln > Ter) | A = 0.12 |
Adrenoceptor β 2 | ADRB2 | 5q32 | rs1042714 | Missense variant G > C (Glu > Gln) | G = 0.41 |
Angiotensin I converting enzyme | ACE | 17q23.3 | rs4341 | Intron variant C > G (Insertion > Deletion) | C = 0.43 |
Angiotensinogen | AGT | 1q42.2 | rs699 | Missense variant A > G (Met > Thr) | G = 0.41 |
Brain derived neurotrophic factor | BDNF | 11p14.1 | rs6265 | Missense variant C > T (Val > Met) | T = 0.20 |
Catechol-O-methyltransferase | COMT | 22q11.21 | rs4680 | Missense variant G > A (Val > Met) | A = 0.50 |
Catenin α 2 | CTNNA2 | 2p12 | rs7600563 | Intron variant T > G | G = 0.34 |
Cholinergic receptor muscarinic 2 | CHRM2 | 7q33 | rs1824024 | Intron variant C > A | C = 0.29 |
Copine 5 | CPNE5 | 6p21.2 | rs3213537 | Intron variant C > T | T = 0.14 |
Creatine kinase, M-type | CKM | 19q13.32 | rs8111989 | 500B Downstream variant T > C | C = 0.30 |
Dopamine β-hydroxylase | DBH | 9q34.2 | rs1611115 | 2KB Upstream variant C > T | T = 0.21 |
Dopamine receptor D1 | DRD1 | 5q35.2 | rs4532 | 5 Prime UTR variant C > T | C = 0.40 |
Dopamine receptor D2 | DRD2 | 11q23.2 | rs1076560 | Intron variant C > A | A = 0.15 |
Dopamine receptor D3 | DRD3 | 3q13.31 | rs6280 | Missense variant C > T (Gly > Ser) | C = 0.33 |
Dopamine receptor D4 | DRD4 | 11p15.5 | rs1800955 | 2KB Upstream variant T > C | C = 0.41 |
FTO α-ketoglutarate dependent dioxygenase | FTO | 16q12.2 | rs9939609 | Intron variant T > A | A = 0.41 |
γ-aminobutyric acid type A receptor subunit alpha6 | GABRA6 | 5q34 | rs3219151 | 3 Prime UTR variant C > T | C = 0.42 |
Hydroxysteroid 17-β dehydrogenase 14 | HSD17B14 | 19q13.33 | rs7247312 | Intron variant A > G | G = 0.10 |
Hypoxia inducible factor 1 subunit α | HIF1A | 14q23.2 | rs11549465 | Missense variant C > T (Pro > Ser) | T = 0.10 |
Insulin-like growth factor 1 | IGF1 | 12q23.2 | rs35767 | Missense variant G > A (Gly > Val) | A = 0.16 |
Insulin-like growth factor 2 | IGF2 | 11p15.5 | rs680 | 3 Prime UTR variant C > T | T = 0.32 |
Interleukin 6 | IL6 | 7p15.3 | rs1800795 | Intron variant G > C | C = 0.42 |
Nitric oxide synthase 3 | NOS3 | 7q36.1 | rs2070744 | Intron variant C > T | C = 0.44 |
Oxytocin receptor | OXTR | 3p25.3 | rs2254295 | Intron variant C > T | C = 0.11 |
Peroxisome proliferator activated receptor α | PPARA | 22q13.31 | rs4253778 | Intron variant G > C | C = 0.19 |
Peroxisome proliferator activated receptor γ | PPARG | 3p25.2 | rs1801282 | Missense variant C > G (Pro > Ala) | G = 0.12 |
Polypeptide N-acetylgalactosaminyltransferase 13 | GALNT13 | 2q23.3-q24.1 | rs10196189 | Intron variant A > G | G = 0.14 |
Solute carrier family 16 member 1 | SLC16A1 | 1p13.2 | rs1049434 | Missense variant T > A (Asp > Glu) | A = 0.44 |
Superoxide dismutase 2 | SOD2 | 6q25.3 | rs4880 | Missense variant A > G (Val > Ala) | G = 0.47 |
Thyrotropin releasing hormone receptor | TRHR | 8q23.1 | rs7832552 | Intron variant C > T | T = 0.27 |
Uncoupling protein 2 | UCP2 | 11q13.4 | rs660339 | Missense variant G > A (Ala > Val) | A = 0.40 |
Gene (SNV) | Genotype | YDP = n (%) | PDP = n (%) | All = n (%) | MAF | HWE |
---|---|---|---|---|---|---|
HTR2A (rs6311) | C/C | 39 (42) | 25 (34) | 64 (39) | 0.40 | 0.26 |
C/T | 36 (39) | 36 (49) | 72 (43) | |||
T/T | 17 (18) | 13 (18) | 30 (18) | |||
ACE (rs4341) | G/G | 27 (29) | 21 (28) | 48 (29) | 0.47 | 0.76 |
G/C | 45 (49) | 35 (47) | 80 (48) | |||
C/C | 20 (22) | 18 (24) | 38 (23) | |||
ACTN3 (rs1815739) | C/C | 34 (37) | 26 (35) | 60 (36) | 0.39 | 0.42 |
C/T | 46 (50) | 38 (51) | 84 (51) | |||
T/T | 12 (13) | 10 (14) | 22 (13) | |||
ADBR2 (rs1042714) | C/C | 27 (29) | 20 (27) | 47 (28) | 0.48 | 0.44 |
C/G | 43 (47) | 35 (47) | 78 (47) | |||
G/G | 22 (24) | 19 (26) | 41 (25) | |||
AGT (rs699) | A/A | 26 (28) | 24 (32) | 50 (30) | 0.45 | 1 |
A/G | 48 (52) | 34 (46) | 82 (49) | |||
G/G | 18 (20) | 16 (22) | 34 (20) | |||
AMPD1 (rs17602729) | G/G | 74 (80) | 59 (80) | 133 (80) | 0.11 | 0.70 |
G/A | 17 (18) | 14 (19) | 31 (19) | |||
A/A | 1 (1) | 1 (1) | 2 (1) | |||
BDNF (rs6265) | C/C | 60 (65) | 50 (68) | 110 (66) | 0.19 | 1 |
C/T | 28 (30) | 22 (30) | 50 (30) | |||
T/T | 4 (4) | 2 (3) | 6 (4) | |||
COMT (rs4680) | G/G | 30 (33) | 22 (31) | 53 (32) | 0.43 | 0.87 |
G/A | 47 (51) | 36 (49) | 83 (50) | |||
A/A | 15 (16) | 15 (20) | 30 (18) | |||
CTNNA2 (rs7600563) | T/T | 44 (52) | 37 (51) | 81 (51) | 0.28 | 1 |
T/G | 34 (40) | 31 (42) | 65 (41) | |||
G/G | 7 (8) | 5 (7) | 12 (8) | |||
CHRM2 (rs1824024) | A/A | 37 (40) | 31 (42) | 68 (41) | 0.36 | 0.87 |
A/C | 42 (46) | 36 (49) | 78 (47) | |||
C/C | 13 (14) | 7 (9) | 20 (12) | |||
CPNE5 (rs3213537) | C/C | 63 (73) | 48 (66) | 111 (70) | 0.16 | 0.77 |
C/T | 21 (25) | 24 (33) | 45 (28) | |||
T/T | 2 (2) | 1 (1) | 3 (2) | |||
CKM (rs8111989) | T/T | 45 (49) | 41 (55) | 86 (52) | 0.28 | 0.85 |
T/C | 38 (41) | 28 (38) | 66 (40) | |||
C/C | 9 (10) | 5 (7) | 14 (8) | |||
DBH (rs1611115) | C/C | 56 (61) | 44 (59) | 100 (60) | 0.22 | 0.50 |
C/T | 33 (36) | 27 (36) | 60 (36) | |||
T/T | 3 (3) | 3 (4) | 6 (4) | |||
DRD1 (rs4532) | T/T | 35 (38) | 33 (45) | 68 (41) | 0.34 | 0.30 |
T/C | 46 (50) | 36 (49) | 82 (49) | |||
C/C | 11 (12) | 5 (7) | 16 (10) | |||
DRD2 (rs1076560) | C/C | 65 (71) | 46 (62) | 111 (67) | 0.19 | 0.61 |
C/A | 23 (25) | 25 (34) | 48 (29) | |||
A/A | 4 (4) | 3 (4) | 7 (4) | |||
DRD3 (rs6280) | T/T | 36 (39) | 28 (38) | 64 (39) | 0.37 | 0.74 |
T/C | 42 (46) | 38 (51) | 80 (48) | |||
C/C | 14 (15) | 8 (11) | 22 (13) | |||
DRD4 (rs1800955) | C/C | 20 (25) | 14 (22) | 34 (23) | 0.44 | 0.18 |
C/T | 32 (40) | 32 (49) | 64 (44) | |||
T/T | 29 (36) | 19 (29) | 48 (33) | |||
FTO (rs9939609) | T/T | 31 (34) | 20 (27) | 51 (31) | 0.44 | 0.87 |
T/A | 41 (45) | 43 (58) | 84 (51) | |||
A/A | 20 (22) | 11 (15) | 31 (19) | |||
GABRA6 (rs3219151) | T/T | 27 (30) | 22 (30) | 49 (30) | 0.44 | 0.35 |
T/C | 47 (52) | 40 (55) | 87 (53) | |||
C/C | 17 (19) | 11 (15) | 28 (17) | |||
GALNT13 (rs10196189) | A/A | 63 (68) | 46 (62) | 109 (66) | 0.22 | <0.001 |
A/G | 23 (25) | 18 (24) | 41 (24) | |||
G/G | 6 (7) | 10 (14) | 16 (10) | |||
HIF1A (rs11549465) | C/C | 69 (75) | 57 (77) | 126 (76) | 0.13 | 1 |
C/T | 22 (24) | 16 (22) | 38 (23) | |||
T/T | 1 (1) | 1 (1) | 2 (1) | |||
HSD17B14 (rs7247312) | A/A | 72 (78) | 62 (84) | 134 (81) | 0.11 | 0.39 |
A/G | 17 (18) | 12 (16) | 29 (17) | |||
G/G | 3 (3) | 0 (0) | 3 (2) | |||
IGF1 (rs35767) | G/G | 65 (71) | 44 (59) | 109 (66) | 0.18 | 0.60 |
G/A | 26 (28) | 27 (36) | 53 (32) | |||
A/A | 1 (1) | 3 (4) | 4 (2) | |||
IGF2 (rs680) | C/C | 49 (53) | 35 (47) | 84 (51) | 0.28 | 0.34 |
C/T | 37 (40) | 35 (47) | 72 (43) | |||
T/T | 6 (7) | 4 (6) | 10 (6) | |||
IL6 (rs1800795) | G/G | 32 (35) | 29 (39) | 61 (37) | 0.40 | 0.75 |
G/C | 39 (42) | 38 (51) | 77 (46) | |||
C/C | 21 (23) | 7 (9) | 28 (17) | |||
NOS3 (rs2070744) | T/T | 37 (40) | 28 (38) | 65 (39) | 0.36 | 0.41 |
T/C | 42 (46) | 40 (54) | 82 (49) | |||
C/C | 13 (14) | 6 (8) | 19 (11) | |||
OXTR (rs2254295) | T/T | 68 (79) | 57 (78) | 125 (79) | 0.12 | 0.06 |
T/C | 15 (17) | 14 (19) | 29 (18) | |||
C/C | 3 (3) | 2 (3) | 5 (3) | |||
PPARA (rs4253778) | G/G | 55 (60) | 52 (70) | 107 (65) | 0.20 | 0.34 |
G/C | 33 (36) | 17 (23) | 50 (30) | |||
C/C | 4 (4) | 5 (7) | 9 (5) | |||
PPARG (rs1801282) | C/C | 77 (84) | 60 (81) | 137 (83) | 0.09 | 0.64 |
C/G | 15 (16) | 12 (16) | 27 (16) | |||
G/G | 0 (0) | 2 (3) | 1 (1) | |||
SLC16A1 (rs1049434) | T/T | 32 (35) | 23 (31) | 55 (33) | 0.42 | 0.87 |
T/A | 46 (50) | 37 (50) | 83 (50) | |||
A/A | 14 (15) | 14 (19) | 28 (17) | |||
SOD2 (rs4880) | A/A | 26 (28) | 19 (26) | 45 (27) | 0.49 | 0.64 |
A/G | 40 (43) | 40 (54) | 80 (48) | |||
G/G | 26 (28) | 15 (20 | 41 (25) | |||
TRHR (rs7832552) | C/C | 51 (55) | 38 (51) | 89 (54) | 0.29 | 0.09 |
C/T | 30 (33) | 29 (39) | 59 (36) | |||
T/T | 11 (12) | 7 (9) | 18 (11) | |||
UCP2 (rs660339) | G/G | 27 (29) | 17 (23) | 44 (27) | 0.44 | 0.03 |
G/A | 49 (53) | 48 (65) | 97 (58) | |||
A/A | 16 (17) | 9 (12) | 25 (15) |
Gene (SNV) | Model | YDP (%) | PDP (%) | B | OR (95% CI) | p |
---|---|---|---|---|---|---|
HTR2A (rs6311) | C/C | 42 | 34 | 1.35 | 0.69 (0.37–1.31) | 0.260 |
C/T-T/T | 58 | 66 | ||||
ACE (rs4341) | G/G | 29 | 28 | 0.31 | 0.95 (0.49–1.88) | 1 |
G/C-C/C | 71 | 72 | ||||
ACTN3 (rs1815739) | C/C | 37 | 35 | 0.28 | 0.92 (0.49–1.75) | 0.871 |
C/T-T/T | 63 | 65 | ||||
ADBR2 (rs1042714) | C/C | 29 | 27 | 0.24 | 0.89 (0.45–1.76) | 0.863 |
C/G-G/G | 71 | 73 | ||||
AGT (rs699) | A/A | 28 | 32 | 0.74 | 1.22 (0.63–2.37) | 0.611 |
A/G-G/G | 72 | 68 | ||||
AMPD1 (rs17602729) | G/G | 80 | 80 | 0.37 | 0.96 (0.44–2.06) | 1 |
G/A-A/A | 20 | 20 | ||||
BDNF (rs6265) | C/C | 65 | 68 | 0.11 | 1.11 (0.58–2.13) | 0.869 |
C/T-T/T | 35 | 32 | ||||
COMT (rs4680) | G/G-G/A | 84 | 80 | 1.57 | 0.77 (0.35–1.69) | 0.547 |
A/A | 16 | 20 | ||||
CTNNA2 (rs7600563) | T/T | 52 | 51 | 0.42 | 0.96 (0.51–1.79) | 1 |
T/G-G/G | 48 | 49 | ||||
CHRM2 (rs1824024) | A/A | 40 | 42 | 0.25 | 1.07 (0.58–2.00) | 0.875 |
A/C-C/C | 60 | 58 | ||||
CPNE5 (rs3213537) | C/C | 73 | 66 | 0.40 | 0.70 (0.36–1.38) | 0.386 |
C/T-T/T | 27 | 34 | ||||
CKM (rs8111989) | T/T | 49 | 55 | 0.72 | 1.30 (0.70–2.40) | 0.437 |
T/C-C/C | 51 | 45 | ||||
DBH (rs1611115) | C/C | 61 | 60 | 0.03 | 0.94 (0.50–1.76) | 0.874 |
C/T-T/T | 39 | 40 | ||||
DRD1 (rs4532) | T/T | 38 | 45 | 0.02 | 1.31 (0.70–2.44) | 0.430 |
T/C-C/C | 62 | 55 | ||||
DRD2 (rs1076560) | C/C | 71 | 62 | 1.26 | 0.68 (0.36–1.31) | 0.320 |
C/A-A/A | 29 | 38 | ||||
DRD3 (rs6280) | T/T | 39 | 38 | 0.32 | 0.95 (0.50–1.78) | 0.874 |
T/C-C/C | 61 | 62 | ||||
DRD4 (rs1800955) | C/C | 25 | 22 | 0.36 | 0.84 (0.38–1.82) | 0.697 |
C/T-T/T | 75 | 78 | ||||
FTO (rs9939609) | T/T | 34 | 27 | 0.93 | 0.73 (0.37–1.43) | 0.400 |
T/A-A/A | 66 | 73 | ||||
GABRA6 (rs3219151) | T/T-T/C | 81 | 85 | 0.33 | 1.29 (0.56–2.97) | 0.677 |
C/C | 19 | 15 | ||||
GALNT13 (rs10196189) | A/A | 68 | 62 | 0.01 | 0.76 (0.40–1.44) | 0.415 |
A/G-G/G | 32 | 38 | ||||
HIF1A (rs11549465) | C/C | 75 | 77 | 0.13 | 1.12 (0.54–2.29) | 0.856 |
C/T-T/T | 25 | 23 | ||||
HSD17B14 (rs7247312) | A/A | 78 | 84 | 0.63 | 1.44 (0.65–3.17) | 0.431 |
A/G-G/G | 22 | 16 | ||||
IGF1 (rs35767) | G/G | 71 | 59 | 1.34 | 0.61 (0.32–1.16) | 0.142 |
G/A-A/A | 29 | 41 | ||||
IGF2 (rs680) | C/C | 53 | 47 | 0.94 | 0.79 (0.43–1.45) | 0.532 |
C/T-T/T | 47 | 53 | ||||
IL6 (rs1800795) | G/G-G/C | 77 | 91 | 3.00 | 2.83 (1.13–7.09) | 0.023 * |
C/C | 23 | 9 | ||||
NOS3 (rs2070744) | T/T | 40 | 38 | 0.21 | 0.90 (0.48–1.70) | 0.873 |
T/C-C/C | 60 | 62 | ||||
OXTR (rs2254295) | T/T | 79 | 78 | 0.07 | 0.94 (0.44–2.02) | 1 |
T/C-C/C | 21 | 22 | ||||
PPARA (rs4253778) | G/G | 60 | 70 | 0.00 | 1.59 (0.83–3.05) | 0.193 |
G/C-C/C | 40 | 30 | ||||
PPARG (rs1801282) | C/C | 84 | 81 | 1.49 | 0.83 (0.37–1.86) | 0.685 |
C/G-G/G | 16 | 19 | ||||
SLC16A1 (rs1049434) | T/T | 35 | 31 | 0.68 | 0.85 (0.44–1.62) | 0.624 |
T/A-A/A | 65 | 69 | ||||
SOD2 (rs4880) | A/A-A/G | 72 | 80 | 0.64 | 1.55 (0.75–3.20) | 0.279 |
G/G | 28 | 20 | ||||
TRHR (rs7832552) | C/C | 55 | 51 | 0.11 | 0.85 (0.46–1.57) | 0.640 |
C/T-T/T | 45 | 49 | ||||
UCP2 (rs660339) | G/G | 29 | 23 | 0.48 | 0.72 (0.36–1.45) | 0.381 |
G/A-A/A | 71 | 77 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McAuley, A.B.T.; Hughes, D.C.; Tsaprouni, L.G.; Varley, I.; Suraci, B.; Baker, J.; Herbert, A.J.; Kelly, A.L. Genetic Variations between Youth and Professional Development Phase English Academy Football Players. Genes 2022, 13, 2001. https://doi.org/10.3390/genes13112001
McAuley ABT, Hughes DC, Tsaprouni LG, Varley I, Suraci B, Baker J, Herbert AJ, Kelly AL. Genetic Variations between Youth and Professional Development Phase English Academy Football Players. Genes. 2022; 13(11):2001. https://doi.org/10.3390/genes13112001
Chicago/Turabian StyleMcAuley, Alexander B.T., David C. Hughes, Loukia G. Tsaprouni, Ian Varley, Bruce Suraci, Joseph Baker, Adam J. Herbert, and Adam L. Kelly. 2022. "Genetic Variations between Youth and Professional Development Phase English Academy Football Players" Genes 13, no. 11: 2001. https://doi.org/10.3390/genes13112001
APA StyleMcAuley, A. B. T., Hughes, D. C., Tsaprouni, L. G., Varley, I., Suraci, B., Baker, J., Herbert, A. J., & Kelly, A. L. (2022). Genetic Variations between Youth and Professional Development Phase English Academy Football Players. Genes, 13(11), 2001. https://doi.org/10.3390/genes13112001